

Needle Roller Bearings

CONTENTS

	Technical Data	A- 1∼ 56
K· ·ZW	Needle roller and cage assemblies	B- 3∼ 22
РК	Needle roller and cage assemblies for connecting rod bearings	B- 23~ 30
HK·L HMK·L	Drawn cup needle roller bearings	B- 31∼ 54
NA49 NA59 NA59 NK-8H-IR NKS+IR NA69 NA69 NA69 RNA49	Machined-ring needle roller bearings	B- 55∼102
NAO NAO·ZW	Machined-ring needle roller bearings, separable	B-103~120
RPNA··R	Self-aligning needle roller bearings	B-121~126
IR MI	Inner rings	B-127~144
RNA49··S NA49··S	Clearance-adjustable needle roller bearings	B-145~150
NKIB AXN ARN	Complex bearings	B-151~172
KRV CRV CRV KRU NUKRT NUKRT NUKRU	Cam followers	B-173~217
NATV: LL NATV: LL NATV: LL NUTR	Roller followers	B-218~240
AXA21 AXB21 ARA821 ARB821	Thrust roller bearings	B-241~260
O _{WR} O _{BR} Type G Type GD	Components Needle rollers / Snap rings / Seals	B-261~274
(10000000); (10000000); FFZW (10000000) RF	Linear bearings	B-275~294
HF HFL	One-way clutches	B-295~299
FRIS FR JPU··S	Bottom roller bearings for textile machinery Tension pulleys for textile machinery	B-300~308
	Appendixes	C- 1~ 18

Warranty

NTN warrants, to the original purchaser only, that the delivered product which is the subject of this sale (a) will conform to drawings and specifications mutually established in writing as applicable to the contract, and (b) be free from defects in material or fabrication. The duration of this warranty is one year from date of delivery. If the buyer discovers within this period a failure of the product to conform to drawings or specifications, or a defect in material or fabrication, it must promptly notify NTN in writing. In no event shall such notification be received by NTN later than 13 months from the date of delivery. Within a reasonable time after such notification, NTN will, at its option, (a) correct any failure of the product to conform to drawings, specifications or any defect in material or workmanship, with either replacement or repair of the product, or (b) refund, in part or in whole, the purchase price. Such replacement and repair, excluding charges for labor, is at NTN's expense. All warranty service will be performed at service centers designated by NTN. These remedies are the purchaser's exclusive remedies for breach of warranty.

NTN does not warrant (a) any product, components or parts not manufactured by NTN, (b) defects caused by failure to provide a suitable installation environment for the product, (c) damage caused by use of the product for purposes other than those for which it was designed, (d) damage caused by disasters such as fire, flood, wind, and lightning, (e) damage caused by unauthorized attachments or modification, (f) damage during shipment, or (g) any other abuse or misuse by the purchaser.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

In no case shall NTN be liable for any special, incidental, or consequential damages based upon breach of warranty, breach of contract, negligence, strict tort, or any other legal theory, and in no case shall total liability of NTN exceed the purchase price of the part upon which such liability is based. Such damages include, but are not limited to, loss of profits, loss of savings or revenue, loss of use of the product or any associated equipment, cost of capital, cost of any substitute equipment, facilities or services, downtime, the claims of third parties including customers, and injury to property. Some states do not allow limits on warranties, or on remedies for breach in certain transactions. In such states, the limits in this paragraph and in paragraph (2) shall apply to the extent allowable under case law and statutes in such states.

Any action for breach of warranty or any other legal theory must be commenced within 15 months following delivery of the goods.

Unless modified in a writing signed by both parties, this agreement is understood to be the complete and exclusive agreement between the parties, superceding all prior agreements, oral or written, and all other communications between the parties relating to the subject matter of this agreement. No employee of NTN or any other party is authorized to make any warranty in addition to those made in this agreement.

This agreement allocates the risks of product failure between NTN and the purchaser. This allocation is recognized by both parties and is reflected in the price of the goods. The purchaser acknowledges that it has read this agreement, understands it, and is bound by its terms.

Although care has been taken to assure the accuracy of the data compiled in this catalog, **NTN** does not assume any liability to any company or person for errors or omissions.

Needle Roller Bearings

TECHNICAL DATA CONTENTS

Classification and Characteristics	8.3 Shaft and housing accuracy	A-40
of Needle BearingsA- 4	8.4 Raceway surface accuracy	
	8.5 Material and hardness of raceway surface	
2. Load Rating and Life	8.6 Allowable bearing inclination	
2. 1 Bearing life	0.0 Allowable bearing inclination	
2. 2 Basic rated life and basic dynamic load rating	9. Lubrication	A-41
2. 3 Required bearing life for a give application	9.1 Purpose of lubrication	A-41
2. 4 Adjusted rating lifeA-15	9.2 Lubrication systems and characteristics	
2.4.1 Reliability adjustment factor a_1	9.3 Grease lubrication	
2.4.2 Bearing material adjustment factor for a_2	9.3.1 About grease	
2.4.3 Life adjustment factor for operating conditions $a_3 \dots A-16$	9.3.2 Grease fill amount	
2. 5 Effect of surface hardness on basic dynamic load	9.3.3 Grease replenishing	A-43
ratingA-16	9.3.4 Solid grease	A-43
2. 6 Bearing life under oscillating motion	9.4 Oil lubrication	A-43
2. 7 Life of bearing with linear motion	9.4.1 Lubrication method	A-43
2. 8 Fitting misalignment and crowning	9.4.2 Lubrication oil	
	9.4.3 Oiling supply rate	
2. 9 Basic static load rating	9.4.4 Guideline for lubricating oil change	A-45
2.10 Allowable static bearing load	10. Sealing Devices	۸ ۸ ۸
3. Calculation of Bearing LoadsA-20	10.1 Non-contact seal and contact seal	
3.1 Load acting on shafts		
3.1.1 Load factor	10.2 Combined seal	
3.1.2 Load acting on gears	10.3 Clearance setting	
3.1.3 Loads acting on chain and belt shafts	10.4 NTN seals	A-48
3.2 Bearings load distribution	10.5 Seal materials and corresponding operating	
3.3 Mean load	temperature ranges	
	10.6 Seal types and allowable speed	
4. Bearing AccuracyA-25	10.7 Shaft surface hardness	A-49
5. Bearing Internal ClearanceA-30	11. Bearing Handling	A-50
5.1 Bearing internal clearance	11.1 Bearing storage	A-50
5.2 Running clearance	11.2 Washing	A-50
5.2.1 Running clearance	11.3 Installation	A-50
5.2.2 Calculation of running clearance	11.4 Bearing running test	
5.3 Fits and bearing radial internal clearance	11.5 Bearing removal (dismounting)	
A Booto Etc.	11.6 Force needed for press-fitting and extraction	
6. Bearing FitsA-32	The Tolog hoods for proof many and oxidation mini-	, (02
6.1 About bearing fits	12. New Products Information	A-53
6.2 Necessity of proper fit	12.1 HL Bearing	A-53
6.3 Fit selection	12.1.1 Basic concept of HL bearing	A-53
6.4 Recommended fits	12.1.2 HL surface	A-53
6.5 Lower limit and upper limit of interference	12.1.3 HL bearing application examples	A-53
= 11 111 0 1	12.2 Bearings with Solid Grease	
7. Limiting SpeedsA-36	12.2.1 Features of Bearings with Solid Grease	A-54
8. Shaft and Housing DesignA-37	12.2.2 Varieties of NTN needle roller Bearings with	
	Solid Grease	
8.1 Design of bearing installing portions	12.2.3 Precautions for using NTN needle roller Bearing with Solid Grease	
8.2 Bearing fitting dimensions	12.2.4 Typical applications of Bearings with Solid Grease	
8.2.1 Shoulder height and corner roundness	12.2.7 Typical applications of Bearings with collections.	, (04
8.2.3 Mounting dimensions for thrust bearings	13. Bearing Type Codes and Auxiliary Codes	A-55
The state of the s		

DIMENSIONAL DATA CONTENTS

Needle Roller and Cage Assemblies	ВО	NUKRU, NUKRU · X	B-208
K, K·T2, K·S, K·ZW, KMJ, KMJ·S, KJ·S, KV·S	B- 3 B- 6	CR··H, CR··XH, CR··LLH, CR··XLLH	
PCJ		CR, CR·X, CR·LL, CR·XLL	
	2 20	CRV··H, CRV··XH, CRV··LLH, CRV··XLLH	
Needle Roller and Cage Assemblies for		CRV, CRV · · X, CRV · · LL, CRV · · XLL	
Connecting Rod		B. H. J. F. H. J. J.	
PK	B-27	Roller Followers	
KBK	B-29	RNAB2, RNAB2 ·· X	
Drawn Own Needle Deller Dearings		NAB2, NAB2 · · X	
Drawn Cup Needle Roller Bearings HK, HK. ZWD, HMK, HMK. ZWD, BK, BK. ZWD	B-31	RNA22··LL, RNA22··XLL	
		NA22··LL, NA22··XLL	
HK··L, HMK··L, HK··LL, HMK··LL, BK··L		NATR, NATR ·· X, NATR ·· LL, NATR ·· XLL	
DCL		NATV, NATV··X, NATV··LL, NATV··XLL	
HCK	D-54	NACV, NACV · · X, NACV · · LL, NACV · · XLL	
Machined-Ring Needle Roller Bearings	B-55	NUTR2, NUTR2 · · X, NUTR3, NUTR3 · · X	
RNA48, RNA49, RNA59, RNA69, NK, NKS		NUTW, NUTW · · X	B-238
NA48, NA49, NA59, NA69, NK+IR, NKS+IR		Thrust Roller Bearings	D 044
MR		AXK11, AS11, WS811, GS811	
MR+MI	B-92	811, 812, 893, 874, K811, K812, K893, K874, WS811,	240
RNA49 ·· L, RNA49 ·· LL	B-100	WS812, WS893, WS874, GS811, GS812, GS893, GS874	B-250
NA49 · L, NA49 · LL		AXA21, ARA821, ZS	
		AXB21, ARB821, ZS	
Machine-ring Needle Roller Bearings,		AAD21, A11D021, 20	
Separable Type	B-103	Components / Needle rollers	B-261
RNAO, RNÃO·ZW	B-106	A, F [*]	B-264
NAO, NAO··ZW	B-114	Commonanto / Chan ringo	
Colf Alianiaa Noodlo Dollov Doovingo		Components / Snap rings	
Self Aligning Needle Roller Bearings		WR BR	
RPNA - R		DR	⊳-∠69
PNA··R	6-125	Components / Seals	B-272
Inner ring	B-127	G, GD	B-273
IR		Market de la Proposition de la Company	
MI	B-141	Machined-Ring and Drawn-cup Linear Ball	
		Bearings	
Clearance-Adjustable Needle Roller Bearings		KH, KH··LL	
RNA49·S		KLM, KLM \cdot LL, KLM \cdot S, KLM \cdot SLL, KLM \cdot P, KLM \cdot PLL	B-282
NA49 · · S	B-149	Stroking Linear Ball Bearings	D 201
Complex Bearings	B-151	KD, KD · LL	
NKX, NKX · · Z			
NKX+IR, NKX Z+IR	B-158	Linear Flat Roller Bearings	
NKXR, NKXR · Z		FF, FF · ZW	
NKXR+IR, NKXR Z+IR		BF, RF	B-291
NKIA		Lincor Pollor Poorings	D 000
NKIB	B-166	Linear Roller Bearings	
AXN	B-168	nLivi	D-293
ARN	B-170	One-way Clutches	B-295
		HF	
Cam Followers		HFL	B-299
KRM·XH, KRMV·XH			
KR··H, KR··XH, KR··LLH, KR··XLLH		Bottom Roller Bearings for Textile Machinery	B-300
KR, KR··X, KR··LL, KR··XLL		FRIS (Series A)	
KRV··H, KRV··XH, KRV··LLH, KRV··XLLH		FRIS (Series B)	
KRV, KRV ·· X, KRV ·· LL, KRV ·· XLL		FR	B-305
KRT, KRT ·· X, KRT ·· LL, KRT ·· XLL		Tension Pulleys for Textile Machinery	B-306
KRVT, KRVT··X, KRVT··LL, KRVT··XLL		JPU··S, JPU··S+JF··S	B-306
KRU, KRU ·· X, KRU ·· LL, KRU ·· XLL			
KRVU, KRVU··X, KRVU··LL, KRVU··XLL		Appendix	C- 1
NUKR··H, NUKR··XH	B-202	•	
NUKR, NUKR · X NUKRT, NUKRT · X			

1. Classification and Characteristics of Needle Bearings

Needle roller bearings have relatively small diameter cylindrical rolling elements whose length is much larger than their diameter.

Compared with other types of rolling bearings, needle roller bearings have a small cross-sectional height and significant load-bearing capacity and rigidity relative to their volume. Also, because the inertial forces acting on

them is limited, they are an ideal choice for applications with oscillating motion. Needle roller bearings also work well in compact and lightweight machine designs and they serve as a ready replacement for sliding bearings.

NTN offers several different types of needle roller bearings.

Needle roller and cage assembly

A needle roller and cage assembly includes needle rollers and a cage that guides and retains the rollers.

- These assemblies use both the shaft and housing as raceway surfaces. Consequently, the cross-sectional thickness of the assembly is small, roughly equivalent to the diameter of the needle rollers.
- Because this bearing type has no inner or outer rings, the installation is much easier.
- These assemblies are available in both singlerow and double-row configurations.
- As long as the tolerance limits of the shaft and housing are satisfied, the bearing radial internal clearance can be adjusted.

Needle roller and cage assembly for connecting rods

A needle roller and cage assembly for connecting rods includes needle rollers and a cage that guides and retains the rollers. This bearing type is used for connecting rods in compact and mid-sized internal combustion engines (e.g. outboard engines and multipurpose engines), as well as reciprocating compressors.

Needle roller and cage assembly for large end

- This product boasts a unique light-weight high-strength design to cope with crank motion involving the simultaneous rotation and revolution on the large-end side of connecting rod. At the same time, the outer diameter of the cage surface is precision-finished so that the assembly maintains the appropriate cage-riding clearance.
- The cage is made of high-tensile special steel with a surface hardened treatment.
- The assembly uses an outer diameter-guided system.
- If an application has poor lubrication, the cage can be protected with a surface treatment using a non-ferrous metal.
- For applications with a one-piece crank shaft, split-type cage design is also available.

Needle roller and cage assembly for small end connecting rods

- The small end of connecting rods are subjected to high impact loads and high-speed oscillation. To address this condition, these bearings boast a unique light-weight high-strength design. In addition the cage bore surface is precision-finished so that the assembly maintains an appropriate cage-riding clearance.
- The cage is made from high tensile special steel and the cage surface is hardened.
- The cage is bore-guided and the guide surface is designed to be as long as possible to minimize surface pressure.
- Rollers with the longest possible length are used, At the same time, the maximum number of smaller diameter rollers are incorporated in order to reduce the contract pressure on the rollers.

Drawn-cup needle roller bearing

This bearing type includes an outer ring and needle rollers, which are both drawn from special thin steel plate by precision deep drawing, and a cage which guides the needle rollers precisely.

- This bearing product comprises an outer ring formed through precision deep-drawing process from a thin special steel blank; needle rollers; and cage that guides the rollers.
- A hardened and ground shaft or inner ring (IR Series) is used as the raceway.
- This bearing needs no axial clamping due to easy installation and a press-fit in the housing.
- Both a closed end type to close around the end of the shaft and an open end type are available.
- Furthermore, a type with a seal installed on a single side or on both sides is also available.
- The standard type includes a needle roller and cage assembly.
 In addition to this type, a special type with full complement rollers is available as an option.

Machined-ring needle roller bearings

This product mainly includes machined components — an outer ring and inner ring, needle rollers and a cage that guides the rollers. In this bearing, the cage or needle rollers are guided by the rib or side plate of the outer ring. Consequently, the roller and cage assembly cannot be separated from the outer ring. When the user wants to use the shaft as the raceway surface, **NTN** can offer a variant without an inner ring.

- Available in both metric dimensions and inch dimensions.
- This product is best-suited to a space-saving design due to its low section height, and large load capacity.
- Another advantage is high rigidity and high bearing accuracy due to the machined outer ring
- This bearing can be used with a housing made of light metal, because of its highly rigid outer ring. (Other than NKS small size products)
- The outer ring has a lubrication hole and lubrication groove.
- Both single-row and double-row types are available.
- A type with seal a installed on a single side or on both sides is also available.

Machined-ring needle roller bearing separable type

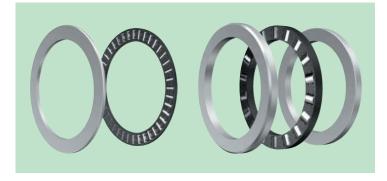
This product is essentially comprised of a machined outer ring, inner ring, and, needle rollers with a cage to guide the rollers. With this bearing, the roller and cage assembly can be separated from the outer ring. If the user wants to use the shaft directly as a raceway surface, **NTN** offers a variant that lacks inner ring.

- Easy to install: The following components can be mounted independently: cage and roller assembly, and the inner and outer rings.
- Radial Internal Clearance: Radial internal clearance is selected by combining individual independent components with the desired clearance.
- Space Saving Design: Best-suited to save space because of its low section height and large load capacity.
- High Rigidity: The machined (precut) outer ring allows the bearing to have high rigidity and high bearing.
- Housing Material: This bearing can be mounted in light alloy metal housings because of the outer ring high rigidity.
- Single and double row types bearings available. The outer ring of the double row bearing has a lubrication hole and groove.

Inner ring

Most needle roller bearings lack an inner ring and use the shaft as raceway surface. However, there may be cases where the shaft surface cannot be changed on the machine to the required hardness and/or roughness so in this case an inner ring may be used. **NTN** inner rings are made of high carbon chromium bearing steel blank that is heat-treated, and then flnish-ground to higher precision.

- Can also be used as a bushing.
- Available in both metric and inch series.
- Lubrication hole type at the raceway center is also available.


Clearance-adjustable needle roller bearing

This product is essentially comprised of a machined outer ring, inner ring, and, needle rollers with a cage to guide the rollers. This product features an outer ring with a unique cross-sections shape machined from a solid blank material. With this bearing, the roller and cage assembly cannot be separated from the outer ring. If the user wants to use the shaft directly as a raceway surface, **NTN** offers a variant that lacks inner ring.

- Clearance Reduction: The outer ring raceway diameter is reduced by clamping the outer ring axially, which then reduces the roller assembly bore diameter.
- Clearance Adjustment: Axial clamping force on the bearing can be adjusted to alter the reduction on outer ring raceway diameter.
- Application: This bearing is used on machine tools main spindle and other similar applications which require high speed rotational accuracy of JIS Grade-4.

Thrust roller bearing

The product is comprised of needle or cylindrical rollers, a cage that guides and retains the rollers, and a disk shaped bearing ring, and is capable of holding an axial load in one direction. The mounting surface can be used as raceway surface when the mounting surface are beat-treated and finished. As a result, the bearing can be supplied without bearing ring raceways.

- Space Saving Design: Best-suited to save space because of its small section height and large load capacity.
- Bearing Types: Current available bearing ring types are AS, WS, GS, and ZS. The AS type consists of a thin steel disk having undergone surface-hardening, while the WS, GS and ZS types are machined.

Complex needle roller bearings — Needle roller bearing with thrust bearing -

This complex bearing is comprised of a needle roller bearing for supporting radial load and a thrust bearing for supporting axial load which are assembled integrally. Both thrust ball bearing and thrust roller bearing type are available to support axial load.

 A variant of thrust bearing are equipped with a dust cover that positively prevents outward release of oil splash and protects the bearing against ingress of dust.

Complex needle roller bearings

Needle roller bearing with angular contact ball bearing, needle roller bearing with three-point contact ball bearing -

This complex bearing is comprised of a needle roller bearing for supporting radial load, a ball bearing for supporting comparatively small axial load and machined inner and outer rings which are all assembled integrally. Both angular contact ball bearing and three-point contact ball bearing are available to support the axial load.

- The complex needle roller bearings (NKIA Series) use an angular contact ball bearing as the thrust bearing to support a one-directional axial load.
- The complex needle roller bearings (NKIB Series) use a three-point contact ball bearing as the thrust bearing to support a double-directional axial load in addition the position in axial direction can be fixed.

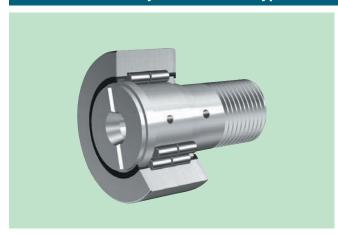
Needle roller bearing with double thrust roller bearing

This is a complex bearing wherein a thrust needle roller bearing or a thrust cylindrical roller bearing intends to support an axial load is configured at the double sides of a radial needle roller bearing for supporting radial load.

- Bi-Direction Axial Loading: This bearing can support large axial loads from both sides.
- Application: This complex bearing is designed to support a machine tool precision ball screw.

The track roller bearing is a needle roller bearing with thick outer ring, which is applied to cam roller, guide roller, eccentric roller or rocker arm.

The track roller bearings are mainly categorized into a stud type track roller bearing (cam follower) and a yoke type track roller bearing (roller follower). Various types of the roller follower and the cam follower are available.


Cam follower — Needle roller type —

This is a bearing designed for rotation of the outer ring. A needle roller and cage assembly and a stud instead of inner ring are fitted in the thick-walled outer ring. The stud is threaded to be mounted easily. This cam follower (bearing) uses needle rollers as its rolling element and it is available with cage or full complement roller bearing type without cage.

- The bearing type with cage is suitable to comparatively high speed running because its rollers are guided by the cage.
- Having more rollers relative to a given size, a full complement roller type boasts greater load capacity.
- The outer surface is available in both spherical (crowning) profile and cylindrical profile.
- This cam follower (bearing) is selectively available is both metric and inch sizes.
- A seal built-in type is also available.
- The stud is either a recessed head type allowing use of a screwdriver or hexagon socket head type so as to be mounted and adjusted easily.

Cam follower — Cylindrical roller type —

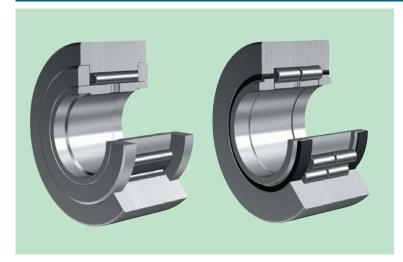
This is a full complement roller bearing designed for rotation of the outer ring. Double-row cylindrical rollers and a stud instead of inner ring are fitted in the thick-walled outer ring. The stud is threaded be mounted easily.

- Compared with needle roller type of a given size, cylindrical roller type of a similar size boasts greater load capacity.
- A steel plate is press-fitted in the outer ring and a labyrinth seal is formed between the face ring and the outer ring.
- The outer surface is available in both spherical (crowning) profile and cylindrical profile.
- The stud is either a recessed head type allowing use of a screwdriver or hexagon socket head type so as to be mounted and adjusted easily.

Cam follower — Eccentric type -

This is a cam follower (bearing) where the studs of the needle roller type and cylindrical roller type a prescribed are made eccentric. It can then be adjusted by making eccentric the outer ring relative position against the raceway.

- Load distribution is easily adjustable in configuring two or more cam followers in linear form.
- Preload can be applied by adjustment of load distribution.
- Alignment is possible even when the mounting hole is not processed in high accuracy.
- The outer surface is selectively available in both spherical (crowning) profile and cylindrical profile.
- The stud is either a recessed head type allowing use of a screwdriver or hexagon socket head type so as to be mounted and adjusted easily.


Roller follower — Without axial guide —

This roller follower is a bearing designed for rotation of the outer ring. A needle roller and cage assembly and a synthetic rubber seal reinforced with steel plate are assembled in a thick-walled outer ring.

- The outer ring, the needle roller and cage assembly, and the rubber seal are non-separable from each other.
- The outer ring is thick-walled type so that it is resistible to high load and impact load.
- A shaft must be provided with a thrust washer and a flange, because the outer ring has no ribs (or face ring) and no axial guide function.
- The outer surface is available in both spherical (crowning) profile and cylindrical profile.
- The spherical outer ring is effective in damping offset load which is caused by deviation in installing.
- The bearing with cylindrical outer ring is suitable for cases of large load and low-hardness track surface,due to its large area of contact with the mating track surface.

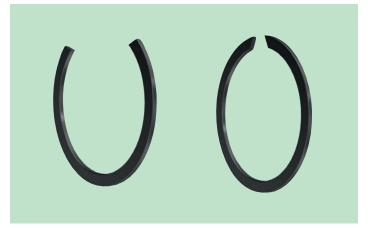
Roller follower — With axial guide –

This roller follower is a bearing designed for rotation of the outer ring. A needle roller and cage assembly, an inner ring, and a face ring are assembled in a thick-walled outer ring.

This bearing uses needle rollers as its rolling element. It is available with a cage or full complement roller bearing without cage. The outer ring is guided axially by a face ring which is press-fitted in the inner ring.

- The outer ring is thick-walled type so that it is resistible to high load and impact load.
- The outer surface is available in both spherical (crowning) profile and cylindrical profile.
- The spherical outer ring is effective in damping offset load which is caused by deviation in installing.
- The bearing with cylindrical outer ring is suitable for cases of large load and low-hardness track surface, due to its large area of contact with the mating track surface.
- This bearing is easier to handle because it needs no mounting of a guide (thrust washer, etc.) on the shaft unlike other types without axial guide (RNA22, NA22).

The components described below are for needle roller bearing.


Needle rollers

The needle rollers with flat end round end faces are standard. These rollers are made of high-carbon chrome bearing steel, surface-finished by grinding and buffing after heat-treatment.

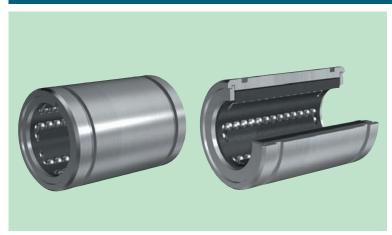
- A-Inter-diameter tolerance of the needle rollers is 2mm maximum.
- Rollers with crowned rolling surfaces are also available, which can reduce edge load.
- These needle rollers are supplied individually for applications (pin, shaft).

Snap rings

These are special-purposed rings used for axially positioning, guiding the inner and outer rings, or the needle roller and cage assembly in needle roller bearing.

- Two types are available, for either shaft and/or housing use.
- The snap ring product range cover smaller crosssectional height products for use in needle roller bearings. The product range also covers snap rings of smaller dimensional range.
- For the axial guide it is recommended to provide a spacer between the cage and the snap ring.

Seals



This product line covers special seals that have been designed for use with low profile needle roller bearings. The product prevents ingress of contamination and help retain grease.

- G-type seal with one lip and GD-type seal with two lips are selectively available on application.
- These seals consist of a ring section formed from steel sheet as well as synthetic rubber material. Their operating temperature ranges from -25 to 120°C. They are capable of continuous range at a maximum temperature of 100°C.
- These seals act to prevent the ingress of contamination and over-consumption of lubrication grease.
- The radial section height of each seal is designed to match the drawn-cup needle roller bearings. Hence, these seals require no additional finishing of the housing. This facilitates handling.

This catalogue describes the following ones of linear motion bearings.

Linear ball bearing — Machined ring type -

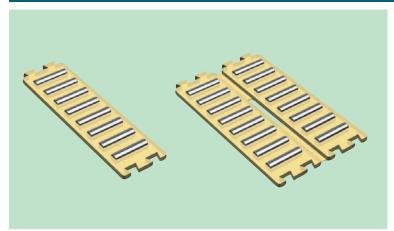
The product assembly includes a machined outer ring, side plate, steel balls, and a synthetic resin cage that retains the steel balls. This high-precision linear motion bearing develops infinite linear motion on the shaft.

- Standard type, clearance-adjustable type and open type are selectively available on application.
- Some bearings of these types are provided with a synthetic rubber seal at single side or double sides to prevent invasion of foreign matter.
- The steel balls in this product are reliably guided by the cage. Consequently, this product develops stable linear motion on the shaft with minimum frictional resistance.
- No rotational motion is available.

Linear ball bearing — Drawn cup type —

The product assembly includes an outer ring formed through precision deep-drawing of thin sheet steel material, steel balls, and a synthetic resin cage that retains the steel balls. This high-precision linear motion bearing develops infinite linear motion on the shaft.

- The outer ring made of thin steel plate creates a smaller section height and allows for a move compact linear motion system.
- Easy to install This bearing is press-fitted in the housing so that it requires no axial fixing.
- No rotational motion available.
- Some bearings of this type are provided with a synthetic rubber seal at double sides to prevent invasion of foreign matter therein.


Linear ball bearing — Stroking type –

The product assembly includes a machined outer ring, side plate, steel balls, and a synthetic resin cage that retains the steel balls. This high-precision bearing rotates and develops finite linear motion on the shaft. The outer ring is provided with a snap ring on both sides and a wavy spring washer is provided between the snap ring and the cage to damp on the impact acting on the cage and to prevent wear of the cage.

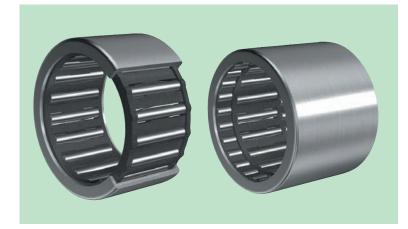
- Some bearings of this type are provided with a synthetic rubber seal on each side to prevent invasion of foreign matter.
- The outer ring is grooved so that the snap ring can be fitted and fixed easily.

Linear flat roller

This flat roller bearing, comprised of a flat cage and needle rollers, reciprocates on a flat raceway by motion of linear movable components.

- Two material types are available for the cage—synthetic resin and pressed sheet steel.
- FF type molded resin cage Multiple cages may be joined together in a serial configuration.
- Press-formed steel plate cage Cage to cage jointing is unavailable, but it can be supplied at any specified length.
- double-row synthetic resin cage has an elastic seam along its center line. When immersed in a hot oil bath heated to 70 to 90°C the cage can be "folded" to any desired cross-sectional angle so that it can be fitted to a V-sectioned face.

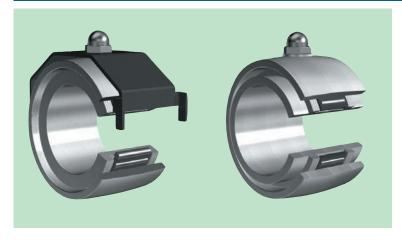
Linear roller bearing



This type has the function of enabling cylindrical rollers to circulate within a track frame and ensures infinite linear motion on a plane.

- Low friction factor due to the cage assembly preventing neighboring rollers from touching each other.
- High load rating due to use of cylindrical rollers

This catalogue describes the following products, too.


One-way clutch

Comprised of an outer ring drawn from thin special steel plate by precision deep drawing, a spring, needle rollers and a cage, the one-way clutch can transmit torque in only one direction.

- Boasting low frictional torque during over-running, this one-way clutch also features high transmittable torque despite its small crosssectional height.
- A certain one-way clutch variant has a built-in bearing that supports radial loading. Another variant has a plated outer ring for improved corrosion resistance.
- HF HFL types can be retained axially by merely press-fitting into a housing.
- These one-way clutches use the outer ring drawn by precision deep drawing, which requires a housing with wall thickness of a specified value or more.
- The HF type unit alone is not capable of bearing radial loads, and both ends must be supported with external radial bearings. (On the other hand, HFL type includes integrated radial bearings on each side.)

Bottom roller bearing — For textile machinery —

This product has a built-in needle roller bearing pre-filled with grease and is used to support bottom rollers. The spherical outer surface of the outer ring can allow a degree of bottom roller installation error. In order to prevent fiber entry into the bearing, tight clearances are maintained between the outer ring and double-ribbed inner ring, and the rib outer diameter surfaces are knurled.

Tension Pulley — For Textile Machinery —

These pulleys are used to guide and tension the tapes and belts driving the spindles of a fine spinning machine, a roving frame, a false twister, etc. The structure is comprised of a precision deep-drawn plate steel pulley which is press-fitted to the outer ring of a bearing.

2. Load Rating and Life

2.1 Bearing life

Even in bearings operating under normal conditions, the surfaces of the raceways and rolling elements are constantly subjected to repeated compressive stresses which causes **flaking** of these surfaces to occur. This flaking is due to material fatigue and will eventually cause the bearing to fail. The effective life of a bearing is usually defined in terms of the total number of revolutions a bearing can undergo before flaking of either the raceway surface or the rolling element surfaces occur.

Other causes of bearing failure are often attributed to problems such as seizing, abrasions, cracking, chipping, scuffing, rust, etc. However these so called "causes" of bearing failure are usually themselves caused by improper lubrication, faulty sealing or inaccurate bearing selection. Since the above mentioned "causes" of bearing failure can be avoided by taking the proper precautions, and are not simply caused by material fatigue, they are considered separately from fatigue or flaking.

2.2 Basic rated life and basic dynamic load rating

A group of seemingly identical bearings, when subjected to identical operating conditions will exhibit a wide diversity in their durability. This disparity in lives can be accounted for by differences in the fatigue of the bearing material itself. This disparity is considered statistically when calculating bearing life.

The basic rated life is based on a 90% statistical model. In this model 90% of an identical group of bearings subjected to identical operating conditions will attain or surpass the stated number of revolutions without any flaking due to rolling fatigue. For bearings operating at fixed constant speeds, the basic operating life (90% reliability) is expressed in the total number of hours of operation.

Basic dynamic load rating expressed a rolling bearing's capacity to support a dynamic load. The basic dynamic load rating is the load under which the basic rating life of the bearing is 1 million revolutions. This is expressed as pure radial load for radial bearings and pure axial load load for thrust bearings. These are referred to as basic dynamic radial load rating (Cr), and Basic dynamic axial load rating (Ca).

The basic dynamic load ratings given in the tables of this catalog are for bearings constructed of NTN standard bearing materials using standard manufacturing technologies. For information about the basic dynamic load rating for a bearing using non-standard material and/or manufacturing techniques, contact NTN Engineering.

The relationship between the basic rated life, the basic dynamic load rating and the bearing load can be expressed in formula (2.1).

Basic Rated Life specified in ISO 281.

$$L_{10} = (\frac{C}{P})^p$$
(2.1)

where.

p= 10/3 ······For roller bearing p= 3. ·····For ball bearings

 L_{10} : Basic rated life (10⁶ revolutions) C: Basic dynamic rated load, (N) (kgf)

(radial bearings: $C_{\rm r}$, thrust bearings: $C_{\rm a}$)

P: Bearing load, (N) (kgf)(radial bearings: P_r, thrust bearings: P_a)

Furthermore, the basic rated life can be expressed in hours using **formula (2.2)**

$$L_{10h} = 500 \, f_h^p \, \cdots (2.2)$$

$$f_{\rm h} = f_{\rm n} \frac{C}{P}$$
(2.3)

$$f_{\rm n} = \left(\frac{33.3}{n}\right)^{1/p}$$
(2.4)

where.

 L_{10h} : Basic rated life, h

 f_h : Life factor f_n : Speed factor

n: Rotational speed, r/ min

Formula (2.2) can also be expressed as formula (2.5).

$$L_{10h} = \frac{10^6}{60 n} \left(\frac{C}{P} \right)^p \cdots (2.5)$$

When several bearings are incorporated into a piece of equipment it is possible to calculate the bearing life of the whole system by way of **formula (2.6)**.

$$L = \frac{1}{\left(\frac{1}{L_1^e} + \frac{1}{L_2^e} + \cdots + \frac{1}{L_n^e}\right)^{1/e}}$$
(2.6)

where,

e = 9/8For roller bearings e = 10/9For ball bearings

L: Total basic rated life of bearing as a whole, h L_1 , L_2 $\cdots L_n$: Individual basic rated life of bearings, 1, 2, \cdots n, h

2.3 Required bearing life for a give application

When selecting a bearing, it is essential to determine the required life of the bearing under the intended operating conditions. The life requirement is usually determined by the durability and reliability required for the particular application. General guidelines for required life are shown in **Table 2.1**.

While the fatigue life of bearing is an important factor to consider when sizing the bearing it is also important to consider the strengths and rigidities of shaft and housing.

Table 2.1 Operating conditions and required life (reference information)

Operation profile		Life Requirement L_{10h}			×10³ hrs.
Operation profile	~4	4~12	12~30	30~60	60~
Machine to be run for a short time or only occasionally.	Home electric appliances Power tools	Agricultural machinery Office equipment			
Machine to be run for a short time or only occasionally; however, the machine needs to perform reliably.	Medical equipment Measuring instruments	Home air-conditioner Construction machinery Elevator Cranes	Cranes (sheave)		
Machine to be run for a prolonged time (but not continuous).	Passenger cars Motor cycles	Compact electric motors Buses and trucks General gearing equipment Woodworking machinery	Spindle on machine tool Multi-purpose electric motor for production plant Crusher Vibration screen	Critical gearing equipment Calender rolls for rubber or plastic materials Offset printing press	
Machine to be always run at least 8 hours a day.		Roll neck on steel rolling machinery Escalator Conveyor Centrifugal separator	Axles on rolling stocks Air-conditioning equipment Large electric motor Compressor and pump	Axles on locomotives Traction motors Hoist for mines Press flywheels	Pulp or paper making machinery Propulsion system for ships
Machine to be run 24 hours a day, and must continue operating even in the event of accident.					City water facility Drain and ventilation system for mines Electric power station equipment

2.4 Adjusted rating life

While the basic rating life (90% reliability) for a given bearing can be calculated with the formulas in Subsection 2.2 a number of factors may be present which adjust that life. In some applications it may be necessary to calculate bearing life at greater than 90% reliability. Special materials or manufacturing processes may be applied to the bearing in an effort to increase life. Furthermore, bearing life may be affected by the operating conditions (lubrication, temperature, running speed, etc.).

The basic rating life can be adjusted to consider these factors. The resultant basic rating life is called the **adjusted rating life**, and can be determined by **formula** (2.7):

$$L_{\text{na}} = a_1 \cdot a_2 \cdot a_3 \ (C/P)^p \ \cdots (2.7)$$

where,

 L_{na} : Adjusted life rating 10⁶ revolutions

 a_1 : Reliability adjustment factor

 a_2 : Bearing material adjustment factor

 a_3 : Operating condition adjustment factor

2.4.1 Reliability adjustment factor $\,a_{1}\,$

The reliability adjustment factor, a_1 , is used when a reliability higher than 90% is required. Values are shown in **Table 2.2**.

2.4.2 Bearing material adjustment factor for α_2

When non-standard bearing materials or manufacturing processes are used , the life-related bearing characteristics are inevitably changed. In this case, the bearing life is adjusted using the life adjustment factor, a_2 .

The basic dynamic load ratings found in the "Bearing Dimensions Table" of the catalog assume the use of standard NTN materials and manufacturing processes /

Table 2.2 Values of reliability adjustment factor α_1

Reliability %	$L_{ m n}$	Reliability adjustment factor a_1	
90	L_{10}	1.00	
95	L_5	0.62	
96	L_4	0.53	
97	L_3	0.44	
98	L_2	0.33	
99	L_1	0.21	

techniques. In this case $a_2=1$.

When special materials or manufacturing techniques are used in the manufacture of the bearing an $a_{2\neq 1}$ will need to be applied. In such a case, feel free to contact **NTN** for further information.

When bearings made of high carbon chrome bearing steel are used at temperatures greater than 120°C for a significant period of time significant dimensional changes will occur in the bearing. To limit these changes and their effect on bearing life a special dimension-stabilizing heat-

treatment (**TS treatment**) is used. The specific treatment is determined according to the maximum operating temperature. However, this dimension-stabilizing treatment results in lower bearing hardness which reduces bearing life. To account for this, the bearing life is adjusted using the a_2 factor shown in **Table 2.3**.

Table 2.3 Life adjustment values (Ω_2) for dimension-stabilizing heat-treated (TS-treated) bearings

Maximum operating temperature	Life adjustment factor for bearing material a_2
160°C	1.00
200°C	0.73
250°C	0.48
	temperature 160°C 200°C

2.4.3 Life adjustment factor for operating conditions a_3

The life adjustment factor for operating conditions (a_3) is used to adjust the bearing life when operating under non-ideal conditions such as deteriorated lubricated, the ingress of foreign matter (contamination) or excessively high the rotational speeds.

Generally the life adjustment factor in the case of optimum lubrication and no contamination is a_3 =1. When the bearing operates under particularly good conditions it is possible to have a_3 >1. However, a_3 <1 is applied in the following cases.

Low dynamic viscosity of grease or oil at bearing operating temperature

Radial needle roller bearing 13mm²/s and less Thrust needle roller bearing 20mm²/s and less

Particularly low rotational speed

(The product of rotational speed $n \min^{-1}$ by pitch circle diameter (D_{pw} mm) of rolling element is $D_{pw} \cdot n < 10000$.)

• High operating temperature of bearing

When standard bearings operate at high temperatures hardness of the raceway hardness is reduced, impacting bearing life, In such cases the bearing life is adjusted by multiplying the value shown in Fig.2.1. However, this does not apply to bearings having undergone dimension-stabilizing (TS) treatment.

Ingress of foreign matter (contamination) and/or moisture into lubricant

When using a bearing operating under suboptimal conditions please feel free to NTN for assistance in applying the adjustment factors.

If the lubricating conditions are not favorable a factor of $a_2 \times a_3$ <1 is usually applied. This is true even if special materials and manufacturing techniques are used that would result in a life adjustment factor a_2 >1.

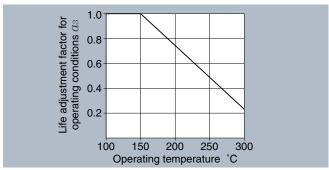


Fig. 2.1 Life adjustment factor for operating conditions depending on operating temperature

2.5 Effect of surface hardness on basic dynamic load rating

It is possible to use the shaft or housing surface as the raceway surface. Under these conditions the surface layer of the shaft/housing must be hardened to HRC58 to 64 and a proper hardening depth must be achieved.

Methods such as ordinary quenching, carburizing or induction quenching can be used to harden the shaft/housing. If it is not possible to sufficiently harden the surface the load rating of the bearing will need to be reduced. The basic load rating must be adjusted by multiplying the hardness factor shown in **Fig.2.2**.

Fig. 2.2 Hardness factor

2.6 Bearing life under oscillating motion

The life of a bearing under oscillating motion can be determined by **formula (2.8)**.

$$L_{\rm osc} = \Omega L_{\rm Rot}$$
 (2.8)

where,

Losc: Life of bearing with oscillating motion

 $L_{
m Rot}$: Life of bearing subject to rotational speed min⁻¹ identical to oscillation frequency cpm

Ex.) Rating life determined from 90 min⁻¹ that is equivalent to cyclic rate of 90 cpm.

 Ω : Oscillation factor (showing the relation with half angle β of oscillation angle per **Fig.2.3**).

Generally, **Fig.2.3** applies to cases where the critical oscillation angle 2 β is greater than the critical oscillation angle 2 β c. Critical oscillation angle is principally governed by the internal design of the bearing; in particular, the number of rolling elements included in one row.

There may be a case where the bearing needs to be used at an angle smaller than its critical oscillation angle: however, the bearing life will be shorter than the

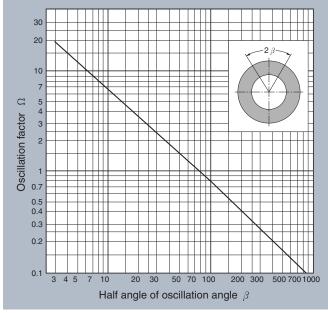


Fig. 2.3 Relationship of oscillation angle β to factor Ω

calculated life determined using the data in **Fig.2.3**. If the oscillation angle of the bearing is unknown, determine Ω , assuming that $\beta = \beta c$. For the data about an intended bearing, contact **NTN** Engineering.

When the oscillation angle 2 β is very small, difficulty in forming an oil film on the contact surface of rolling ring to rolling element could result in **fretting** corrosion.

In the case of inner ring oscillation, the critical oscillation angle is expressed in **formula (2.9)**.

Critical oscillation angle
$$2\beta c \ge \frac{360^{\circ}}{Z} \cdot \frac{D_{\mathrm{pw}}}{D_{\mathrm{pw}} - D_{\mathrm{w}} \cos \alpha}$$
 ...(2.9)

Where,

Z: Number of rolling elements (per row)

 $d_{\rm P}$: Pitch circle diameter (PCD) of rolling element

 D_p : Rolling element diameter

e: Contact angle

(In the case of outer ring oscillation, the right side denominator is $D_{\rm pw}$ + $D_{\rm w}$ cos α .)

2.7 Life of bearing with linear motion

In the case of bearings with linear motion such as linear ball bearing, linear flat roller bearing, etc., the relationship among axial travel distance, bearing load and load rating can be expressed in **formulas (2.10)**, **(2.11)**.

When the rolling elements are balls;

$$L = 50 \times (\frac{C_{\rm r}}{P_{\rm r}})^3$$
(2.10)

When the rolling elements are rollers;

$$L = 100 \times (\frac{C_{\rm r}}{P_{\rm r}})^{10/3}$$
(2.11)

where,

 $L\ \ \, {\rm Load\ rating\ \ \, km}$

 $C_{\rm r}$: Basic dynamic load rating N (kgf)

 $P_{\rm r}$: Bearing load N (kgf)

Fig.2.4 shows the relationship of C_r/P_r to L.

Furthermore, when the travel motion frequency and travel distance remain unchanged, the lifetime of bearing can be determined by **formulas (2.12)**, **(2.13)**.

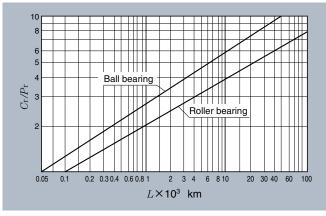


Fig. 2.4 Life of bearing with axial motion

When the rolling elements are balls;

$$L_{\rm h} = \frac{50 \times 10^3}{60 \cdot S} \left(\frac{C_{\rm r}}{P_{\rm r}} \right)^3 \cdots$$
 (2.12)

When the rolling elements are rollers;

$$L_{\rm h} = \frac{100 \times 10^3}{60 \cdot S} \left(\frac{C_{\rm r}}{P_{\rm r}} \right)^{10/3} \quad \cdots$$
 (2.13)

where

 L_h : Travel life h

 ${\it S}\,$: Travel distance per minute $\,$ m/min

 $S = 2 \cdot L \cdot n$

 $L: {\it Stroke length} \ \ {\it m}$

n: Stroke cycle cpm

2.8 Fitting misalignment and crowning

Generally it is well known that stress concentrations at the edge portion of the roller (so called, edge load) arising from fitting misalignment could result in rapid reduction of bearing lifetime. "Crowning" is adopted as a countermeasure against such rapid reduction of bearing lifetime. In that case, however, unless it is designed properly this crowning would cause the effective contact length of the roller to be reduced, which could then lead to shorter bearing life. It is therefore necessary to calculate a proper crowning based on the extent of fitting misalignment and load condition.

For Reference purposes, **Figs. 2.5** to **2.7** show computer generated examples of contact surface pressure profiles for various scenarios. These profiles demonstrate how crowning can reduce edge surface contact pressure in conditions of misalignment.

Fig. 2.8 shows an example of a computer generated relationship between allowable fitting misalignment and bearing life. It is possible to see from this Figure how the bearing lifetime is influenced by fitting misalignment.

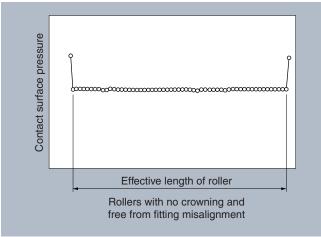


Fig. 2.5

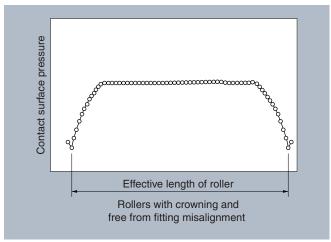


Fig. 2.7

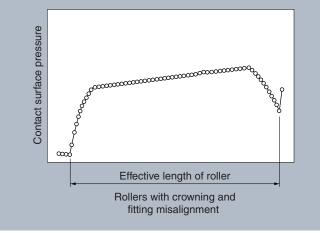


Fig. 2.6

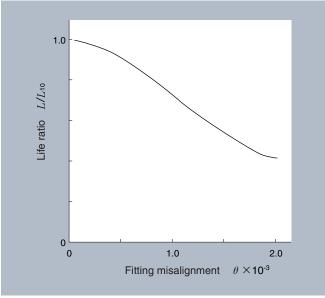


Fig. 2.8 Relationship of fitting misalignment to bearing lifetime

2.9 Basic static load rating

"Basic static load rating" is defined as the minimum static load acting on the center of a rolling element which results in a calculated contact stress value of:

4,000 MPa (408kgf/mm²) for Roller bearings.

4,200 MPa (428kgf/mm²) for Ball Bearings.

It has been empirically shown that the resulting permanent deformation on the rolling element and raceway caused by these magnitudes of contact stress is approximately 0.0001 time as great as the diameter of rolling element, and that this deformation level is maximum allowable deformation for smooth running of the bearing.

Basic static load rating for radial bearings is known as "basic static radial load rating", and that for axial thrust bearing as "basic static axial load rating". The bearing dimension tables in this catalog provide data for these load rating types under the parameter names $C_{\rm or}$, and $C_{\rm oa}$.

2.10 Allowable static bearing load

The basic static load rating described in **Subsection 2.9** is generally deemed as an allowable static bearing limit load, but in some cases this allowable limit load is set up larger than the basic static load rating and in some other cases it is set up smaller, according to the requirements for revolving smoothness and friction.

Generally this allowable limit load is decided considering the safety factor So in the following **formula** (2.14) and **Table 2.4**.

$$S_0 = C_0 / P_0 \cdots (2.14)$$

where,

 S_0 : Safety factor

C_o: Basic static rated load, N (kgf) (For radial bearings: C_{or},

For thrust bearings: C_{0a})

 $P_{0 \text{ max}}$: Maximum static bearing load, N (kgf)

(For radial bearings: P_{or} max, For thrust bearings: C_{oa} max)

Table 2.4 Lower limit value of safety factor S_0

Operating conditions	Roller bearings	Ball bearings
Requirement for high revolving accuracy	3	2
Requirement for ordinal revolving accuracy (ordinary-purposed)	1.5	1
Where minor deterioration of revolving accuracy is allowed (Ex. Low speed revolution, duty load application, etc.)	1	0.5

Remarks: 1. The lower limit of S_0 for drawn cup needle roller bearings is set at 3: for Premium Shell Product, the limit is set at 2.

set at 3; for Premium Shell Product, the limit is set at 2.

2. The lower limit of S₀ is set at 3 for an application where the AS type raceway is used in an axial thrust bearing.

3. Where vibration and shock load act on bearing, \vec{P}_0 max shall be determined considering the shock load factor.

3. Calculation of Bearing Loads

To compute bearing roads, the forces which act on the shaft being supported by the bearing must be determined. These forces include the inherent dead weight of the rotating body (the weight of the shafts and components themselves), loads generated by the working forces of the machine, and loads arising from transmitted power.

It is possible to calculate theoretical values for these loads; however, there are many instances where the load acting on the bearing is usually determined by the nature of the load acting on the main power transmission shaft.

3.1 Load acting on shafts

3.1.1 Load factors

The actual shaft loads on a machine that uses a bearing are usually greater than the theoretically determined values owing to vibration and impact occurring on the machine. For this reason, loads actually acting on a shaft system are often determined through multiplication by an appropriate load factors listed in **Table 3.1**.and **Table 3.2**.

K: Actual load acting on shaft N (kgf) K_c : Theoretically calculated value N (kgf)

 $f_{\rm w}$: Load factor (**Table 3.1**) $f_{\rm Z}$: Gear factor (**Table 3.2**)

Table 3.1 Load factor f_w

Extent of shock	$f_{ m w}$	Application
Nearly no shock	1.0–1.2	Electrical machines, machine tools, measuring instruments
Light shock	1.2–1.5	Railway vehicles, automobiles, rolling mills, metal working machines, paper making machines, rubber mixing machines, printing machines, aircraft, textile machines, electrical units, office equipment
Heavy shock	1.5–3.0	Crushers, agricultural machines, construction machines, cranes

Table 3.2 Gear factor f_z

Types of gear	f_{z}
Precision ground gears (Pitch and profile errors of less than 0.02mm)	1.05–1.1
Ordinary machined gears (Pitch and profile errors of less than 0.1mm)	1.1–1.3

3.1.2 Load acting on gears

The loads acting on gears can be divided into tangential load (K_1), radial load (K_2) and axial load (K_3). The magnitude and acting direction of each load differ depending on the types of gear. This paragraph describes how to calculate the loads acting on parallel shaft gears and cross shaft gears for general use.

(1) Load acting on parallel shaft gear

Figs. 3.1 to 3.3 illustrate the loads acting on spur gear and helical gear which are used with a parallel shaft. The magnitude of each load can be determined using the formulas (3.2) to (3.5).

$$K_{\rm t} = \frac{19.1 \times 10^6 \cdot H}{D_{\rm p} \cdot n}$$
 N
 $K_{\rm t} = \frac{1.95 \times 10^6 \cdot H}{D_{\rm p} \cdot n}$ (kgf)

$$K_s = K_t \cdot \tan \alpha$$
 (Spur gear)(3.3a)

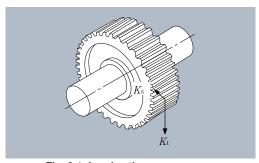


Fig. 3.1 Load acting on spur gear

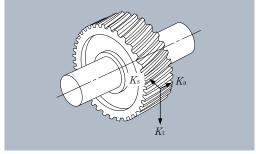


Fig. 3.2 Load acting on helical gear

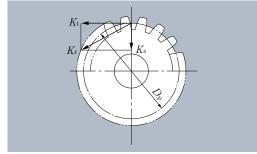


Fig. 3.3 Composite radial force acting on gear

$$=K_{\rm t}\cdot rac{ anlpha}{\coseta}$$
 (for helical gear)(3.3b)

$$K_{\rm r} = \sqrt{K_{\rm t}^2 + K_{\rm s}^2}$$
(3.4a)

$$K_a = K_t \cdot \tan \beta$$
 (for helical gear) ······(3.5)

where,

K_t : Tangential load acting on gear (Tangential force) N (kgf)

K_s : Radial load acting on gear (separating force) N (kgf)

 K_r: Load acting perpendicularly on gear shaft (composite force of tangential force and separating force) N (kgf)

 K_a : Parallel load acting on gear shaft N (kgf)

H: Transmission power kw n: Rotational speed $\, \mathrm{min^{\text{-}1}} \,$

 $D_{\rm p}$: Pitch circle diameter of gear mm

 α Gear pressure angle deg β Gear helix angle deg

(2) Loads acting on cross shaft gears

Figs. 3.4 and **3.5** illustrate the loads acting on straight-tooth bevel gears and spiral bevel gears which are used with cross shafts.

The calculation methods for these gear loads are shown in **Table 3.3**. Herein, to calculate gear loads for straight bevel gears, the helix angle (β) is 0.

Kt : Tangential load acting on gear
 (Tangential force) N (kgf)

Ks : Radial load acting on gear (separating force) N (kgf)

Ka Parallel load acting on gear shaft (axial load) N (kgf)

H: Transmission power kw n: Rotational speed min⁻¹

 $D_{\rm pm}$: Mean pitch circle diameter mm

 α : Gear pressure angle deg

 β : Gear helix angle deg

 δ : Pitch cone angle of gear deg

In general, the relationship between the loads acting on pinion and pinion gear can be expressed as follows, due to the perpendicular intersection of two shafts.

$$K_{\rm sp} = K_{\rm ag}$$
 (3.6) $K_{\rm ap} = K_{\rm sg}$ (3.7)

where,

 $K_{\rm sp}$, $K_{\rm sg}$: Pinion and pinion gear separating force N (kgf) $K_{\rm ap}$, $K_{\rm ag}$: Axial load acting on pinion and pinion gear N (kgf)

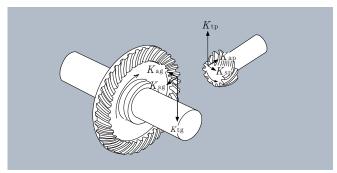


Fig. 3.4 Load acting on bevel gears

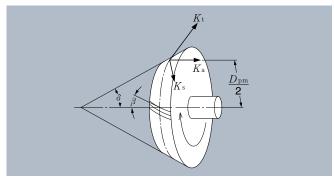


Fig.3.5 Bevel gear diagram

Table 3.3 Calculation formulas for determining loads acting on bevel gears

Unit N

Type of load	Rotational direction	Clockwise	Counter clockwise	Clockwise	Counter clockwise
r ype or load	Helix angle	To right	To left	To left	To right
Tangential load (tangential force) $K_{\rm t} = \frac{19.1 \times 10^6 \cdot H}{D_{\rm pm} \cdot n} \left\{ \frac{1.95 \times 1}{D_{\rm pm}} \right\}$			$\left\{\frac{1.95\times10^6\cdot H}{D_{\rm pm}\cdot n}\right\}$		
Radial load	Drive side	$K_{\rm s} = K_{\rm t} \left[\tan \alpha \frac{{\rm co}}{{\rm co}} \right]$	$\frac{s \delta}{s \beta} + \tan \beta \sin \delta$	$K_{ m s} = K_{ m t} \left[an lpha rac{ m co}{ m co} ight]$	$\frac{s \delta}{s \beta}$ - $\tan \beta \sin \delta$
(separating force) $K_{ m s}$	Driven side	$K_{\rm s}=K_{\rm t}$ $\left[\tan \alpha \frac{\rm co}{\rm co}\right]$	$\frac{s \delta}{s \beta}$ - $\tan \beta \sin \delta$	$K_{\rm s}=K_{\rm t}$ $\left[\tan \alpha \frac{\rm co}{\rm co}\right]$	$\frac{s \delta}{s \beta} + \tan \beta \sin \delta$
Load parallel to gear train (Axial load)	Drive side	$K_{\rm a}=K_{\rm t}$ $\left[\tan \alpha \frac{\sin \alpha}{\cos \alpha} \right]$	$\frac{n\delta}{s\beta}$ - $\tan\beta\cos\delta$	$K_{\rm a}\!\!=\!\!K_{\rm t}$ $\left[an lpha \frac{ ext{sin}}{ ext{co}} \right]$	$\frac{\ln \delta}{\sin \beta} + \tan \beta \cos \delta$
K _a	Driven side	$K_{\rm a}=K_{\rm t}$ $\left[{{\sf tan}} \; \alpha \; \frac{{\sf sin}}{{\sf co}} \right]$	$\frac{n\delta}{s\beta} + tan\betacos\delta$	$K_{\rm a}\!\!=\!\!K_{\rm t}$ $\left[an lpha rac{ extsf{Sil}}{ extsf{co}} ight]$	$\frac{n\delta}{s\beta}$ - $tan\beta\cos\delta$

The orientation of loading on a spiral bevel gear will vary depending on the direction of the helix angle, the direction of rotation and whether the gear is a driving or driven gear.

The separating force (K_s) and the axial load (K_a) are shown in the positive direction in **Fig. 3.5**. The direction of rotation and the helix direction are defined as viewed from the large end of the gear. For the gear illustrated in **Fig. 3.5** these directions are clockwise and to the right.

3.1.3 Loads acting on chain and belt shafts

When power is transmitted by means of a chain or belt as illustrated in **Fig. 3.6**, the loads acting on the sprocket or pulley can be determined by **formula (3.8).**

$$K_{t} = \frac{19.1 \times 10^{6} \cdot H}{D_{p} \cdot n} \left(\frac{1.95 \times 10^{6} \cdot H}{D_{p} \cdot n} \right) \cdots$$
 (3.8)

where,

 $K_{\rm t}$: Load acting on sprocket or pulley N (kgf)

HP: Transmission power kW

 D_{p} : Pitch circle diameter of sprocket or pulley mm

For belt drives, an initial tension is applied to ensure sufficient normal force between the belt and pulley during operation.

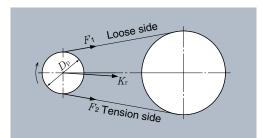


Fig. 3.6 Loads acting on chain/ belt

Taking into account the initial tension, the radial load acting on the pulley can be determined by **formula (3.9)**. For chain drives, the radial load can be expressed using the same formula, if vibration and shock are taken into consideration.

$$K_{\rm r}=f_{\rm b}\cdot K_{\rm t}$$
 (3.9)

where,

 K_r : Radial load acting on sprocket or pulley N (kgf)

 $f_{\rm b}$: Chain/belt factor (Table 3.4)

Table 3.4 Chain/belt factor fb

Type of chain / belt	f_{b}
Chain (single row type)	1.2–1.5
Vee-belt	1.5–2.0
Timing belt	1.1–1.3
Flat belt (with tension pulley)	2.5–3.0
Flat belt	3.0-4.0

3.2 Bearing load distribution

Any loads acting on shafts are distributed to the bearings. The bearing load distribution is determined by considering the shaft to be a static beam supported by the bearings.

For example, the loads acting on the bearings supporting the gear shaft illustrated in **Fig. 3.7** can be expressed using **formulas (3.10)** and **(3.11)**.

$$F_{\text{rA}} = K_{\text{r}} \mathbf{I} \frac{b}{l} - K_{\text{r}} \mathbf{I} \frac{c}{l} - K_{\text{a}} \frac{D_{\text{p}}}{2l} \cdots$$
 (3.10)

$$F_{\rm rB} = K_{\rm r} \, {\rm I} \, \frac{a}{l} + K_{\rm r} \, {\rm I} \, \frac{a + b + c}{l} + K_{\rm a} \frac{D_{\rm p}}{2l} \, \cdots$$
 (3.11)

where,

 F_{rA} : Radial load acting on bearing-A N (kgf) F_{rB} : Radial load acting on bearing-B N (kgf) K_{rI} : Radial load acting on gear-I N (kgf) K_{a} : Axial load acting on gear-I N (kgf) K_{rI} : Axial load acting on gear-II N (kgf) D_{p} : Pitch circle diameter of gear-I mm l: Bearing to bearing distance mm

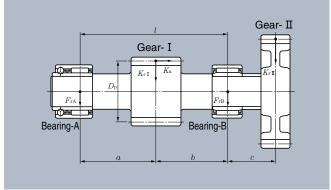


Fig. 3.7 Gear shaft

3.3 Mean load

The load on bearings used in machines will often fluctuate according to a fixed duty cycle. The load on bearings operating under such conditions can be converted to a mean load ($F_{\rm m}$) . The mean load is a load which gives the bearings the same life they would have under constant operating conditions.

(1) Stepped fluctuating load

The mean bearing load, $F_{\rm m}$, for stepped loads is calculated using **formula (3.12)**, where $F_{\rm 1}$, $F_{\rm 2}$ $F_{\rm n}$ are the bearing loads, and the rotational speed and running time are $n_{\rm 1}$, $n_{\rm 2}$ $n_{\rm n}$ and $t_{\rm 1}$, $t_{\rm 2}$ $t_{\rm n}$ respectively.

$$F_{\rm m} = \left(\frac{\sum (F_{\rm i}^{\ p} n_{\rm i} t_{\rm i})}{\sum (n_{\rm i} t_{\rm i})}\right)^{1/p} \qquad (3.12)$$

where:

p=10/3 for roller bearing p=3 for ball bearing

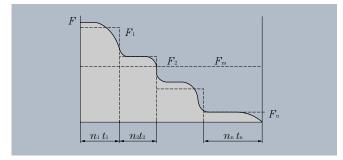


Fig. 3.8 Stepped fluctuating load

(2) Cyclical load

Where the bearing load can be expressed as a function of time F(t), repeating with cycle time (t),1 the mean load can be expressed **formula (3.13)**.

$$F_{\rm m} = \left(\frac{1}{t_0} \int_0^{t_0} F(t)^p dt\right)^{1/p} \cdots$$
 (3.13)

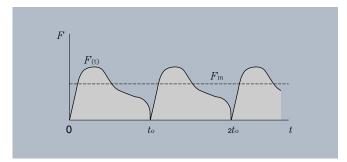


Fig. 3.9 Load fluctuating as cyclical function of time

(3) Linearly fluctuating load

The mean load F_m can be approximated by **formula** (3.14).

$$F_{\rm m} = \frac{F_{\rm min} + 2F_{\rm max}}{3}$$
(3.14)

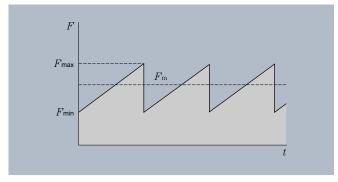


Fig. 3.10 Linearly fluctuating load

(4) Sinusoidal load

The mean load F_m , can be approximated by **formulas** (3.15), and (3.16).

case of (a)
$$F_{\rm m} = 0.75 F_{\rm max}$$
(3.15) case of (b) $F_{\rm m} = 0.65 F_{\rm max}$ (3.16)

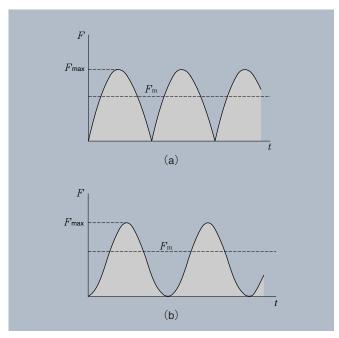


Fig. 3.11 Sinusoidal load

4. Bearing Accuracy

The dimensional, profile and running accuracies of rolling bearings are specified in ISO Standard as applicable and JIS B 1514 (Accuracy of Rolling Bearings).

"Dimensional accuracy" and "Profile accuracy" are the items indispensable in installing the rolling bearings on a shaft and in a bearing housing, and allowable bearing run-out in running is specified as the running accuracy.

Dimensional accuracy:

Dimensional accuracy means the respective allowable values for bore diameter, outer diameter, width or height (limited to thrust bearing) and chamfering dimension.

Profile accuracy:

Profile accuracy relates to tolerances for inside diameter variation, mean inside diameter variation, outside diameter variation, mean outside diameter variation, and ring width variation.

Running accuracy:

Running accuracy relates to tolerances for radial runout and axial runout with inner ring and outer ring, perpendicularity of ring face, perpendicularity of outside surface, and raceway thickness variation (thrust bearing).

Regarding the accuracy class of the machined ring needle roller bearings, class-0 is equivalent to bearings of the normal precision class, and precision becomes progressively higher as the class number becomes smaller; i.e. Class 6 is less precise than Class 5, which is less precise than Class 4, and so on.

Bearings of Class-0 are mostly used for general applications while bearings of Class-5 or Class-4 are used where the required running accuracies and revolutions are high or less friction and less fluctuation are required for bearings.

Various bearing types are available for NTN needle roller bearings and the representative types and the accuracy classes applicable to them are as shown in Table 4.1.

Dimensional item symbols used in the accuracy standard are given in **Table 4.2**, the radial bearing accuracy specified every accuracy class given in **Table 4.3**, the thrust bearing accuracy specified every accuracy class given in **Table 4.4**, and the allowable values for chamfering dimension given in **Table 4.5**.

Table 4.2 Dimensional item symbols used in applicable standards
●Radial bearings

Classification	Symbols	Symbol representation	Symbols under JIS B 0021 (Reference)
	Δd mp	Dimensional tolerance for in-plane mean bore diameter	
	Δd s	Dimensional tolerance for bore diameter	
Dimensional	ΔD_{mp}	Dimensional tolerance for in-plane mean outer diameter	
accuracy	$\Delta D_{\rm s}$	Dimensional tolerance for outer diameter	
	$\Delta B_{\rm S}$	Dimensional tolerance for inner ring width	
	$\Delta C_{\rm s}$	Dimensional tolerance for outer ring width	
	V_{dp}	Variation of in-plane bore diameter	Roundness (1)
	Vdmp	Variation of in-plane mean bore diameter	Cylindricity / 2)
Profile	V_{Dp}	Variation of in-plane outer diameter	Roundness (1)
accuracy	V _D mp	Variation of in-plane mean outer diameter	Cylindricity (2)
	VBs	Variation of inner ring width	Parallelism //
	Vcs	Variation of outer ring width	Parallelism //
	Kia	Radial run-out of inner ring	Run-out /
	Kea	Radial run-out of outer ring	Run-out /
Running accuracy	Sia	Axial run-out of inner ring	
	Sea	Axial run-out of outer ring	
	Sd	Perpendicularity of face (inner ring)	Perpendicularity
	SD	Perpendicularity of outside surface (outer ring)	Perpendicularity

Thrust bearings

Classification	Symbols	Symbol representation	Symbols under JIS B 0021 (Reference)
	Δd mp	Single plane mean bore diameter deviation on single-direction bearing	
Dimensional accuracy	Δd 2mp	Single plane mean bore diameter deviation on central washer	
,	ΔD_{mp}	Dimensional tolerance for in-plane mean outer diameter	
	V_{dp}	Bore diameter variation in a single radial plane on single-direction bearing	Roundness (1)
Profile accuracy	Vd2p	Bore diameter variation in a single radial plane on central washer	Roundness (1)
	V_{Dp}	Variation of in-plane outer diameter	Roundness (1)
Running	$S_{\rm i}$	Raceway thickness variation on shaft washer	Run-out /
accuracy	Se	Raceway thickness variation on housing washer	Run-out /

¹⁾ The roundness specified in JIS B 0021 is applicable to the tolerance Vdp for variation of radial in-plane bore diameter or nearly half of Vdp.

Table 4.1 Bearing types and corresponding accuracy classes

Bearing	type		Applicable a	ccuracy class		Applicable table
Needle roller bearing, Clearance-adjustable	needle roller bearing	g — JIS Class-6 — —		JIS Class-5	JIS class-4 JIS class-4	Table 4.3 Table 4.3
Complex bearing	Radial bearing Thrust bearing	JIS Class-0 NTN Class 0	JIS Class-6 NTN Class 6	JIS Class-5 NTN Class 5	— NTN Class 4	Table 4.3 Table 4.4
Needle roller bearing with double-direction thrust roller bearing	Radial bearing Thrust bearing			JIS Class-5 NTN Class 5	JIS Class-4 NTN Class 4	Table 4.3 Table 4.4
Thrust roller bearing Roller follower/cam fol	lower	NTN Class 0 JIS Class-0	NTN Class 6	NTN Class 5	NTN Class 4	Table 4.4 Table 4.3

The cylindricity specified in JIS B 0021 is applicable to the tolerance Vdmp for in-uniformity of radial in-plane mean diameter or nearly half of VDmp.

Table 4.3 Tolerances for radial bearings Table 4.3(1) Inner rings

Nominal bore diameter d	Dimensional tolerance for mean bore diameter Δd mp	Variation of mean bore diameter $V_{d ho}$	Allowable variation of bore diameter $V_{d m p}$			
mm	Class 0 Class 6 Class 5 Class 4	Class Class Class Class 0 6 5 4	Class Class Class Class 0 6 5 4			
over incl.	high low high low high low	max	max			
2.5 10	0 -8 0 -7 0 -5 0 -4 0 -8 0 -7 0 -5 0 -4 0 -10 0 -8 0 -6 0 -5	10 9 5 4	6 5 3 2			
10 18		10 9 5 4	6 5 3 2			
18 30		13 10 6 5	8 6 3 2.5			
30 50	0 -12 0 -10 0 -8 0 -6 0 -15 0 -12 0 -9 0 -7 0 -20 0 -15 0 -10 0 -8	15 13 8 6	9 8 4 3			
50 80		19 15 9 7	11 9 5 3.5			
80 120		25 19 10 8	15 11 5 4			
120 150	0 -25 0 -18 0 -13 0 -10 0 -25 0 -18 0 -13 0 -10 0 -30 0 -22 0 -15 0 -12	31 23 13 10	19 14 7 5			
150 180		31 23 13 10	19 14 7 5			
180 250		38 28 15 12	23 17 8 6			
250 315	0 -35 0 -25 0 -18 0 -40 0 -30 0 -23 0 -45 0 -35	44 31 18 —	26 19 9 —			
315 400		50 38 23 —	30 23 12 —			
400 500		56 44 — —	34 26 — —			

^{2.5}mm is included in this dimensional category.This table is applied to the ball bearings.

Table 4.3 (2) Outer rings

Nomina diam	eter)	Dimens	ional tolerance f Δι	Allowabl outer	Allowable variation of mean outer diameter $V_{D \mathrm{mp}}$							
over	m incl.	Class 0	Class 6 high low	Class 5 high low	Class 4 high low	Class Class Class 0 6 5 4 max.			Class Class Class 0 6 5 max.			Class 4
6 1 8 30	18 30 50	0 -8 0 -9 0 -11	0 -7 0 -8 0 -9	0 -5 0 -6 0 -7	0 -4 0 -5 0 -6	10 9 12 10 14 11		4 5 6	6 7 8	5 6 7	3 3 4	2 2.5 3
50	80	0 -13	0 -11	0 -9	0 -7	16 14	10	7	10	8	5	3.5
80	120	0 -15	0 -13	0 -10	0 -8	19 16		8	11	10	5	4
120	150	0 -18	0 -15	0 -11	0 -9	23 19		9	14	11	6	5
150	180	0 -25	0 -18	0 -13	0 -10	31 23		10	19	14	7	5
180	250	0 -30	0 -20	0 -15	0 -11	38 25		11	23	15	8	6
250	315	0 -35	0 -25	0 -18	0 -13	44 31		13	26	19	9	7
315	400	0 -40	0 -28	0 -20	0 -15	50 35	23	15	30	21	10	8
400	500	0 -45	0 -33	0 -23		56 41		—	34	25	12	—
500	630	0 -50	0 -38	0 -28		63 48		—	38	29	14	—

⁶mm is included in this dimensional category.This table is applied to the ball bearings.

Unit $\mu \mathrm{m}$

	Radial	run-o αia	ut	Perpend of f	ace	Axial run-out Allowable width deviation Sia ΔBs			Allowable width variation $V_{B\mathtt{S}}$				Nominal diame				
Class 0	6	Class 5 ax	Class 4	Class 5	Class 4	Class 5 ma	Class 4		Class 0,6 I low		Class 5,4 low	Class 0	Class 6	Class 5 nax	Class 4	over	incl.
10	6	4	2.5	7	3	7	3	0	-120	0	-40	15	15	5	2.5	2.5 1 0 18	10
10	7	4	2.5	7	3	7	3	0	-120	0	-80	20	20	5	2.5		18
13	8	4	3	8	4	8	4	0	-120	0	-120	20	20	5	2.5		30
15	10	5	4	8	4	8	4	0	-120	0	-120	20	20	5	3	30	50
20	10	5	4	8	5	8	5	0	-150	0	-150	25	25	6	4	50	80
25	13	6	5	9	5	9	5	0	-200	0	-200	25	25	7	4	80	120
30	18	8	6	10	6	10	7	0	-250	0	-250	30	30	8	5	120	150
30	18	8	6	10	6	10	7	0	-250	0	-250	30	30	8	5	150	180
40	20	10	8	11	7	13	8	0	-300	0	-300	30	30	10	6	180	250
50	25	13	_	13	_	15	_	0	-350	0	-350	35	35	13	_	250	315
60	30	15	_	15	_	20	_	0	-400	0	-400	40	40	15		315	400
65	35	—	_	—	_	—	_	0	-450	—	-	50	45	—		400	500

Unit $\mu \mathrm{m}$

													Offic Am
	R	Radial K_{ϵ}	run-ou ea	t		dicularity le surface		run-out ea 2	Allowable width deviation $\Delta c_{ extsf{s}}$	Allowable width v	ariation	Nomina diam	
					i	Sd					D		
	Class 0	Class 6	Class 5	Class 4	Class 5	Class 4	Class 5	Class 4	Class 0,6,5,4	Class Class Class 0 6 5	Class	mı	m
		ma	ax		m	ax	m	ax		max		over	incl.
Ī	15	8	5	3	8	4	8	5		5	2.5	6 0	18
	15	9	6	4	8	4	8	5	Depending on the tolerance	Depending on 5	2.5	18	30
	20	10	7	5	8	4	8	5	of Δ_{Bs} for d of same bearing.	the applicable 5	2.5	30	50
	25	13	8	5	8	4	10	5		allowable 6	3	50	80
	35	18	10	6	9	5	11	6		value of V_{Bs} 8	4	80	120
	40	20	11	7	10	5	13	7		for d of same 8 bearing.	5	120	150
	45	23	13	8	10	5	14	8		8	5	150	180
	50	25	15	10	11	7	15	10		10	7	180	250
	60	30	18	11	13	8	18	10		11	7	250	315
	70	35	20	13	13	10	20	13		13	8	315	400
	80	40	23	-	15	_	23	_		15	_	400	500
	100	50	25	_	18	_	25	_		18	_	500	630

Table 4.4 Tolerances of thrust roller bearings Table 4.4 (1) Inner rings and center rings

Unit $\mu \mathrm{m}$

	re diameter	Allov		on of mean dia	meter	Allowable v		Allowable variation of raceway thickness Si			
	or d_2		Δd mp	Or Δd 2mp		V_{dp} or			5	i	
		Class	0, 6, 5	Clas	ss 4	Class 0, 6, 5	Class 4	Class 0	Class 6	Class 5	Class 4
over	incl.	high low high low			ma	ıx	max				
_	18	0	-8	0	- 7	6	5	10	5	3	2
18	30	0	-10	0	-8	8	6	10	5	3	2
30	50	0	-12	0	-10	9	8	10	6	3	2
50	80	0	-15	0	-12	11	9	10	7	4	3
80	120	0	-20	0	-15	15	11	15	8	4	3
120	180	0	-25	0	-18	19	14	15	9	5	4
180	250	0	-30	0	-22	23	17	20	10	5	4
250	315	0	-35	0	-25	26	19	25	13	7	5
315	400	0	-40	0	-30	30	23	30	15	7	5
400	500	0	-45	0	-35	34	26	30	18	9	6
500	630	0	-50	0	-40	38	30	35	21	11	7

series, without being applicable to dz category.

1 The complex bearings are applicable to the category of single plane bearing d which corresponds to the same nominal outer diameter of same diameter

Table 4.4 (2) Outer rings

_		., Outer ring							Οτιιτ μιτι
	diam		Allowat		of mean outer ∆⊅mp	diameter	Allowable of outer of	liameter	Allowable variation of raceway thickness S_e
	I)					V_I	Эp	
	m	m							
			Clas	s 0,6,5	Cla	ass 4	Class 0,6,5	Class 4	Class 0,6,5,4
	over	incl.	high	high low high			ma	ax	max
	10	18	0	-11	0	-7	8	5	
	18	30	0	-13	0	-8	10	6	
	30	50	0	-16	0	-9	12	7	
	50	80	0	-19	0	-11	14	8	
	80	120	0	-22	0	-13	17	10	5
	120	180	0	-25	0	-15	19	11	Depending on the applicable allowable value of S_1 for d or d_2 of same bearing.
	180	250	0	-30	0	-20	23	15	or strict a or az or camo scannig.
	250	315	0	-35	0	-25	26	19	
	315	400	0	-40	0	-28	30	21	
	400	500	0	-45	0	-33	34	25	
	500	630	0	-50	0	-38	38	29	
	630	800	0	-75	0	-45	55	34	

Table 4.5 Allowable critical value for chamfering dimension Table 4.5 (1) Radial bearings

r _{s min} ●	Nominal bo		Radial direction	Axial direction		
7's min	over	incl.	Ƴsπ	nax		
0.15	_	_	0.3	0.6		
0.2	_	_	0.5	0.8		
0.0	_	40	0.6	1		
0.3	40	_	0.8	1		
0.6	_	40	1	2		
0.6	40	_	1.3	2		
1	_	50	1.5	3		
'	50	_	1.9	3		
4.4	_	120	2	3.5		
1.1	120	_	2.5	4		
1.5	_	120	2.3	4		
1.5	120	_	3	5		
	_	80	3	4.5		
2	80	220	3.5	5		
	220	_	3.8	6		
2.1	_	280	4	6.5		
2.1	280	_	4.5	7		
	_	100	3.8	6		
2.5	100	280	4.5	6		
	280	_	5	7		
3	_	280	5	8		
3	280	_	5.5	8		
4	_	_	6.5	9		

 $[\]ensuremath{\mathbf{0}}$ Allowable minimum values for the chamfering dimension "r" .

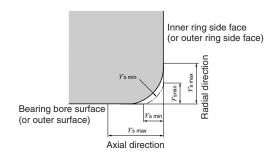


Table 4.5 (2) Thrust bearings

Unit mm

γ's min	Radial and axial directions
0.3	0.8
0.6	1.5
1	2.2
1.1	2.7
1.5	3.5
2	4
2.1	4.5
3	5.5

lacktriangle Allowable minimum values for the chamfering dimension "r".

Table 4.6 Basic tolerances Unit μm

Basic din					II.	Γ basic tolera	ance classes	3			
over	incl.	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9	IT10
	3	0.8	1.2	2	3	4	6	10	14	25	40
3	6	1	1.5	2.5	4	5	8	12	18	30	48
6	10	1	1.5	2.5	4	6	9	15	22	36	58
10	18	1.2	2	3	5	8	11	18	27	43	70
18	30	1.5	2.5	4	6	9	13	21	33	52	84
30	50	1.5	2.5	4	7	11	16	25	39	62	100
50	80	2	3	5	8	13	19	30	46	74	120
80	120	2.5	4	6	10	15	22	35	54	87	140
120	180	3.5	5	8	12	18	25	40	63	100	160
180	250	4.5	7	10	14	20	29	46	72	115	185
250	315	6	8	12	16	23	32	52	81	130	210
315	400	7	9	13	18	25	36	57	89	140	230
400	500	8	10	15	20	27	40	63	97	155	250
500	630	9	11	16	22	30	44	70	110	175	280
630	800	10	13	18	25	35	50	80	125	200	320
800	1 000	11	15	21	29	40	56	90	140	230	360
1 000	1 250	13	18	24	34	46	66	105	165	260	420
1 250	1 600	15	21	29	40	54	78	125	195	310	500
1 600	2 000	18	25	35	48	65	92	150	230	370	600
2 000	2 500	22	30	41	57	77	110	175	280	440	700
2 500	3 150	26	36	50	69	93	135	210	330	540	860

5. Bearing Internal Clearance

5.1 Bearing internal clearance

Bearing radial internal clearance (free clearance) is the amount of internal clearance a bearing has before being installed on a shaft or into a housing. When either the inner ring or the outer ring is fixed and the other ring is free to move, displacement takes place in the radial direction. This amount of displacement is called the radial internal clearance.

The radial internal clearance values of NTN machined ring needle roller bearings are listed in Table 5.1. Table 5.1 (1) shows the interchangeable clearances, which remain unchanged even if inner or outer ring are switched with those from different bearings. Table 5.1 (2) shows non-interchangeable clearances, which are supplied as matched sets due to the tighter clearance ranges. Bearing clearances are represented by the symbols C2, normal, C3, and C4 in increasing order from smallest to largest. Non-interchangeable clearances symbols are followed by "NA" for identification.

For radial clearance values for bearings other than machined ring needle roller bearings, refer to "Commentary" provided with the appropriate dimension tables.

Table 5.1 Radial internal clearance in machined ring needle roller bearing Table 5.1 (1) Interchangeable bearings

	. ,		- 3	Unit μ m					
Nomina				Radia	al intern	al clear	ance		
d (n		(02	Nor	mal 1	С	3	C	24
over	incl.	min	max	min	max	min	max	min	max
10 18	10 18 24	0 0 0	30 30 30	10 10 10	40 40 40	25 25 25	55 55 55	35 35 35	65 65 65
24	30	0	30	10	45	30	65	40	70
30	40	0	35	15	50	35	70	45	80
40	50	5	40	20	55	40	75	55	90
50	65	5	45	20	65	45	90	65	105
65	80	5	55	25	75	55	105	75	125
80	100	10	60	30	80	65	115	90	140
100	120	10	65	35	90	80	135	105	160
120	140	10	75	40	105	90	155	115	180
140	160	15	80	50	115	100	165	130	195
160	180	20	85	60	125	110	175	150	215
180	200	25	95	65	135	125	195	165	235
200	225	30	105	75	150	140	215	180	255
225	250	40	115	90	165	155	230	205	280
250	280	45	125	100	180	175	255	230	310
280	315	50	135	110	195	195	280	255	340
315	355	55	145	125	215	215	305	280	370
355	400	65	160	140	235	245	340	320	415
400	450	70	190	155	275	270	390	355	465

Supplementary suffix codes of clearance is not added to bearing numbers.

5.2 Running clearance

5.2.1 Running clearance selection

The internal clearance of a bearing under operating conditions (**running clearance**) is usually smaller than the same bearing's free clearance. This is due to several factors including bearing fit, the difference in temperature between the inner and outer rings, etc. As a bearing's operating clearance has an effect on bearing life, heat generation, vibration, noise, etc.; care must be taken in selecting the most suitable operating clearance.

Theoretically, regarding bearing life, the optimum operating internal clearance of any bearing would be a slight negative clearance after the bearing has reached normal operating temperature.

Unfortunately, under actual operating conditions, maintaining such optimum tolerances is often difficult at best. Due to various fluctuating operating conditions this slight minus clearance can quickly become a large minus, greatly lowering the life of the bearing and causing excessive heat to be generated. Therefore, an initial internal clearance that will result in a slightly greater than minus internal operating clearance should be selected.

Under normal operating conditions (e.g. normal load, fit, speed, temperature, etc.), a standard internal clearance will give a very satisfactory operating clearance.

Table 5.1 (2) Non-interchangeable bearings

Unit //m

									Jnit μ m		
Nominal bore diameter d (mm)		Radial internal clearance									
		C2NA		NA 2		C3NA		C4NA			
ver	incl.	min	max	min	max	min	max	min	max		
10 18	10 18 24	10 10 10	20 20 20	20 20 20	30 30 30	35 35 35	45 45 45	45 45 45	55 55 55		
24	30	10	25	25	35	40	50	50	60		
30	40	12	25	25	40	45	55	55	70		
40	50	15	30	30	45	50	65	65	80		
50	65	15	35	35	50	55	75	75	90		
65	80	20	40	40	60	70	90	90	110		
80	100	25	45	45	70	80	105	105	125		
00	120	25	50	50	80	95	120	120	145		
20	140	30	60	60	90	105	135	135	160		
40	60	35	65	65	100	115	150	150	180		
60	180	35	75	75	110	125	165	165	200		
80	200	40	80	80	120	140	180	180	220		
200	225	45	90	90	135	155	200	200	240		
225	250	50	100	100	150	170	215	215	265		
250	280	55	110	110	165	185	240	240	295		
280	315	60	120	120	180	205	265	265	325		
315	355	65	135	135	200	225	295	295	360		
355	400	75	150	150	225	255	330	330	405		
400	450	85	170	170	255	285	370	370	455		
	diam d (r) ver	diameter d (mm) ver incl. — 10 10 18 18 24 24 30 30 40 40 50 50 65 65 80 80 100 00 120 20 140 40 60 80 200 200 225 255 250 280 315 315 355 400 400	diameter d (mm) C2 ver incl. min — 10 10 10 18 10 18 24 10 24 30 10 30 40 12 40 50 15 50 65 15 65 80 20 80 100 25 20 140 30 40 60 35 60 180 35 80 200 40 200 225 45 225 250 50 250 280 55 280 315 60 315 355 65 355 400 75	diameter d (mm) C2NA ver incl. min max — 10 10 20 10 18 10 20 18 24 10 20 24 30 10 25 30 40 12 25 40 50 15 30 50 65 15 35 65 80 20 40 80 100 25 45 00 120 25 50 20 140 30 60 40 60 35 65 80 200 40 80 200 225 45 90 201 25 50 100 202 25 50 50 100 203 280 55 110 204 30 120 205 250 50 120 205 250 50 120 207 25 250 50 100 208 25 250 50 100 208 315 65 135 355 45 400 75 150	diameter d (mm) C2NA N ver incl. min max min — 10 10 20 20 10 18 10 20 20 18 24 10 20 20 24 30 10 25 25 30 40 12 25 25 40 50 15 30 30 50 65 15 35 35 65 80 20 40 40 80 100 25 45 45 00 120 25 50 50 20 140 30 60 60 40 60 35 65 65 80 200 40 80 80 200 225 45 90 90 225 250 50 100 100 250 280 55 <td< th=""><th>diameter d (mm) C2NA NA € ver incl. min max min max min max — 10 10 20 20 30 10 18 10 20 20 30 18 24 10 20 20 30 24 30 10 25 25 35 30 40 12 25 25 40 40 50 15 30 30 45 50 65 15 35 35 50 65 80 20 40 40 60 80 100 25 45 45 70 00 120 25 50 50 80 20 140 30 60 60 90 40 60 35 65 65 100 60 180 35 75 75 110</th><th>diameter d (mm) C2NA NA € C3 ver incl. min max min max min max min max min max — 10 10 20 20 30 35 10 18 10 20 20 30 35 18 24 10 20 20 30 35 24 30 10 25 25 35 40 30 40 12 25 25 40 45 40 50 15 30 30 45 50 50 65 15 35 35 50 55 65 80 20 40 40 60 70 80 100 25 45 45 70 80 00 120 25 50 50 80 95 20 140 30 60 60 90 105</th><th>diameter d (mm) C2NA NA C3NA ver incl. min max min max min max min max min max — 10 10 20 20 30 35 45 10 18 10 20 20 30 35 45 18 24 10 20 20 30 35 45 24 30 10 25 25 35 40 50 30 40 12 25 25 40 45 55 40 50 15 30 30 45 50 65 50 65 15 35 35 50 55 75 65 80 20 40 40 60 70 90 80 100 25 45 45 70 80 105 00 120 25 50 50 80 95 <td< th=""><th> Common</th></td<></th></td<>	diameter d (mm) C2NA NA € ver incl. min max min max min max — 10 10 20 20 30 10 18 10 20 20 30 18 24 10 20 20 30 24 30 10 25 25 35 30 40 12 25 25 40 40 50 15 30 30 45 50 65 15 35 35 50 65 80 20 40 40 60 80 100 25 45 45 70 00 120 25 50 50 80 20 140 30 60 60 90 40 60 35 65 65 100 60 180 35 75 75 110	diameter d (mm) C2NA NA € C3 ver incl. min max min max min max min max min max — 10 10 20 20 30 35 10 18 10 20 20 30 35 18 24 10 20 20 30 35 24 30 10 25 25 35 40 30 40 12 25 25 40 45 40 50 15 30 30 45 50 50 65 15 35 35 50 55 65 80 20 40 40 60 70 80 100 25 45 45 70 80 00 120 25 50 50 80 95 20 140 30 60 60 90 105	diameter d (mm) C2NA NA C3NA ver incl. min max min max min max min max min max — 10 10 20 20 30 35 45 10 18 10 20 20 30 35 45 18 24 10 20 20 30 35 45 24 30 10 25 25 35 40 50 30 40 12 25 25 40 45 55 40 50 15 30 30 45 50 65 50 65 15 35 35 50 55 75 65 80 20 40 40 60 70 90 80 100 25 45 45 70 80 105 00 120 25 50 50 80 95 <td< th=""><th> Common</th></td<>	Common		

For bearing with normal clearance, only NA is added to bearing numbers. EX. NA4920NA

5.2.2 Calculation of running clearance

The internal clearance differential between the free clearance and the operating (running) clearance (the amount of clearance reduction caused by interference fits, or clearance variation due to the temperature difference between the inner and outer rings) can be calculated by the following formula:

$$\delta_{\text{eff}} = \delta_{\text{o}} - (\delta_{\text{f}} + \delta_{\text{t}})$$
(5.1)

where.

 δ $_{\rm eff}$: Running clearance $\,$ mm $\,$

 δ \circ : Free clearance mm

∂ f : Reduction in internal clearance by interference mm

∂ t : Reduction in internal clearance due to inner/outer ring temperature difference mm

(1) Reduction in radial clearance by interference

When bearings are installed with interference fits on shafts and in housings, the inner ring will expand and the outer ring will contract; thus reducing the bearing's internal clearance. The amount of expansion or contraction varies depending on the shape of the bearing, the shape of the shaft or housing, dimensions of the respective parts, and the type of materials used. The differential is approximately 85% of the effective interference. For details, refer to **Table 6.4** on page A-35.

$$\delta$$
 f $\approx 0.85 \cdot \Delta_{deff}$ (5.2)

where,

 δ $_{\rm f}~$: Reduction in internal clearance by interference

 Δ_{deff} : Effective interference mm

(2) Reduction in radial clearance due to inner/outer ring temperature difference

During operation, normally the outer ring will be from 5 to I0°C cooler than the inner ring or rolling elements. However, if the cooling effect of the housing is large, the shaft is connected to a heat source, or a heat substance is conducted through a hollow shaft; the temperature difference between the two rings can be even greater. The amount of internal clearance is thus further reduced by the differential expansion of the two rings.

$$\delta t = \alpha \cdot \Delta T \cdot D_0 \cdot \dots (5.3)$$

where,

δ t: Reduction in internal clearance due to inner/outer ringtemperature difference mm

lpha: Linear expansion coefficient of bearing steel 12.5 imes 10⁻⁶/ $^{\circ}$ C

 Δ_T : Inner ring – outer ring temperature difference $^{\circ}$ C

D₀: Outer ring raceway diameter mm

When a shaft or housing is directly used as a raceway, the temperature difference ($\Delta \tau$) can be determined, treating the shaft as an inner ring and the housing as an outer ring.

5.3 Fits and bearing radial internal clearance

Once the dimensional tolerances for the shaft outside diameter and the housing bore diameter have been determined, a simple nomogram such as a one in **Fig. 5.1** may be used as a guide to determine the initial radial internal clearance for the bearing that will later lead to an appropriate internal clearance of the installed bearing. The nomogram in **Fig. 5.1** is used as the guideline as stated above. For details feel free to contact **NTN**.

For example, where the fit condition of a needle roller bearing with an inner ring is already given as J7 m6, **Fig.5.1** shows that clearance C3 must be used to get the standard running clearance after installation.

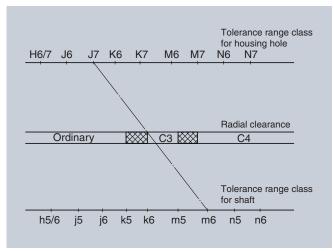


Fig. 5.1 Relationship between bearing fits and radial clearance

6. Bearing Fits

6.1 About bearing fits

For rolling bearings, the inner ring and outer ring are fixed on the shaft or in the housing so that relative movement does not occur between the fitted surfaces of the bearing ring and the shaft or housing in radial, axial and rotational directions when a load acts on the bearing. Depending on presence/absence of interference, fit modes can be categorized into "interference fit", "transition fit", and "loose fit".

The most effective practice to position a bearing is to provide an interference on the fit surfaces between the bearing ring and shaft or housing. Furthermore, as its advantage this tight fit method supports the thin-walled bearing ring with uniform load throughout its entire circumference without any loss of load carrying capacity.

The needle roller bearing is a bearing type which allows separation of the inner ring and the outer ring from one another and, therefore, it can be installed on a shaft or in a housing with an interference applied to both. In the case of "tight fit", the ease of bearing installation and removal. The bearing ring subjected to stationary load can be "loose-fitted". In contrast, tight fitting may not apply to all bearing applications because ease of mounting or removal of the bearing will be jeopardized.

6.2 Necessity of proper fit

Improper fit could lead to damage and shorter life of the bearing. Therefore, advance careful analysis is needed for selection of proper fit. Representative examples of bearing defects caused by improper fit are as described below.

 Fracture of bearing ring, and displacement of bearing ring

- Wear of bearing ring, shaft and housing caused by creep and fretting corrosion
- Seizure caused by insufficient internal clearance
- Insufficient running accuracy and abnormal noise caused by deformed raceway surface

6.3 Fit selection

Fit selection is generally done in accordance with the rule specified hereunder.

The loads acting on each bearing ring are divided into running load, stationary load and directionally unstable load according to the direction and characteristic of loads acting on the bearing.

A bearing ring that carries both running load and indeterminate direction load is provided with tight fit while a bearing ring that carries static load may be provided with either transition fit or loose fit (refer to **Table 6.1**).

Where load of high magnitude or vibration and shock loads act on a bearing or if a light alloy/plastic housing is used, it is necessary to secure a large interference. However, if this type of practice is applied, it is necessary to consider the rigidity of housing in order to avoid problems including deformation or fracture of the housing, deformation of the bearing, galling on fit surfaces, as well as resultant poor fit accuracy.

For an application subjected to high running accuracy, bearings of high accuracy must be used with a shaft and a housing of higher dimensional accuracy so as not to require a large interference Applying a large interference would cause the shaft or housing profile to be transferred to the bearing track, which could then interfere with the bearing running accuracy.

Table 6.1 Radial load and bearing fit

Dearing running conditions	Sketch	Load	Bearing fit		
Bearing running conditions	Skeich	characteristic	Inner ring	Outer ring	
Inner ring : Rotation Outer ring: static Load direction: constant		Rotating inner ring load	Needs to be	May be loose fit	
Inner ring: static Outer ring: rotation Load direction: rotating with outer ring		Static outer ring load	tight fit		
Inner ring: static Outer ring: rotation Load direction: constant		Rotating inner ring load	May be loose fit	Needs to be tight fit	
Inner ring: rotation Outer ring: static Load direction : rotating with inner ring		Static outer ring load			
Inner ring: rotation or static Outer ring: rotation or static Load direction: The direction can not be fixed.	Load direction is non-constant due to directional fluctuation, unbalanced load, etc.	Directionally unstable load	Needs to be tight fit	Needs to be tight fit	

6.4 Recommended fits

The dimensional tolerances for the diameter of a shaft and the bore diameter of a bearing housing, on/in which a bearing is installed, are standardized under the metric system in ISO 286 and JIS B 0401 (Bases of tolerances, deviations and fits). Hence, bearing fits are determined by selection of the dimensional tolerances for shaft diameter and housing bore diameter as applicable.

Table 6.2 shows the recommended fits for the machined ring needle roller bearings (with inner ring) that are generally selected based on the dimensional and load conditions. **Table 6.3** shows the numerical fit values.

For the recommended fits for others than the machined ring needle roller bearings, refer to "Commentary" described in the respective Dimension Tables.

Table 6.2 General standards for fits of machined ring needle roller bearing (JIS Class 0, Class 6)
Table 6.2 (1) Tolerance range classes for shaft (recommended)

	Conditions					
Load characteristic	Load magnitude	Shaft diameter d	range class			
	Light load	— 50	ј5			
		— 50	k5			
Rotating inner ring load or directionally unstable load	Ordinary load	50 — 150	m5			
		150 —	m6			
	Heavy load and	— 150	m6			
	shock load	150 —	n6			
	Medium- and low-speed rotation, light load		g6			
Inner ring static load	General application	All dimensions	h6			
	When high rotational accuracy is required		h5			

Table 6.2 (2) Tolerance range classes for housing bore (recommended)

	<u> </u>	
С	Tolerance range class	
Outor ring static load	Ordinary and heavy load	J7
Outer ring static load	Two-split housing, ordinary load	H7
Rotating outer ring load	Light load	M7
	Ordinary load	N7
	Heavy load and shock load	P7
	Light load	J7
Directionally unstable load	Ordinary load	K7
	Heavy load and shock load	M7
When high rotational acc	uracy under light load is required	K6

Remarks: Light load, ordinary load and heavy load are classified per the following criteria.

 $\begin{array}{ll} \mbox{Light load} & : P{\rm r}{\leq}0.06C{\rm r} \\ \mbox{Ordinary load} & : 0.06C{\rm r}{<} P{\rm r}{\leq}0.12C{\rm r} \\ \mbox{Heavy load} & : P{\rm r}{>}0.12C{\rm r} \end{array}$

6.5 Lower limit and upper limit of interference

When an intended bearing application requires an interference on the bearing, determine the appropriate interference taking into account the following considerations:

- Determine the lower limit taking into account the following factors:
 - (1) Reduction in interference due to radial load
 - (2) Reduction in interference due to temperature difference
 - (3) Reduction in interference due to poor roughness on fit surfaces
- Recommended upper limit is 1/1000 as large as the shaft diameter or smaller.

The formulas for calculating the required interference are presented below:

(1) Radial load and required interference

When a radial load acts on a bearing, the interference between the inner ring and shaft will decrease. The interference required to maintain an effective interference can be determined by **formulas (6.1)** and **(6.2)** below:

For $F_r \leq 0.3 C_{or}$,

$$\Delta d_{\rm F} = 0.08 \sqrt{\frac{d \cdot F_{\rm r}}{B}} \left(0.25 \sqrt{\frac{d \cdot F_{\rm r}}{B}} \right) \cdots$$
 (6.1)

For $F_r > 0.3 C_{or}$,

$$\Delta d_{\rm F} = 0.02 \frac{F_{\rm r}}{B} \left(0.2 \frac{F_{\rm r}}{B} \right)$$
(6.2)

Where.

 $\Delta d_{
m F}$: Required effective interference mm

d: Bearing bore diameter $\,$ mm

B: Inner ring width mm

 $F_{\rm r}$: Radial load N (kgf)

 C_{0r} : Basic static load rating N (kgf)

Unit μ m

	(-,	uning into								Unit μ m
Nomina diam		Allowable deviation of	g6	h5	h6	j5	k5	m5	m6	n6
		mean bore	Bearing Shaft	Bearing Shaft	Bearing Shaft	Bearing Shaft	Bearing Shaft	Bearing Shaft	Bearing Shaft	Bearing Shaft
d mi pver	m	diameter Δ_{dmp}								
3	6	0 -8	4T~12L	8T∼ 5L	8T~ 8L	11T~ 2L	14T~1T	17T∼ 4T	20T∼ 4T	24T~ 8T
6	10	0 -8	3T~14L	8T~ 6L	8T~ 9L	12T~ 2L	15T~1T	20T~ 6T	23T~ 6T	27T~10T
10	18	0 -8	2T~17L	8T~ 8L	8T~11L	13T~ 3L	17T~1T	23T~ 7T	26T~ 7T	31T~12T
18	30	0 -10	3T~20L	10T~ 9L	10T~13L	15T~ 4L	21T~2T	27T~ 8T	31T∼ 8T	38T~15T
30	50	0 -10	3T~25L	12T~11L	12T~16L	18T~ 5L	211~21 25T~2T	32T∼ 9T	37T∼ 9T	45T~17T
			5T~29L	15T~13L	12T~16L 15T~19L				371~ 91 45T~11T	
50	80	0 -15				21T~ 7L	30T~2T	39T~11T	-	54T~20T
80 120	120	0 -20	8T~34L	20T~15L	20T~22L	26T~ 9L	38T~3T	48T∼13T	55T~13T	65T~23T
140 160	160 180	0 -25	11T~39L	25T~18L	25T~25L	32T~11L	46T∼3T	58T∼15T	65T∼15T	77T∼27T
180 200 225	200 225 250	0 -30	15T~44L	30T∼20L	30T~29L	37T~13L	54T~4T	67T∼17T	76T∼17T	90T∼31T
250 280	280 315	0 -35	18T~49L	35T~23L	35T~32L	42T~16L	62T~4T	78T∼20T	87T~20T	101T∼34T
315 355	355 400	0 -40	22T~54L	40T~25L	40T~36L	47T~18L	69T~4T	86T∼21T	97T~21T	113T~37T
400 450	450 500	0 -45	25T~60L	45T∼27L	45T~40L	52T~20L	77T~5T	95T∼23T	108T~23T	125T~40T

Table 6.3 (2) Bearing fits in housing hole

Unit μ m

I	Nomina diam		Allowable deviation of	H7	J7	K6	K7	M7	N7	P7
	D mi)	mean outer diameter Δ <i>D</i> mp	Housing Bearing						
	over	incl.	high low							
	6	10	0 -8	0∼ 23L	7T~16L	7T~10L	10T~13L	15T∼ 8L	19T~ 4L	24T~ 1T
	10	18	0 -8	0∼ 26L	8T~18L	9T~10L	12T~14L	18T∼ 8L	23T~ 3L	29T∼ 3T
	18	30	0 -9	0∼ 30L	9T~21L	11T~11L	15T~15L	21T~ 9L	28T~ 2L	35T∼ 5T
	30	50	0 -11	0∼ 36L	11T~25L	13T~14L	18T~18L	25T~11L	33T∼ 3L	42T∼ 6T
	50	80	0 -13	0∼ 43L	12T~31L	15T~17L	21T~22L	30T~13L	39T∼ 4L	52T∼ 8T
	80	120	0 -15	0∼ 50L	13T~37L	18T~19L	25T~25L	35T~15L	45T∼ 5L	59T∼ 9T
	120	150	0 -18	0∼ 58L	14T~44L	21T~22L	28T~30L	40T~18L	52T∼ 6L	68T~10T
	150	180	0 -25	0∼ 65L	14T~51L	21T~29L	28T~37L	40T∼25L	52T~13L	68T∼ 3T
	180	250	0 -30	0∼ 76L	16T~60L	24T~35L	33T~43L	46T~30L	60T~16L	79T∼ 3T
	250	315	0 -35	0∼ 87L	16T~71L	27T~40L	36T∼51L	52T~35L	66T~21L	88T∼ 1T
	315	400	0 -40	0∼ 97L	18T~79L	29T~47L	40T∼57L	57T~40L	73T~24L	98T~ 1T
	400	500	0 -45	0∼108L	20T~88L	32T~53L	45T~63L	63T~45L	80T~28L	108T∼ 0

Remarks: Fit symbols "L" and "T" represent bearing clearance and interference respectively.

(2) Temperature difference and required interference

Heat is generated in a running bearing, and temperature difference occurs across the inner ring and outer ring: as a result, the interference between the inner ring and shaft will decrease. When the difference between bearing temperature and ambient temperature is taken as ΔT , the interference needed for maintaining an effective interference can be determined by **formula (6.3)**:

$$\Delta d_{\rm F}$$
=0.0015· d · Δ T······(6.3) Where,

 $\Delta\,d_{\rm T}$: Required effective interference for temperature difference μ m

 $\Delta\,T\,$: Difference between bearing temperature and ambient temperature $\,\,^{\circ}\text{C}\,$

d: Bearing bore diameter $\,$ mm

(3) Fitting surface roughness and required interference

The fitting surface is smoothed (surface roughness is made less) by bearing fits so that the interference reduces correspondingly. The interference reduction differs depending on the fitting surface roughness and generally the following reduction values must be used.

For ground shafts : 1.0 to 2.5mm For lathe-turned shafts : 5.0 to 7.0 mm

(4) Maximum interference

Tensile stress or compressive stress occurs on a bearing ring that has been installed to a shaft or housing with possible interference between these members. Excessively large interference can cause the bearing ring to fracture or shorten the fatigue life of the bearing. Therefore, usually set the maximum allowable interference at 1/1000 as large as the shaft diameter or smaller; or such that the maximum circumferential tensile stress occurring on the fitting surfaces is not greater than 130 MPa (refer to Table 6.4).

(5) Stress and deformation caused by interference

When bearing ring (solid) is fitted with interference, it deforms elastically and this elastic deformation results in stress.(See Fig.6.1) The fitting surface pressure of bearing ring, circumferential tensile stress (inner ring), compressive stress (outer ring) and radial expansion of raceway (inner ring), and shrinkage(outer ring) can be calculated from Table 6.4.

Table 6.4 Deformation and stress caused by bearing fit

Item	Inner ring	Outer ring
Surface pressure p MPa	$p_{i} = \frac{E}{2} \frac{\Delta d_{eff}}{d} \frac{(1 - k^{2}) (1 - k_{o}^{2})}{1 - k^{2} k_{o}^{2}}$	$p_{e} = \frac{E}{2} \frac{\Delta D_{eff}}{D} \frac{(1 - h^{2}) (1 - h_{o}^{2})}{1 - h^{2} h_{o}^{2}}$
Circumferential maximum stress σ MPa	$\sigma i = p_i \frac{1 + k^2}{1 - k^2} $ (Tensile stress)	$\sigma = p_{\rm e} \frac{2}{1-h^2}$ (Compressive stress)
$\begin{array}{cc} \text{Radial elastic} \\ \text{deformation of} \\ \text{raceway} & \Delta \end{array}$	$\Delta i = \Delta d_{\text{eff}} \cdot k \frac{1 - k_0^2}{1 - k^2 k_0^2} \text{ (Expansion)}$	$\Delta_{\rm e} = \Delta D_{\rm eff} \cdot h \frac{1 - {h_0}^2}{1 - h^2 {h_0}^2} (\text{Shrinkage})$

Where

$$k = \frac{d}{di}$$
, $k_0 = \frac{d_0}{d}$, $h = \frac{De}{D}$, $h_0 = \frac{D}{D_0}$

Remarks (Symbol representation)

d : Inner ring bore diameter (shaft diameter) mm

do : Hollow shaft bore diameter
(For solid shaft, do=0) mm
di : Inner ring raceway diameter mm

 $\Delta d_{ ext{eff}}$: Effective interference for inner ring $\,$ mm

D : Outer ring outer diameter (housing hole diameter) mm

D₀ : Housing outer diameter

(For sufficient housing size, D₀=∞) mm

De : Outer ring raceway diameter mm $\Delta D_{\rm eff}$: Effective interference for outer ring mm

: Modulus of elasticity (Young factor)

2.07×10⁶ (21200) MPa (kgf/mm²)

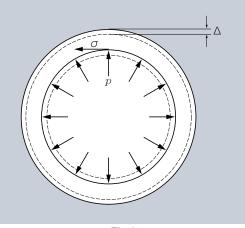


Fig.6.1

7. Limiting Speeds

At a higher bearing running speed, the bearing temperature will be higher due to frictional heat generated inside the bearing, possibly leading to failures such as seizure. As a result, the bearing will fail to continue stable operation. A maximum running speed that allows a bearing to run without developing such a problem heat buildup is known as a **limiting speed** (min⁻¹) and can vary depending on the bearing type, dimensions, cage type, load, acceleration/deceleration conditions, lubrication conditions and cooling conditions.

As a guideline, each bearing dimension table contains data about limiting bearing speeds obtained from grease lubrication and oil lubrication. However, it should be noted that these values are based on the following assumptions:

- Bearing that has been manufactured per NTN standard design specification and is provided with an appropriate internal clearance has been correctly mounted.
- Bearing is lubricated with a good quality lubricant, which is resupplied and replaced at correct intervals.
- Bearing is operated under ordinary loading conditions $(P \le 0.09 \ C_r)$ and at an ordinary operating temperature.

If the user is thinking of a bearing application whose running speed exceeds the limiting speed in the relevant dimension table, the user has to adopt a bearing that satisfies stricter requirements for cage specification, internal clearance, bearing accuracy, etc. and make special considerations which typically include adoption of forced circulating lubrication system.

8. Shaft and Housing Design

Even if the bearing to be used is selected correctly, it can not fulfill its specific function unless the shaft/housing on/in which it is installed is designed correctly. For needle roller bearings, special attention must be paid to shaft and housing designs, since the bearing ring thickness is thinner compared to other rolling bearing types.

8.1 Design of bearing installing portions

For needle roller and cage assemblies, attention must be paid to the axial guidance surface, such as a shaft shoulder. This guiding surface should be smooth and free from burrs. Under challenging load and/or speed conditions, a hardened and ground surface is required.

In cases where a snap ring is used as a locating shoulder (Fig. 8.1), a thrust ring should be used between the snap ring and bearing cage to prevent the cut section of the snap ring from contacting the cage directly. NTN offers WR type snap rings that are customdesigned for axial retention of needle roller & cage assemblies. (Refer to the Dimensions Table on page B-267.)

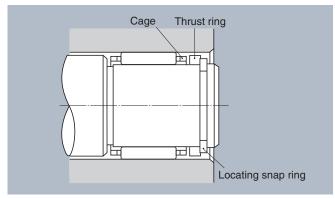


Fig. 8.1 Bearing fixing by thrust ring

Since a radial needle roller bearing can move freely on the shaft along the axial direction, a ball bearing or thrust bearing is used on the side opposite to the radial needle roller bearing in order to locate the shaft in the axial direction. With an application where the axial load is low and the running speed is not high (for example, an idle gear in gearbox), a thrust ring may be installed to a shaft as shown in **Fig. 8.2** to form a sliding bearing between the thrust ring and the housing end face in order to axially position the bearing. **Fig.8.3** illustrates an example of the above thrust ring with oil groove on its guide surface. The boundary between this oil groove and the plane area must be chamfered for deburring.

In general, for proper installation of needle roller bearing the inner ring and outer ring are both positioned in axial direction so that the bearing displaces in axial direction while running.

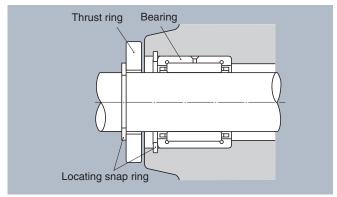


Fig. 8.2 Bearing fixing in axial direction

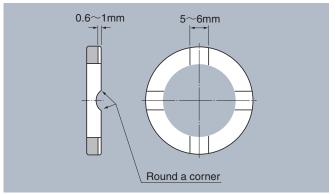


Fig. 8.3 Design of thrust ring guide surface

(1) Inner ring

For fixing inner ring correctly on a shaft, the shaft shoulder face is finished at the right angle against the shaft axial center and, in addition, the shaft corner radius must be smaller than the inner ring chamfer dimension.

To simplify inner ring extraction work, cutout grooves for engagement with jaws of an extraction jig are formed at the shoulder of the shaft as shown in **Fig. 8.4**, and the inner ring is extracted with the extraction jig according to a method illustrated in **Fig. 8.5**. Furthermore, for facilitating inner ring pull-out work the shaft shoulder is provided with a notched groove,as illustrated in **Fig. 8.5**, to accept an inner ring pull-out jig (puller).

NTN snap ring WR type for shaft use (Refer to Dimensions Table on page B-267) can be used for simply fixing inner ring in axial direction. (Fig. 8.6) Moreover,

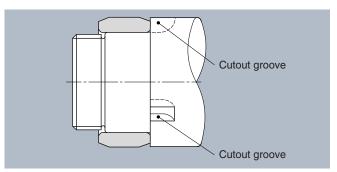


Fig. 8.4 Cutout groove for inner ring extraction

inner ring can be fixed in axial direction using an end plate or a side ring as illustrated in Figs. 8.7 and 8.8.

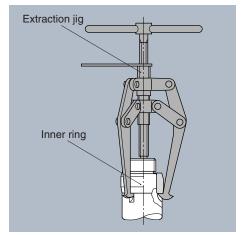


Fig. 8.5 Inner ring extraction with extraction jig

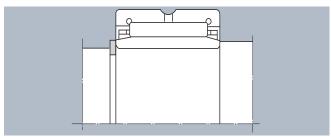


Fig. 8.6 Inner ring fixing method with snap ring

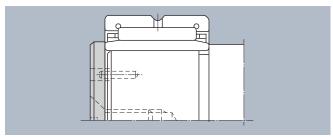


Fig. 8.7 Inner ring fixing method with end plate

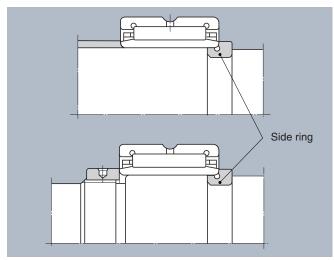


Fig.8.8 Inner ring fixing method with side ring

(2) Outer ring

Similarly to Para. 8.1(1) "Inner Ring", good care must be exercised of the shoulder profile of bearing housing for fixing outer ring in axial direction.

Figs. 8.9 and 8.10 illustrate the methods of fixing outer ring in axial direction.

For the outer ring also, the NTN snap ring type BR for housing (refer to the dimension table in page B-269) can be used. NTN BR type snap rings are designed to the dimensions adaptable to the needle roller bearings with low section height. However, commercially available snap rings conforming to JIS standard as applicable can also be used for the same bearings with adequately high section height.

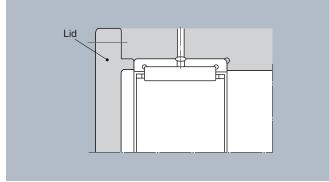


Fig. 8.9 Outer ring fixing by lid

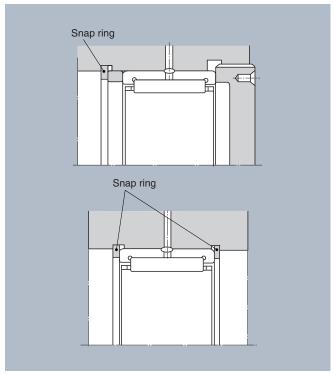
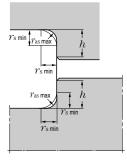


Fig. 8.10 Outer ring fixing method with snap ring

8.2 Bearing fitting dimensions


8.2.1 Shoulder height and corner roundness

The respective shoulder heights "h", of the shaft and housing are designed to be larger than the maximum bearing chamfer dimension $r_{\rm s}$ max, so the bearing end face comes in contact with the flat zone. The corner roundness " $r_{\rm as}$ " is designed to be smaller than the minimum bearing chamfer dimension " $r_{\rm s}$ " so as not to interfere with the bearing. Generally the radius of the shaft and housing corner roundness shown in Table 8.1 is used as the shoulder heights of the shaft and housing.

The dimensions of the shafts and housings related to bearing installation are as described in the dimensions table for each bearing type. The shoulder diameter shown in this table means the effective shoulder diameter which comes in contact with the side face of bearing excluding the chamfered portion of the shoulder.

Table 8.1 Radius of shaft /housing corner roundness and shoulder height

	Unit mm	
$r_{ m s}$ min	$\gamma_{ m as\ max}$	h (min)
0.15	0.15	0.6
0.2	0.2	0.8
0.3	0.3	1
0.6	0.6	2
1	1	2.5
1.1	1	3.25
1.5	1.5	4
2	2	4.5
2.1	2	5.5
2.5	2	5.5
3	2.5	6.5
4	3	8

8.2.2 Applications of spacer and relief grinding

There may be cases where corner roundness $r_{\rm as}$ max needs to be greater than the chamfering dimension on the bearing in order to mitigate stress concentration and enhance shaft strength (**Fig. 8.11a**), or where sufficiently large contact area is not available because of a low shaft shoulder (**Fig. 8.11b**). Then, a spacer can be inserted between the shaft shoulder and bearing.

Dimensions of ground-finished fit surfaces on shafts and housings are listed in **Table 8.2**.

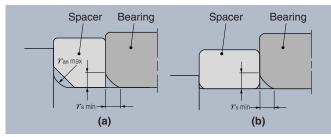
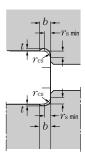



Fig. 8.11 Spacer applications

Table 8.2 Relief grinding dimension for shaft and housing corners

			Unit mm
γ_{s} min	b	t	$r_{ m cs}$
1	2	0.2	1.3
1.1	2.4	0.3	1.5
1.5	3.2	0.4	2
2	4	0.5	2.5
2.1	4	0.5	2.5
3	4.7	0.5	3
4	5.9	0.5	4

8.2.3 Mounting dimensions for thrust bearings

To be able to satisfy requirements for load capacity and rigidity, the surface of bearing ring on any thrust bearing needs to be sufficiently large. Therefore, the mounting dimensions in the dimension table for the intended bearing needs to be satisfied (**Fig. 8.12**).

Because of this, shoulder heights for thrust bearings have to be greater compared to radial bearings. (For the mounting dimensions of a particular thrust bearing, refer to the dimension table for that bearing.)

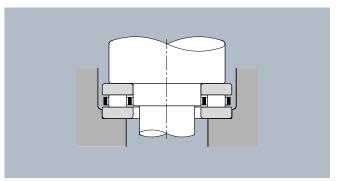


Fig. 8.12

8.3 Shaft and housing accuracy

The bearing ring of a needle roller bearings is thinwalled. Consequently, degree of physical accuracy of the raceway surface of the bearing ring is governed by physical accuracy of the fit surface of the shaft or housing to which the intended bearing is installed.

Table 8.3 summarizes recommended physical accuracy (tolerances) on the fit surfaces of the shaft and housing under ordinary bearing operating conditions: the characteristics in question are dimensional accuracy, shape accuracy, surface roughness, and runout of the shaft shoulder relative to fit surface.

For an application that adopts a double-split housing, the bore side of each housing half may be relieved: consequently, when the housing halves are joined together and the mating surfaces are forced together, resultant deformation on the outer ring is minimal.

Table 8.3 Shaft and housing accuracy (recommended)

Characteristic item	Shaft	Housing
Dimensional accuracy	IT6 (IT5)	IT7 (IT6)
Roundness cylindricality (max)	IT3	IT4
Shoulder perpendicularity (max)	IT3	IT3
Fitting surface roughness	0.8a	1.6a

Remarks: The parenthesized values are applied to the bearings of accuracy class 5 and higher.

8.4 Raceway surface accuracy

For needle roller bearings, the shaft and housing are used as the raceway surface on applications. The raceway dimensional accuracy, profile accuracy and surface roughness of the shaft/housing must be equivalent to the raceway accuracy of the bearing itself. **Table 8.4** shows the specified surface accuracy and surface roughness of the shaft/housing raceway.

Table 8.4 Raceway surface accuracy (recommendation)

Characteristic item	Shaft	Housing	
Dimensional accuracy	IT5 (IT4)	IT6 (IT5)	
Roundness cylindricality (max)	IT3 (IT2)	IT4 (IT3)	
Shoulder perpendicularity (max)	IT3	IT3	
Surface roughness	For shaft diameter of ϕ 80 and less :0.2 For shaft diameter of over ϕ 80 to 120 :0.3 For shaft diameter of over ϕ 120 :0.4		

Note) The parenthesized values are applied where high rotational accuracy is required.

8.5 Material and hardness of raceway surface

When the outer surface or bore surface of the shaft(hollowed) or housing is used as raceway, it must be hardened to HRC58 to 64 in order to obtain sufficient load capacity. For that, the materials shown in **Table 8.5** are used after heat-treated properly.

Table 8.5 Materials used for raceway

Kinds of steel	Representative example	Related standards
High carbon chrome bearing steel	SUJ2	JIS G 4805
Carbon tool steel	SK85 (previously: SK5)	JIS G 4401
Nickel chrome molybdenum steel	SNCM420	JIS G 4053 (previously: JIS G 4103)
Chrome steel	SCr420	JIS G 4053 (previously: JIS G 4104)
Chrome molybdenum steel	SCM420	JIS G 4053 (previously: JIS G 4105)
Stainless steel	SUSU440C	JIS G 4303

When steel is surface-hardened by carburizing or carbonitriding, JIS Standard defines the depth from surface up to HV550 as an effective hardened layer. The minimum value of effective hardened layer depth is approximately expressed in **formula (8.1)**.

$$E_{ht} \min \ge 0.8 D_w (0.1+0.002 D_w)$$
(8.1)

Where.

 $E_{ht \; \text{min}}$: Minimum effective hardened layer depth $\; \; \text{mm} \;$

 D_{w} : Roller diameter $\,$ mm

8.6 Allowable bearing inclination

The inner ring and outer ring of the bearing incline a little eventually against one another depending on shaft deflection, shaft /housing machining accuracy, fitting deviation, etc. Although this allowable inclination differs depending on bearing type, bearing load, internal clearance, etc., the inclination degree shown in **Table 8.6** must be used as a guideline in the case of general applications because even minor inclination of the inner and outer ring could cause a reduction of bearing life and damage the cage.

Table 8.6

Bearing type	Allowable inclination
Radial needle roller bearing	1/2 000
Thrust bearing	1/10 000

9. Lubrication

9. Lubrication

9.1 Purpose of lubrication

When a bearing is lubricated, its rolling and sliding surfaces are covered with a thin oil film that prevents the occurrence of metal-to-metal contact. Lubrication of rolling bearings offers the following benefits:

- (1) Reduction of friction and wear
- (2) Discharge of friction heat
- (3) Further extension of bearing life
- (4) Rust prevention
- (5) Prevention of foreign matter invasion

To fully realize these benefits developed, the bearing user has to adopt a lubrication system that best suits the projected bearing operating conditions, select quality lubricant, and adopt a relevant sealing design that helps regulate the amount of lubricant retained, prevent the ingress of foreign materials and leakage of the lubricant.

9.2 Lubrication systems and characteristics

In general, bearing lubrication systems usually available as grease lubrication and oil lubrication, each featuring unique advantages and disadvantages. The user needs to select an appropriate lubrication system that best suits the user's bearing performance requirements.

Table 9.1 summarizes the different features of grease and oil lubrication.

Table 9.1 Characteristic comparison of grease and oil lubrication

Lubrication method Comparative items	Grease lubrication	Oil lubrication
Handling	0	Δ
Reliability	0	0
Cooling effect	×	(Recirculation needed)
Seal structure	0	Δ
Power loss	0	0
Environmental pollution	0	Δ
High speed operation of bearing	×	0

○ : Extraordinarily advantageous

○: Advantageous

X : Disadvantageous

9.3 Grease lubrication

Grease lubrication is the simplest lubrication method. This method enablies a simplified design of the seal structure, and is broadly used.

Important points for this lubrication method are to select an optimum grease and to fill it securely in the bearing. Particularly where the cage is guided by the inner ring or outer ring of bearing, care must be exercised so the guide surface is fully greased throughout its entire area.

If requiring refilling of grease, the bearing should be provided with grease sectors as a refilling means and a grease valve or an equivalent as a means of discharge.

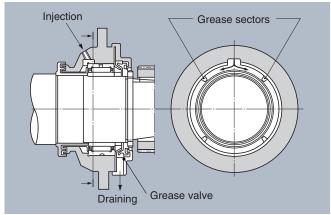


Fig. 9.1 An example of bearing unit with grease sector and grease valve

Fig. 9.1 illustrates an example of bearing unit with grease sector and a grease valve. An amount of grease injected through a port, such as a grease nipple, is blocked by the grease sectors, then fills the space and the excess fluid flows into the bearing. Grease is circulated through the interior of bearing, and excess amount of grease pushed out of the bearing is allowed to drain through the grease valve.

9.3.1 About grease

Grease lubrication is composed of a lubrication base oil (ex. mineral oil base or a synthetic oil base) held with a thickener, and various additives added thereto. The properties of grease are determined by the kinds and combination of base oil, thickener, and additives.

Commons grease types and their characteristics are summarized in **Table 9.2**. Characteristics of greases of a similar type can vary greatly depending on the brands. Therefore, **to be able to select an optimal grease brand, it is necessary to check grease characteristic data, available from grease manufacturers.**

(1) Base oil

Base oils used in grease are **mineral oil**, or synthetic oils such as **ester oil** and **ether oil**.

Lubricating performance of a given lubricant is mainly governed by lubricating performance of the base oil. Generally, greases comprising a low-viscosity base oil excel in low-temperature characteristics and high-speed performance, while greases with a high-viscosity base oil boast excellent high-temperature, high-load characteristics.

(2) Thickener

Thickeners are blended and diffused in base oil to hold grease in a semi-solid form. Commonly used thickeners include: metal soaps derived from lithium, sodium and calcium; non-metal soap thickeners made from inorganic materials such as silica gel and bentonite, and organic materials such as urea and fluoro carbon. The grease characteristics such as critical operating temperature, mechanical stability, durability, etc. are mainly

9. Lubrication

Table 9.2 Grease varieties and characteristics

Grease name		Lithium grease		Sodium grease (Fiber grease)	Calcium compound base grease	Aluminum grease	Non-soa	p grease
Thickener		Li soap		Na soap	Ca+Na soap Ca+Li soap	Al soap	Bentone, sil carbon blac	ica gel, urea, k, etc.
Base oil	Mineral oil	Diester oil	Silicone oil	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Synthetic oil
Dropping point °C	170~190	170~190	200~250	150~180	150~180	70~90	250 or more	250 or more
Operating temperature range °C	-30~+130	-50~+130	-50~+160	-20~+130	-20~+120	−10~+80	-10~+130	-50~+200
Mechanical stability	Excellent	Good	Good	Excellent to good	Excellent to good	Good to poor	Good	Good
Pressure resistance	Good	Good	Poor	Good	Excellent to good	Good	Good	Good
Water resistance	Good	Good	Good	Good to poor	Good to poor	Good	Good	Good
Applications	Broadest application. Grease for universal type rolling bearings.	Excellent in low temperature characteristic and anti-friction characteristic.	suited to high temperature and low temperature. Low oil film strength and unsuitable for high load application.	emulsified by inclusion of water content. Comparatively excellent in high temperature characteristic.	Excellent in water resistance and mechanical stability. Suitable for bearing subjected to shock load.	Excellent in viscosity characteristic. Suitable for bearing subjected to vibration.	range from low to Some of non-soap excellent in heat re resistance, chemic	base greases are esistance, cold cal resistance, etc. combination of base

Remarks: The operating temperature range in this table is the general characteristic value, not the guaranteed value.

determined by the kind of thickener used. Generally, water resistance of sodium soap grease is poor. Non-soap thickeners made from bentone and urea feature excellent high-temperature characteristics.

(3) Additives

Any greases contain various additives to improve the performance. For example: **oxidation inhibitors**, **extreme pressure additives** (EP additives), **rust inhibitors**, **corrosion inhibitors**, etc.

A grease containing extreme pressure additives is used for bearings subjected to high load or shock load. A grease containing oxidation stabilizer is used for bearing applications wherein the operating temperature is comparatively high and the grease is not replenished for a long time.

(4) Consistency

"Consistency" is an index showing the hardness or fluidity of grease. The higher the numerical value, the harder the consistency. Lubricants commonly used for lubrication of rolling bearings are those having NLGI consistency number 1, 2 or 3.

Table 9.3 shows the general relationship of grease consistency to application.

(5) Grease mixing

Mixing dissimilar greases will alter the characteristics of grease: for example, consistency will vary (usually, the grease mixture will be softer compared with original greases) and the permissible operating temperature will be lower. Therefore, in principle, do not mix greases other than mixing of portions of same grease brand.

Where mixing of different greases is inevitable, greases composed of the same thickener and similar base oil must be

Table 9.3 Grease consistency

NLGI consistency No.		JIS (ASTM) 60-cycle mixed grease consistency	Application
0	Soft	355–385	For centralized greasing
1		310–340	For centralized greasing
2		265–295	For general application, for tight-sealed bearing
3		220–250	For general application, for high temperature
4	Hard	175–205	Special application

selected. Even when greases of the same kind are mixed together, the properties of the mixed grease could vary depending on difference in additives, etc. It is therefore necessary to check the property variation in advance.

9.3.2 Grease fill amount

Grease fill amount differs depending on housing design, available volume, rotational speed, kind of grease, etc.

As a guideline, approximately 50% to 80% of the static volume within a bearing and housing is filled with grease. When intending higher running speed, or wanting to limit temperature rise, fill grease sparingly. Too much grease fill would cause the grease temperature to rise, which would then lead to reduction of the specific lubrication performance due to leak of the softened grease, or quality change such as oxidation, etc.

9. Lubrication NTN

9.3.3 Grease replenishment

A bearings grease must be replenished at proper intervals because its lubrication performance deteriorates with running time. This replenishing interval differs depending on bearing type, dimension, rotational speed, bearing temperature, kind of grease used, etc.

Fig.9.2 gives the replenishing interval chart as a guideline. This chart is subject to use of a grease for ordinary rolling bearings under usual operating conditions.

Needless to say, the grease replenishing interval must be shortened as the bearing temperature gets higher. As an approximate guideline, when the bearing temperature is 80°C or more, the replenishing interval shall be shortened by 1/1.5 whenever the bearing temperature rises by 10°C.

[Ex.] Let us determine grease replenishment intervals for NA4910R that is run at a speed of $n = 1600 \, \mathrm{min^{-1}}$. From the dimension table for **NA4910R**, the shaft diameter (bearing bore diameter) $d = 50 \, \mathrm{mm}$, limiting speed no = 4700 mn⁻¹:

Accordingly,

$$\frac{n_0}{n} = \frac{4700}{1600} = 2.9$$

Plot a line horizontally from d =50 point in **Fig. 9.2** and deem the intersection point with the vertical line I as A. Thereafter, connect n_0/n =3 point B on the vertical line II and said A point together, with a straight line, and determine the intersection point C with the vertical line III.

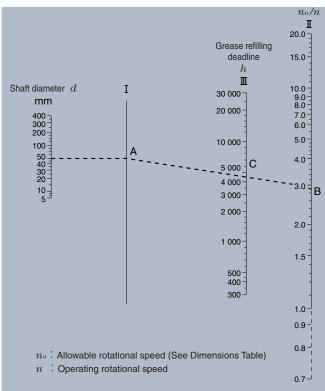


Fig.9.2 Chart for determination of grease replenishing interval

The grease replenishing interval of approximately 4600 hours can be read from the intersection point C.

9.3.4 Solid grease

(lubricant for special "Polylube" bearings)

This unique solid grease consists of lubricating grease and ultra heavy molecular weight polyethylene (UHMW-PE) as main components. For more detailed information, refer to page A-54 in this document or the special catalog (Japanese only) "Polylube Needle Bearings" (NTN CAT. NO. 3605).

9.4 Oil lubrication

In general, oil lubrication is more suitable for high speed or high temperature applications than grease lubrication. Oil lubrication is suitable for the cases where heat generated in a bearing or heat transferred to a bearing must be discharged outside the bearing.

9.4.1 Lubrication method

(1) Oil bath lubrication

Oil bath lubrication is the most common lubrication scheme among various oil lubrication systems. It is used for low-speed and medium-speed bearing applications. An important point in this method is control of oil level in an oil bath.

For that, when bearings are installed on a horizontal shaft, it is common that a point close to the center of the rolling element in the lowest position should be deemed as the oil level to be secured during shutdown. In this case, the housing must be designed with such a profile as to minimize variation in oil level therein. Furthermore, it is desirable to provide the housing with an oil gauge to facilitate level check during running as well as shutdown.

When bearings are installed on a vertical shaft, it is okay if 50 to 80% of the rolling elements are dipped in an oil bath under low speed running, but in the cases of high speed running and bearings used in multiple rows it is desirable to adopt the drip lubrication and circulating lubrication methods, or others described hereunder.

(2) Spray lubrication

This method sprays lubrication oil by an impeller of simple structure, which is mounted on the shaft, without directly dipping a bearing in an oil batch. This can be applied to bearings running at considerably high speed.

(3) Drip Iubrication

This lubrication method is used where bearing runs at comparatively high speed with medium and less loads act thereon. In this method, oil drips from an oiler on the top of a bearing unit, striking the rolling elements for atomizing lubrication (**Fig. 9.3**) and a small amount of oil passes through the bearing. In many cases the bearing is lubricated with several drips per minute

9. Lubrication

though the number of oil drips per specific unit differs depending on bearing type and dimension.

(4) Circulating lubrication

This circulating lubrication method is adopted to cool down bearings or to lubricate by a centralized lubrication system. As added features with this method the oil feed line is equipped with a cooler to cool down the lubrication oil and an oil filter to purify the lubrication oil.

Under this circulating lubrication system, the lubrication oil must be discharged from each bearing after having passed through it. For that, it is important to provide an oil inlet and an oil outlet on each bearing in opposite position and to make the oil discharge port size as large as possible or otherwise to discharge the oil compulsorily. (Fig.9.4)

(5) Others

Jet lubrication, oil mist lubrication, air-operated oil lubrication, etc. are available as other lubrication methods

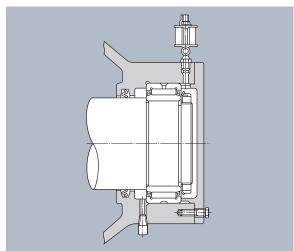


Fig. 9.3 Drip lubrication

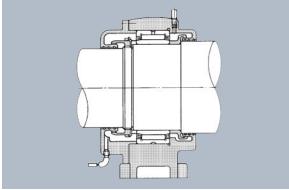


Fig.9.4 Circulating lubrication

9.4.2 Lubrication oil

To lubricate rolling bearings, mineral oil lubricants are often used, the examples of which include **spindle oil**, **machine oil** and **turbine oil**. When a rolling bearing is used in a demanding operating environment where the ambient temperature can be **not lower than 150°C** or **not higher than -30°C**, a rolling bearing should be lubricated with **synthetic oils** such as **diester oil**, **silicone oil** and **fluoro carbon oil**.

With lubrication oil, its viscosity is one of the important characteristics that determine the lubrication performance. Too low viscosity of lubrication oil causes imperfect forming of an oil film reading to damage of bearing surface, while too high viscosity of lubrication oil causes great viscosity resistance, which then leads to temperature rise and increase of friction loss.

Generally lubrication oil of lower viscosity is used for the faster rotational speed of bearing, while lubrication oil of higher viscosity is used for the heavier bearing loads.

A lubricant for a rolling bearing has to satisfy viscosity listed in **Table 9.4** at the operating temperature of that rolling bearing. **Fig. 9.5** shows the lubrication oil viscosity - temperature characteristic chart, which should be referred to when selecting a lubrication oil of optimal viscosity under actual operating temperature.

Furthermore, **Table 9.5** shows the criterion for selection of the lubrication oil viscosity according to the actual bearing operating conditions.

Table 9.4 Oil viscosity required for each bearing type

Bearing type	Required viscosity	mm²/s
Radial needle roller bearing	13	
Thrust needle roller bearing	20	

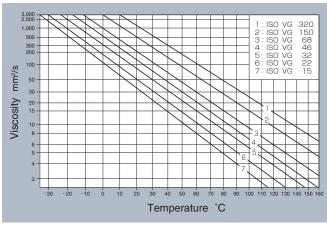


Fig. 9.5 Lubrication oil viscosity - temperature characteristic chart

9. Lubrication

Table 9.5	Critoria fo	r colection	of lubrication	oil (Reference)	
Table 9.5	Criteria to	r selection	of lubrication	oii (Reference)	

Bearing operating °C	d_{n} value	ISO viscosity grades for lubrication oil (VG)		
temperature	an value	Ordina	ary load	Heavy load or shock load
−30~0	up to allowable rotational speed	22	32	46
	up to 15000	46	68	100
0~60	15 000~80 000	32	46	68
	80 000~150 000	22	32	32
	up to 15000	1	50	220
60~100	15 000~80 000	10	00	150
	80 000~150 000	68		100 150
100~150	up to allowable rotational speed		3	20

Remarks:

- Subject to oil bath lubrication or circulating lubrication.
- 2. Apply to **NTN** for other operating conditions other than those specified in this Table.

9.4.3 Oil supply rate

When lubricating oil is force-fed into a bearing, the amount of heat generated in the bearing is equal to a sum of amount of heat diffused from the housing and amount of heat removed by lubricating oil.

A standard oil supply rate to be used as a guideline when using an ordinary housing can be determined by **formula (9.1)**. The amount of heat diffused can vary depending on the shape of housing. Therefore, for bearing operation on an actual machine, begin with an oil supply rate approximately 1.5 to 2 times as much as the value determined by **formula (9.1)**, and determine an optimal supply rate through a series of adjustment efforts. It may be convenient to perform calculations with an assumption that there is no heat radiation from the housing and all the heat generated is removed with the lubricating oil. In such a case, take the shaft diameter d = 0 and then determine the oil supply rate q.

$$Q = K \cdot q$$
(9.2)

Where.

Q: Oil supply rate per bearing assembly cm³/min

- *K*: Coefficient governed by temperature rise with lubricating oil in operating mode (**Table 9.6**)
- q : Oil supply rate determined from the chart cm³/min (**Fig. 9.6**)

9.4.4 Guideline for lubricating oil change

How often the lubricating oil needs to be changed varies depending on the factors including bearing operating conditions, amount of oil in the lubrication system, and lubricating oil type. As a guideline, perform oil change for an oil bath lubrication system approximately once a year if the oil temperature in the bath is regulated at 50°C or lower, or at least every three months if the oil temperature in the bath reaches a range from 80 to 100°C.

For a critical machine involving needle roller bearings, the user is recommended to monitor current lubrication performance of the lubricating oil and deterioration in oil cleanness at regular intervals to establish the user's unique oil change schedule.

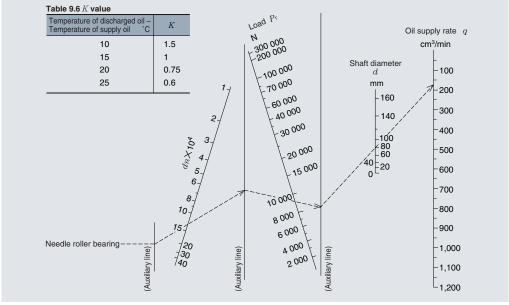


Fig. 9.6 Chart for determining oil supply rate

10. Sealing Devices

10.1 Non-contact seal and contact seal

The purpose of using a seal is to prevent a lubricant held in a bearing from leaking outside the bearing and to prevent powder, water content, etc. from invading into the bearing from outside.

It is very important to design a sealing device with full consideration of the operating conditions, lubricating

condition, environmental condition, economical merit, etc., so that the bearing is not adversely affected by the sealing device during operation.

The bearing seals are mainly classified into non-contact seal, contact seal types. as shown in **Tables 10.1** and **10.2**, which must then be selected correctly according to each application,under full consideration of the characteristics of each sealing type.

Table 10.1 Seals (Non-contact seals)

	Non-contact seals)		
Seal name	Oil groove seal Labyrinth seal (axial, radial)	Slinger seal	Air seal
Features	<oil groove="" seal=""> This seal is fitted at either one side of a housing or a shaft, or fitted at the both sides for sealing In this case, this seal has an effect in preventing invasion of foreign matter from outside by retaining grease in the oil grooves. < Labyrinth seal > This seal having a high sealing effect due to its multiple labyrinths and long passage is mainly used for grease lubrication. Generally it is suited to a high speed bearing, but it has a dust-proofing effect even under low speed running if the seal grooves are filled up with grease. It is convenient if this seal is provided with a grease nipple.</oil>	In oil lubrication, this seal has an effect in slinging and returning the oil thrown out along its sleeve by centrifugal force if its sleeve is provided with projections. A seal example illustrated in Fig. 10.6 prevents invasion of foreign matter from outside.	
	Fig. 10.1 Oil groove seal	Oil surface Fig. 10.4 Slinger	Oil slinging sleeve
Application examples	Fig. 10.2 Axial labyrinth seal	Fig. 10.5 Slinger intended for back	Oil flow Slinger
	Fig. 10.3 Radial labyrinth seal	Fig. 10.6 Slinger pro	Air flow Slinger

Table 10.2 Seals (Contact seals)

	Contact	t seals
Seal name	Seal ring (felt seal, etc.) O-ring, piston ring	Oil seal, V-shaped ring seal, mechanical seal
Features	<o-ring seal=""> This seal type seals a fluid by pressing its elastic body onto the sliding surface with a constant contact pressure. Generally the contact seals are better in sealing performance than the non-contact seals, but the friction torque and temperature rise are greater than those of the non-contact seals. <felt seal=""> This is the simplest of the contact seals, which is mainly used for grease lubrication and suited to prevention of fine dust, but oil penetration and purging are occasionally unavoidable to some extent.</felt></o-ring>	< Oil seal > This seal type intended to seal lubricant at the sliding portion between its lip and a shaft. The oil seal ia an effective seal and is the most frequently used. The lip must be oriented outward to prevent invasion of water content and foreign matter from outside and oriented inward to prevent lubricant from leaking out of the housing. Furthermore, another seal type with two or more lips is also available for preventing lubricant purge and dust contamination.
	Fig. 10. 7 Felt seal	
Application examples		
	Fig.10. 8 Z type grease seal	Fig. 10.10 Oil seal
	Fig. 10. 9 GS type grease seal	

10.2 Combined seals

Several seal types are used in combination for an application in an environment where dust, water components, etc. exist as well as for mechanical portions which cannot to be contaminated by lubricant leak.

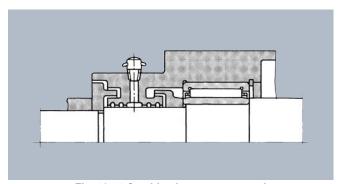


Fig. 10.11 Combined non-contact seal Combination of labyrinth seal and oil groove seal

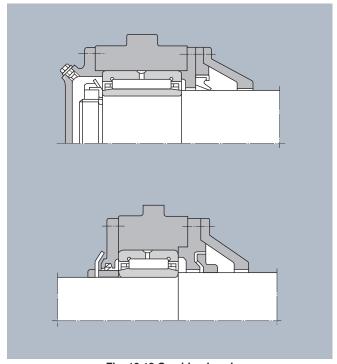


Fig. 10.12 Combined seal Combination of contact seal and non-contact seal

10.3 Clearance setting

Oil groove seals and labyrinth seals have better sealing effects as the shaft - housing clearance gets smaller, but the actual clearance is generally selected from the following clearance values, under consideration of machining and assembling conditions, shaft deformation, etc.

Table 10.3 Clearances (Optional)

Seal type	Shaft diameter	Radial clearance	Axial clearance
Oil groove seal 50 or less		0.2~0.4	
Oil groove sear	Over 50 to 200	00 0.5~1.0	
Labyrinth seal	50 or less	0.2~0.4	1.0~2.0
Labyiiiiii Seai	Over 50 to 200	0.5~1.0	3.0~5.0

10.4 NTN seals

Special-purposed **NTN** seals are available for needle roller bearings.(Refer to **Table 10.4** on page A-49.) For the more detailed information refer to the "Dimensions Table" on page B-273.

10.5 Seal materials and corresponding operating temperature ranges

The oil seal lip is ordinarily made of nitrile rubber, but acrylic rubber, silicone rubber and fluoro-rubber are used as the lip material depending on operating temperature, sealing objective, etc. **Table 10.5** shows the allowable operating temperature ranges available for the respective materials.

Table 10.5 Seal materials and corresponding operating temperature ranges (Reference)

Seal materials	Operating temperature ranges °C
Nitrile rubber	−25~+100
Acrylic rubber	−15~+130
Silicone rubber	−70~+150
Fluoro-rubber	−30~+180

10.6 Seal types and allowable speed

The allowable speed for the contact seal type depends on the surface roughness, accuracy and lubrication properties of sliding surface, operating temperature, etc. **Table 10.6** shows the allowable speed for each seal type, as a guideline.

Table 10.6 Seal types and corresponding allowable speed (Reference)

Seal types	Allowable speed m/s	
Oil seal (nitrile rubber)	16 or less	
Oil seal (acrylic rubber)	26 or less	
Oil seal (fluoro-rubber)	32 or less	
Z-grease seal (nitrile rubber)	6 or less	
V-ring seal (nitrile rubber)	40 or less	

Table 10.4 Seals (NTN contact seals)

type	Contact seals (G type, GD type)			
Seal ty	Seal using mainly direct contact			
Features	This seal type is a special-purposed seal for needle roller bearings which was designed for smaller section height. This is a synthetic rubber contact seal reinforced with steel plate, for use in the operating temperature range of -25 to +120°C and, under continuous running condition, used at 100°C or less. For applications under special operating conditions of greater than 120°C, please contact contact NTN engineering.			
Application examples	Fig. 10.13 Bearing sealing by NTN seals (Example)			

10.7 Shaft surface roughness

Sealing performance and seal life depend on the surface roughness, accuracy and hardness of shaft sliding surface with which the seal lip comes in contact. **Table 10.7** shows the surface roughness as a guideline. For improved wear resistance of shaft surface it is desirable to maintain shaft surface hardness at least at HRC40 (HRC55 if possible) by heat treatment or hard chrome plating.

Table 10.7 Shaft surface hardness (Reference)

Speed	d m/s	Surface roughness
over	incl.	Ra
	5	0.8a
5	10	0.4a
10		0.2a

11. Bearing Handling

Bearings are precision parts. In order to preserve their accuracy and reliability, care must be exercised in their handling. In particular, bearing cleanliness must be maintained, sharp impacts avoided and rust prevented.

[1] Keep the bearing and other related parts clean
Foreign matters such as dust, moisture, etc. causes
harmful effects on the life of the bearing. To avoid
such harmful effects, bearings must be kept clean. In
addition, tools, lubricants, washing oils, work
environments, etc. must always be maintained in
clean condition.

[2] Careful handling

Any shock to a bearing in handling could result in creating surface flaws and indentations of its raceway surface and rolling elements. In severe cases, cracking and chipping can occur. To avoid such defects, bearings must be handled with care.

[3] Use proper handling tools

Inappropriate tools should be avoided when installing and removing bearings.

Specific tools suited to the individual bearing types must be used. Special-purpose handling tools must be used particularly when installing a drawn cup needle roller bearing.

[4] Protect bearing from rusting

As a general rule, rust preventive oil is coated on all bearings. Direct handling of bearings should be avoided since the natural oil on hands can cause rusting of the bearings. To protect bearings from this type of rust, use a pair of gloves or coat mineral oil on the hands if directly handling the bearings with hands.

11.1 Bearing storage

Store bearings at room temperature with a relative humidity of 60% or less.

11.2 Washing

Never rotate a bearing with foreign matter within the raceway. This could result in damage to the raceway surfaces or rolling elements.

Therefore, any dismounted bearing is usually washed by light oil, kerosene or any other mild solvent to completely remove foreign matter.

In this case, two washing containers must be used: one for rough washing and another for finish washing.

Rough washing is done for removal of oil and foreign matter from bearings, while finish washing is done for fine washing of the roughly-washed bearing.

Further, any containers used for washing must be provided with a steel net in the center above the bottom of the container, as illustrated in **Fig. 11.1**, to prevent the bearing from coming in direct contact with the bottom of the container.

Furthermore, rust preventive treatment must be applied to the bearing immediately after washing, to protect it from corrosion.

Do not rinse grease-prefilled bearings (shielded bearings, sealed bearings, one-way clutches, etc.). Otherwise, prefilled grease can wash away or deteriorate.

In addition, follow all applicable legal requirements such as environmental preservation, industrial labor safety laws, etc. and use the washing instructions provided by the detergent manufacturer and washing tank manufacturer.

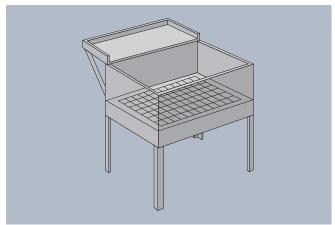


Fig. 11.1 Washing tank

11.3 Installation

Depending on bearing type and fitting conditions, the methods described below are used as a general method of installation. However, for installation of drawn cup needle roller bearings refer to Commentary given in the Dimensions Table.

(1) Preparations prior to installing

For the installation of bearings, it is desirable to prepare a clean and dry work place.

Contaminants, burrs, chips, etc. must be removed completely from all the parts related to a shaft and a housing before installing. Keep bearing in original packaging until ready for installation.

If the bearing is used in a grease-lubricated machine, it may be installed without removing the rust preventive oil coat on it. However, remove the rust preventive coat if the bearing is to be used with oil lubrication, or grease lubrication. Lubrication performance of the grease is jeopardized when mixed with the rust preventive agent. Use uncontaminated cleaning oil to remove the rust preventive agent coat and then allow the cleaning oil to dry or thoroughly wipe it away. Only then, install the bearing.

Do no to wash shield type and seal type bearings and one-way clutches.

(2) Interference-fit with a mechanical or hydraulic press In general, the press-fit method using a press machine is used for the installation of bearings. The bearing ring (inner ring or outer ring) is press-fitted slowly via a backing strip as illustrated in Fig. 11.2. Do not apply the press force to a bearing through its rolling elements. See example illustrated in Fig. 11.3. Further, a small bearing with minimal interference may be installed by hammering the bearing ring with a plastic hammer or similar tool. In that case, however, the uniform hammering force must be applied to the bearing side face via the backing strip as illustrated in Fig. 11.2, because direct hammering to the bearing end face or partial hammering by use of a punch could impair the specific bearing performance.

While installing a bearing, NEVER hit the outer ring with a hard tool such as a hammer to fit the inner ring over the shaft. Never hammer the inner ring to install the bearing to the shaft. Otherwise, a flaw and/or dent mark may occur on the raceway surface and rolling elements of the bearing. Also, coating the fitting surfaces with high-viscosity oil will help reduce friction on the fitting surfaces.

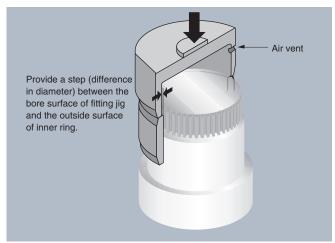


Fig. 11.2 Press-fitting of inner ring

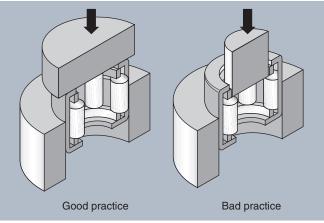


Fig.11.3 Good practice for press-fitting

(3) Shrink fit

This method too, is often used to install a bearing onto a shaft. The inner ring is heated in a medium such as a clean oil bath to expand its bore and is then fitted over the shaft. The oil used for this process should be pure mineral oil as it is less corrosive. The inner ring fitted onto the shaft is then allowed to stand to cool down. During the cool-down period, the inner ring shrinks in the axial direction too: therefore, the inner ring should be kept forced toward the shaft shoulder until it is fully cool in order to avoid a gap between it and the shaft shoulder. Fig. 11.4 graphically illustrates the relationship between the expansion of the inner ring bore and the heating temperature. Remember, however, that the inner ring must not be heated in excess of 120°C. Also, do not apply shrink fit technique to a bearing with prefilled grease, or a bearing with a shield or seal.

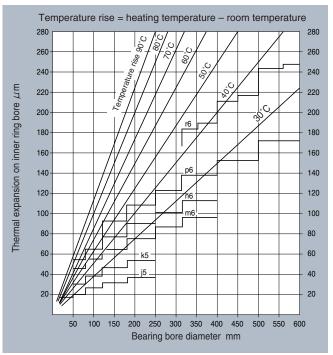


Fig. 11.4 Temperature rise needed for successful shrink fitting for inner ring

11.4 Bearing running test

To ensure that the bearing has been properly installed, a running test is performed after mounting.

Avoid running the bearing at its rated speed immediately after its installation. Otherwise, the bearing can fail if it has been incorrectly installed, or can seize if it is poorly lubricated. The shaft or housing should first be rotated by hand. If turning the shaft manually has proved to be problem-free, turn it at low speed with no load, and gradually increase the running speed and load while monitoring smoothness of bearing operation.

Carefully monitor noise and heat buildup on the running bearing. If any problem is detected, stop and

inspect the machine. If necessary, remove and inspect the bearing.

Sound level and tone of a running bearing can be checked by a sound scope held in contact with the bearing housing. The sound is normal if a pure sound is heard. A high metallic sound or irregular sounds from the bearing, indicates an error of function. In such a case, the possible cause of the failure can be measured by using a vibrometer to quantitatively determine vibration amplitude and frequency.

Generally, bearing temperature can be estimated from the housing surface temperature. However, if the bearing outer ring is accessible through oil holes, etc, the temperature can be more accurately measured.

Under normal conditions, bearing temperatures rise with rotation and then reach a stable operating temperature after a certain period of time. If the temperature does not level off and continues to rise, if there is a sudden temperature rise, or if the temperature is unusually high, the bearing must be inspected.

Table 11.1 shows the required check items.

Table 11.1

Hand operation	Variation in torque Over-torque Sticking Abnormal sound	Imperfect installation Under-clearance, great seal friction, etc. Indent and flaw on raceway surface Inclusion of dust and other foreign matter
Power operation	Abnormal noise and vibration Abnormal temperature	Inclusion of dust and other foreign matter, indent on raceway surface, over-clearance, inadequate lubrication Use of improper lubricant, incorrect installation, under-clearance

11.5 Bearing removal (dismounting)

Bearings are often removed as part of periodic inspection procedures or during the replacement of other parts. In this case, these bearings must be handled with the same care as when it was installed. Bearings, shafts,

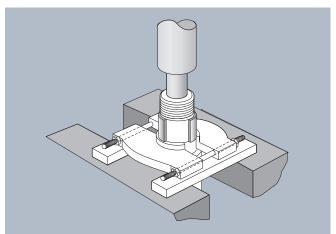


Fig. 11.5 Bearing removal by a press machine

housings and other related parts must be designed to prevent damage during the dismounting procedure and the proper dismounting tools must be employed.

Regarding the dismounting method, generally the press method (Fig. 11.5) and the puller method (Fig.11.6) are used to dismount the inner ring depending on bearing type and fitting conditions.

Be sure to apply the extraction force to the inner ring or outer ring only when removing the bearing. Never attempt to extract the bearing ring by applying force through the rolling elements.

11.6 Force needed for press-fitting and extraction

The force needed for press-fitting or extracting a particular inner ring onto or from a shaft can be determined by **formula (11.1)** below:

$$K_a = f_K f_E \frac{d}{d+3} \Delta d_F \cdots (11.1)$$

Where,

 $K_{\rm a}$: Force required for press-fitting or extraction N (kgf)

f_K : Resistance factor being determined by shaft to inner ring friction factor

For press-fitting ······· 40 (4) For extraction ····· 60 (6)

 $f_{\rm E}$: Coefficient depending on inner ring dimension

 $f_{\rm E} = B \left(1 - \left(\frac{d}{F_1} \right)^2 \right)$

B: Inner ring width mm

l Inner ring bore diameter mm

 F_1 : Mean outer diameter of inner ring mm

 Δd_{F} : Apparent interference μ m

Actual press-fit force and extraction force could eventually exceed the respective calculate value due to installing error. Hence, it is recommended to design the dismounting tools so as to have the strength (rigidity) resistible to a load 5 times as much as the calculated press-fit force and pull-out force.

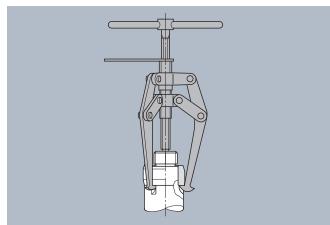


Fig. 11.6 Bearing removal by a puller

12. New Products Information

12. 1 HL Bearing

Bearing flaking can be categorized into two types: that which originates from inside of the bearing (subsurface flaking), and that which originates from the surface of the bearing.

Subsurface flaking usually occurs in areas where lubrication is considered to be good. This problem is believed to occur only when there exists a high level of contact stress. Present day steel is sufficiently clean so that cleanliness is not a contributing factor.

On the other hand, surface flaking is believed to be caused in areas where lubrication is insufficient. It is widely known that this problem is related to the oil film parameter (i.e. the ratio of oil film thickness at the point of contact to the combined surface roughness of the two objects in contact) which was derived from the elastohydrodynamic lubrication theory (EHL theory).

To reduce surface flaking, the oil film parameter needs to be increased. To do this, bearing manufactures have been working on both improving lubricants and surface roughness of the bearing raceway.

The EHL theory is based on the major premise that surface roughness of the contact surfaces is uniform. However, there are cases where the surface roughness determined in accordance with the EHL theory does not agree with the actual measured surface roughness.

In recent years a new theory has emerged. It contends that oil film formation in the contact areas can be improved by changing the character and direction of the machined parts surface finish.

NTN developed the long life HL (High Lubrication) bearing, based on the Micro EHL Theory, to reduce the problem of surface flaking.

12.1.1 Basic concept of HL bearing

The basic concept behind the development of the HL bearing is expressed by **Fig. 12.1.** These diagram are based on a flow model of the lubricant inside the contact area, developed by H.S. Cheng and his associates. The hatched areas in the diagrams are the contact points (elastically deformed) while the dotted lines show the flow of the lubricant.

The flow resistance of the lubricant is greater in (B) than in (A). This means that the volume of lubricant in

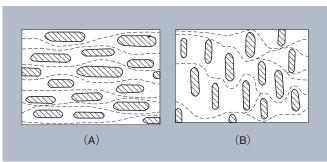


Fig. 12.1 Directional characteristics of finished surfaces and their effect on lubricant movement in a floe model

each contact area increases, and accordingly the thickness of the oil film on the rolling contact surface also increases.

12.1.2 HL surface

As shown in **Fig. 12.2**, this newly developed surface (the HL surface : HL = High Lubrication) features a countless number of indentations (which are called micro oil pots) of about $10\,\mu\text{m}$ which are produced at random. The black areas in the figure are the micro oil pots. This surface , featuring the desired size and number of micro oil pots, can be produced by changing the grinding conditions. Depth of the micro oil pots is about $1\,\mu\text{m}$.

12.1.3 HL bearing application examples

The HL surface-treated bearings are widely used in various fields. Such as car transmission, hydraulic devices, various reduction gears, etc.

HL surface treatment is applied to special applications, such as the rocker arm of a car engine where HL is on effective seizure preventive measure.

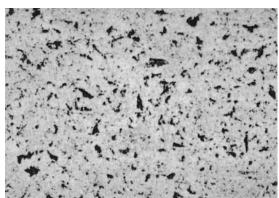


Fig. 12.2 Magnified photo showing HL roller surface

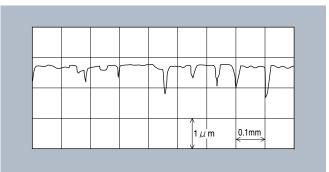


Fig. 12.3 HL surface roughness

12.2 Bearings with Solid Grease

"Solid grease" is a lubricant essentially composed of lubricating grease and ultra-high polymer polyethylene. Solid grease has the same viscosity as ordinary grease at normal temperature, but as a result of a special heat treatment process, this grease solidifies retaining a large proportion of the lubricant in it.

Thanks to this solidification, the grease does not easily leak from the bearing, even when the bearing is subjected to strong vibrations or centrifugal force, helping to extend bearing life.

All **NTN** needle roller bearings with Solid Grease are "full pack" products whose bearing space is nearly fully prefilled with solid grease.

12.2.1 Features of Bearings with Solid Grease (1) Reduced lubricant leakage

Because the base oil is retained in a solid mixture, it is less likely to leak out of the bearing. During operation, temperature rise and/or centrifugal force will cause a gradual release of the base oil into the raceway groove. Eliminating grease leakage from the bearing ensures a consistent supply of lubricant and prevents contamination of the surrounding environment.

(2) Superior Iubrication

Bearings with solid grease resist grease leakage prolonging bearing life in applications where high centrifugal force or vibration are present. The solid lubricant does not emulsify when exposed to water also extending both grease and bearing life.

(3) Sealing effect

Though solid grease protects a bearing against ingress of foreign matters (water, dust, etc.), it is not a sufficient means as a sealing device. Therefore, for applications that need reliable sealing performance, we recommend the use of contact type rubber seals.

12.2.2 Varieties of NTN needle roller bearings with Solid Grease

The NTN needle roller bearings with Solid Grease can be categorized into the general purpose group and the high-speed group (**Table 12.1**).

12.2.3 Precautions for using NTN needle roller bearing with Solid Grease

- Each NTN needle roller bearing type has unique set of available dimensions. For detailed information, contact NTN Engineering.
- (2) A minimum radial load is required to prevent skidding of the rolling elements when using full-pack solid grease. The minimum load required is approximately 1% of the bearing dynamic load rating.
- (3) Do not use any NTN needle roller bearing with Solid Grease in a situation where it will come into contact with organic solvents (acetone, petroleum benzene, refined kerosene, etc.).

12.2.4 Typical applications of bearings with Solid Grease

- Bearing for the paper feeder of a printing machine
- Bearing for the mast roller guide of a forklift
- Support bearing for the swing arm of a motorcycle
- Bearing for a machine tool
- Guide bearing for the guide unit of a press machine
- Bearing for the link mechanism of an automatic loom
- Bearing for the conveyor guide of a food packaging machine

For detailed information about NTN bearings with Solid Grease, refer to NTN CAT. NO. 3022 (Bearings with Solid Grease).

Table 12.1 Varieties of NTN needle roller bearings with Solid Grease

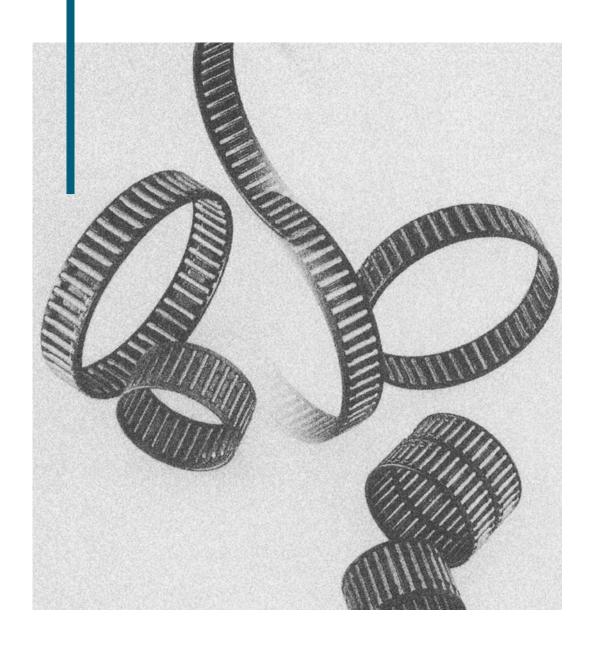
Туре	General purpose group (LP03)	High-speed group (LP08)		
Major components	(Resin) Super high-molecular weight polyethylene (Lubricant) Li-mineral oil based grease	(Resin) Super high-molecular weight polyethylene (Lubricant) Urea-synthetic oil based grease		
	-20 – 80°C	-20 – 100°C		
Permissible temperature range	60°C max. for prolonged operation	80°C max. for prolonged operation		
(Bearing outer ring)	For installing the bearing to a shaft or housing, shrit to limit the maximum heating temperature to 100°C process, be careful not to turn the bearing.	nk fit technique may be adopted. However, be sure and maximum retention time to 2 hours. During this		
Limiting speed $F_{\rm w}$: Roller set bore diameter (mm) ${\rm n}$: Operating running speed (min ⁻¹)	F _w · n value≦3×10⁴	Fw • n value≦6×10⁴		

13. Bearing Type Symbols and Auxiliary Symbols

Table 13.1 Bearing Type Symbols

	Table 13.1 Bearing Type Symbols							
Type code	Bearing type							
811	Single-direction thrust cylindrical roller bearing, dimension series 11							
812	Single-direction thrust cylindrical roller bearing, dimension series 12							
893	Single-direction thrust cylindrical roller bearing, dimension series 93							
874	Single-direction thrust cylindrical roller bearing, dimension series 74							
Α	Needle roller, spherical type							
ARA821	Double-direction thrust cylindrical roller bearing							
ARB821	Double-direction thrust cylindrical roller bearing							
ARN	Needle roller bearing with double-direction thrust cylindrical roller bearing							
AS11	Steel plate thrust washer, dimension series 11							
AXA21	Double-direction thrust needle roller bearing							
AXB21	Double-direction thrust needle roller bearing							
AXK11	Needle roller and cage thrust assembly, dimension series 11							
AXN	Needle roller bearing with double-direction thrust needle roller bearing							
BF	Metallic flat cage for linear flat rollers							
BK	Drawn cup needle roller bearing with close end							
BR	Housing snap ring							
CR	Cam follower, inch series							
CRV	Full complement roller for cam follower,							
DCL	inch series							
	Drawn cup needle roller bearing with open end, inch series							
F	Needle roller, plane type							
FF	Linear flat roller							
FR	Bottom roller bearing, for drawing frame							
FRIS	Bottom roller bearing, for fine spinning frame and flyer frame							
G	Synthetic rubber seal, one-lip type							
GD	Synthetic rubber seal, double-lip type							
GK	Needle rollers with split type cage							
GS811	Housing washer, dimension series 11							
GS812	Housing washer, dimension series 12							
GS893	Housing washer, dimension series 93							
GS874	Housing washer, dimension series 74							
HCK	Drawn cup needle roller bearing for universal joint							
HF	One-way clutch							
HFL	One-way clutch integral with bearing							
HK	Drawn cup needle roller bearing with open end							
HMK	Drawn cup needle roller bearing with open end, for heavy load application							
IR	Inner ring							
JF··S	Tension pulley holder							
JPU··S K	Tension pulley and jockey pulley Needle rollers with cage							
K811	Cylindrical roller and cage thrust assembly, dimension series 11							
K812	Cylindrical roller and cage thrust assembly, dimension series 12							
K893	Cylindrical roller and cage thrust assembly, dimension series 93							
K874	Cylindrical roller and cage thrust assembly, dimension series 74							
KBK	Needle roller and cage assembly, for small end							
KD	Linear ball bearing, stroking type							
KH	Linear ball bearing, drawn cup type							
KJ∴S	Needle roller and cage assembly							
KLM	Linear ball bearing, machined ring type							
KLM··S	Linear ball bearing, clearance-adjustable type							
KLM⋅⋅P	Linear ball bearing, open type							
KMJ	Needle roller and cage assembly							
KLJ··S	Needle roller and cage assembly							
KR	Cam follower							
KRM	Miniature cam follower							
KRMV	Miniature cam follower, full complement roller type							
KRT	Cam follower, w/ tapped hole							
KRU	Cam follower, shaft eccentric type							

Type code	Bearing type
KRVT	Cam follower, full complement roller type, w/ tapped hole
KRV	Cam follower, full complement roller type, w/ tapped note Cam follower, full complement roller type
KRVU	Cam follower, full complement roller and shaft eccentric type
KV⋅⋅S	Needle roller and cage assembly
MI	Inner ring, inch series
MR	Machined ring needle roller bearing without inner ring, inch series
NA22	Roller follower with inner ring, dimension series 22
NA48	Machined ring needle roller bearing with inner ring, dimension series 48
NA49	Machined ring needle roller bearing with inner ring, dimension series 49
NA59	Machined ring needle roller bearing with inner ring, dimension series 59
NA69	Machined ring needle roller bearing with inner ring, dimension series 69
NA49···S	Clearance-adjustable needle roller bearing with inner ring
NAB2	Separable roller follower, w/ inner ring, diameter series2
NACV	Roller follower, full complement roller type, inch series
NAO	Machined ring needle roller bearing, separable type, with inner ring
NATR	Roller follower
NATV	Roller follower, full complement roller type
NIP NK	Grease nipple Machined ring needle roller bearing without inner ring
NKIA59	Complex bearing: Needle roller bearing with angular ball bearing
MINIMOS	dimension series 59
NKIB59	Complex bearing : Needle roller bearing with three-point contact type ball bearing
200	dimension series 59
NKS	Machined ring needle roller bearing, w/o inner ring
NKX	Complex bearing : needle roller bearing with thrust ball bearing
	without dust-proof cover
NKX…Z	Complex bearing: Needle roller bearing with thrust ball bearing
	with dust-proof cover
NKXR	Complex bearing: Needle roller bearing with thrust cylindrical roller bearing
	without dust-proof cover
NKXR…Z	Complex bearing: Needle roller bearing with thrust cylindrical roller bearing
	with dust-proof cover
NUKR	Cam follower, full complement roller type
NUKRT	Cam follower, full complement roller type, w/ tapped hole
NUKRU NUTR2	Cam follower, full complement roller type, w/ tapped hole, eccentric stud Roller follower, diameter series 2
NUTR3	Roller follower, diameter series 2
NUTW	Roller follower, outer ring with center rib
PCJ	Needle roller and cage assembly, inch series
PK	Needle roller and cage assembly, for large end
PNA···R	Self-aligning needle roller bearing with inner ring
RF	Polyamide resin cage for linear flat rollers
RLM	Linear roller bearing
RNA22	Roller follower without inner ring, dimension series 22
RNA48	Machined ring needle roller bearing without inner ring, dimension series 48
RNA49	Machined ring needle roller bearing without inner ring, dimension series 49
RNA59	Machined ring needle roller bearing without inner ring, dimension series 59
RNA69	Machined ring needle roller bearing without inner ring, dimension series 69
RNA49···S	Clearance-adjustable needle roller bearing, without inner ring
RNAB2	Separable roller follower, w/o inner ring, diameter series 2
RNAO	Machined ring needle roller bearing, separable type, without inner ring
RPNA…R WR	Self-aligning needle roller bearing, w/o inner ring
WS811	Snap ring for shaft Thrust inner ring, dimension series 11
WS812	Thrust inner ring, dimension series 11 Thrust inner ring, dimension series 12
WS893	Thrust inner ring, dimension series 12 Thrust inner ring, dimension series 93
WS874	Thrust inner ring, dimension series 74
ZS	Thrust central ring

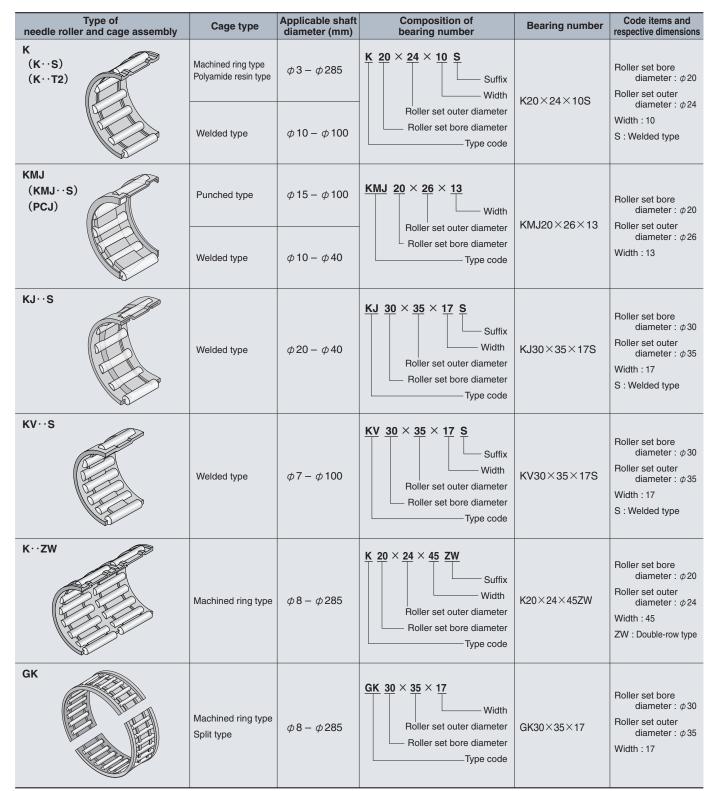

Table 13.2 Auxiliary symbols

	Symbol		Symbol representation				
Initial symbols	Material heat-treatment symbols	TS- E- 8Q- F- C-	Bearing for high temperature application which was heat-treated for dimensional stabilization Bearing made of case-hardened steel Nitro-carburized cage Bearing made of stainless steel Bearing made of carbon steel				
	Expansion compensation	EC-	Expansion-compensated bearing				
			Basic symbols				
	Internal construction symbols	ZW A,B,C	Double-row cage Internal construction change				
	Cage symbols	J,JW L1 T2 S	Steel plate punched cage High strength brass cage Polyamide resin cage Welded cage				
	Seal symbol	L,LL	With synthetic rubber seal				
	Bearing ring profile symbols	D D1 H	With oil hole With oil hole and oil groove Cam follower with hexagon hole				
×	Roller symbol	Т	Crowning and special heat treatment				
Suffix	Combination symbols	D2,Dn	Complex bearing using two or more same bearings				
0,	Clearance symbols	C2 C3 C4 NA	Clearance smaller than ordinary clearance Clearance larger than ordinary clearance Radial clearance larger than C3 Non-interchangeable clearance				
	Accuracy class symbols	P6 P5 P4	Bearing of JIS Class-6 Bearing of JIS Class-5 Bearing of JIS Class-4				
	Lubrication symbols	/2AS /3AS /P03	SHELL ALVANIA Grease 2 SHELL ALVANIA Grease 3 Solid Grease				
	Special symbols	V1~Vn	Special specification, requirements				

Needle Roller Bearings **BEARING TABLES**

Needle roller and cage assemblies	B- 3∼ 22
Needle roller and cage assemblies for connecting rod bearings	B- 23∼ 30
Drawn cup needle roller bearings	B- 31∼ 54
Machined-ring needle roller bearings	B- 55~102
Machined-ring needle roller bearings, separable	B-103~120
Self-aligning needle roller bearings	B-121~126
Inner rings	B-127~144
Clearance-adjustable needle roller bearings	B-145~150
Complex bearings	B-151~172
Cam followers	B-173~217
Roller followers	B-218~240
Thrust roller bearings	B-241~260
Components Needle rollers / Snap rings / Seals	B-261~274
Linear bearings	B-275~294
One-way clutches	B-295~299
Bottom roller bearings for textile machinery Tension pulleys for textile machinery	B-300~308

Needle Roller and Cage Assemblies



Needle Roller and Cage Assemblies

This needle roller and cage assembly is one of the basic components for the needle roller bearing of a construction wherein the needle rollers are fitted with a cage so as not to separate from each other. The use of this roller and cage assembly enables to design a compact and lightweight construction by utilizing a shaft

or a housing as the direct raceway surface, without using inner ring and outer ring.

The needle rollers are guided by the cage more precisely than the full complement roller type, hence enabling high speed running of bearing. In addition, its rigidity and load capacity are high for the specific space.

The ones with tail code T2 using polyamide resin cage shall be used at allowable temperature 120°C and, under continuous running, at 100°C or less.

The applied shaft diameter of welded type are described based on size that manufacturers can deal with a manufacturing. Therefore, it has nothing to do with the Demention Table. Data for the GK type is not included in the dimension table. For detailed information, contact NTN Engineering.

Diameter variation of needle rollers

Diameter variation of needle rollers within one cage is less than 2um. The diameter tolerance groups for built-in needle rollers are identified by identification colors on the package label, as shown in **Table 1**.

The standard identification colors marked on each label are red, dark blue, blue, black and white, unless otherwise specially indicated.

In case of two or more bearings are mounted in tandem, those of same identification color must be used for equal distribution of bearing load.

Table 1 Color identification of diameter tolerances for needle rollers

Identification color on label	Diameter tolerance μ m	Classification
Red Dark blue Blue Black White	$0 \sim -2$ $-1 \sim -3$ $-2 \sim -4$ $-3 \sim -5$ $-4 \sim -6$	Standard
Gray Green Brown Yellow	-5~- 7 -6~- 8 -7~- 9 -8~-10	Semi-standard

Radial Clearance

When a shaft and a housing are used as the direct raceway surface, the radial clearance is determined by the shaft diameter and the housing hole dimension. Where the diameter tolerances for needle rollers are standard (tolerances color-identified in red, dark blue, blue, black, white), the shaft diameters and housing hole dimensions shown in **Table 2** are used.

Table 2 Recommended fits

	Radial clearance									
Shaft diameter mm		er than clearance		inary rance	Larger than ordinary clearance					
	Shaft	Housing	Shaft	Housing	Shaft	Housing				
~80	j5	G6	h5	G6	g6	G6				
80~140	h5	G6	g5	G6	f6	G6				
140~	h5	G6	f5	H6	f6	G6				

Shaft and housing specifications

Where a shaft and a housing are used as the direct raceway surface, the raceway surface must meet the specifications described in **Table 3**.

Table 3 Shaft and housing specifications (recommended)

Characteristics	Shaft	Housing
Roundness (max)	IT3	IT4
Cylindricality (max)	IT3	IT4
Surface roughness (max)	Refer to Table 8	.4 on page A-40.
Surface hardness	HRC5	68~64
Depth of hardened layer (min)	Refer to formula (8.1) on page A-40.

Bearing installation related dimensions

The tolerances for the nominal dimension "Bc" of cage specified in **Table 4** are recommended as the guide width b of cage.

Table 4 Guide width dimensions (recommended)

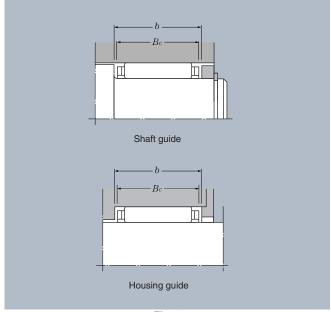
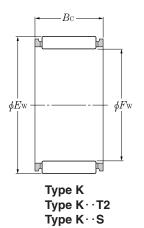
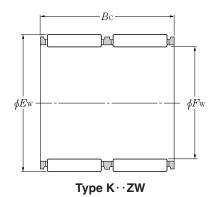
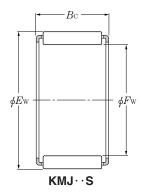
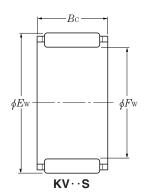




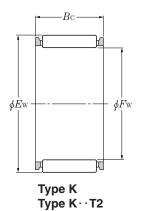
Fig. 1

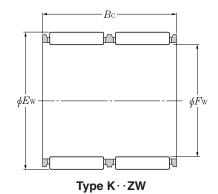

Type K
Type K··T2
Type K··S
Type K··ZW
Type KMJ
Type KV··S



Fw 3∼10mm

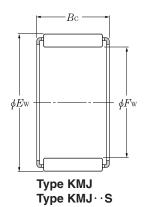
Boundary dimensions			Basic load ratings				Limiting	speeds	Bearing numbers	Mass
	mn	n	dynamic static dynamic static N kgf			mi grease	n ⁻¹ oil		kg	
$F_{ m w}$	E_{w}	$B_{ m c}$	$C_{ m r}$	Cor	$C_{ m r}$	Cor	grease	Oil		(approx.)
3	6	7 _0.2	1 460	970	149	99	33 000	50 000	K3×6×7T2	0.0004
	6	8 -0.55	1 560	1 330	159	136	30 000	45 000	K4×6×7.8XT2	0.0003
4	7	$7 {}^{-0.2}_{-0.55}$	1 770	1 270	180	129	30 000	45 000	K4×7×7T2	0.0005
5	8	8 _0.2	2 640	2 190	269	224	27 000	40 000	K5×8×8T2	0.0007
	8	10 ^{-0.55}	2 720	2 250	277	230	27 000	40 000	K5×8×10T2	0.0009
	9	8	2 660	2 280	272	233	25 000	37 000	K6×9×8T2	0.0009
6	9	$10 {}^{-0.2}_{-0.55}$	3 400	3 150	345	320	25 000	37 000	K6×9×10T2	0.0011
	10	13	4 400	3 700	450	380	25 000	37 000	K6×10×13T2	0.0019
	10	8	2 670	2 350	272	239	23 000	34 000	K7×10×8T2	0.0009
7	10	$10 {}^{-0.2}_{-0.55}$	3 400	3 200	345	330	23 000	34 000	K7×10×10T2	0.0011
	10	13	5 050	5 400	515	550	23 000	34 000	KV7×10×12.8X3S	0.0023
	11	8	3 150	3 000	320	305	21 000	32 000	K8×11×8T2	0.0011
	11	9	3 150	3 000	320	305	21 000	32 000	8E-KV8×11×8.8X2S	0.0019
	11	10	4 000	4 100	410	420	21 000	32 000	K8×11×10T2	0.0013
8	11	120.2	4 450	4 650	450	475	21 000	32 000	8E-KV8×11×11.8X2S	0.0025
Ū	11	13 $^{-0.55}$	4 850	5 200	495	535	21 000	32 000	K8×11×13	0.0026
	12	10	4 650	4 150	475	425	21 000	32 000	K8×12×10T2	0.0020
	12	12	5 600	5 300	570	545	21 000	32 000	8E-KV8×12×11.8X1S	0.0040
	12	13	5 050	4 650	515	470	21 000	32 000	K8×12×13	0.0036
9	12	10 -0.2	4 550	5 000	465	510	20 000	30 000	K9×12×10T2	0.0015
	12	13 ^{-0.55}	5 500	6 400	560	650	20 000	30 000	K9×12×13T2	0.0021
	13	10	4 550	5 100	460	520	19 000	28 000	K10×13×10T2	0.0016
	13	13	5 450	6 450	555	660	19 000	28 000	8E-KV10×13×12.8XS	0.0032
	14	8	4 300	3 950	435	405	19 000	28 000	K10×14×8	0.0027
10	14	$10_{-0.2} \\ _{1.1} ^{-0.55}$	5 500	5 450	560	555	19 000	28 000	K10×14×10	0.0034
	14	11	5 500	5 450	560	555	19 000	28 000	8E-KV10×14×10.8XS	0.0039
	14	11.5	6 800	7 200	695	730	19 000	28 000	KMJ10×14×11.3XS	0.0040
	14	13	6 600	6 900	675	705	19 000	28 000	K10×14×13	0.0044
	14	14	7 150	7 650	730	780	19 000	28 000	8E-KV10×14×13.8X4S	0.0050
										1




*F*_w 10∼15mm

Boundary dimensions			Basic loa	_		Limiting	speeds	Bearing numbers	Mass	
	mr	m	dynamic N	static	dynami	c static kgf	mi	n ⁻¹		kg
							grease	oil		
$F_{ m w}$	E_{w}	$B_{ m c}$	$C_{\rm r}$	Cor	C_{r}	$C_{ m or}$				(approx.)
10	14	17 _{-0.2}	8 050	8 850	820	900	19 000	28 000	8E-K10×14×16.8X1	0.0064
	16	12 ^{-0.55}	7 100	5 950	720	610	19 000	28 000	K10×16×12	0.0066
11	14	$10 {}^{-0.2}_{-0.55}$	5 050	6 000	515	615	18 000	27 000	K11×14×10	0.0028
	15	9	4 450	5 250	455	535	17 000	26 000	K12×15×9	0.0027
	15	10	5 000	6 100	510	620	17 000	26 000	8Q-K12×15×10	0.0030
	15	13	6 000	7 700	615	785	17 000	26 000	K12×15×13	0.0038
	15	20	8 550	12 200	875	1 240	17 000	26 000	K12×15×20ZW	0.0059
	16	8	4 850	4 900	495	500	17 000	26 000	K12×16×8	0.0034
	16	11.5	6 750	7 400	685	755	17 000	26 000	KMJ12 \times 16 \times 11.3XS	0.0047
12	16	13 $^{-0.2}_{-0.55}$	7 500	8 500	765	870	17 000	26 000	8Q-K12×16×13	0.0060
	16	18	9 800	11 900	1000	1220	17 000	26 000	8E-K12×16×17.8X1	0.0070
	16	20	10 300	12 800	1 050	1 300	17 000	26 000	K12×16×19.8X4	0.0100
	17	10	7 350	7 200	745	735	17 000	26 000	KMJ12×17×9.8XS	0.0050
	17	13	9 000	9 400	920	960	17 000	26 000	K12×17×13	0.0075
	17	18	12 600	14 400	1 280	1 470	17 000	26 000	KV12×17×17.8XS	0.0080
	18	12	8 650	8 000	880	815	17 000	26 000	8Q-K12×18×12	0.0089
	17	10	5 400	7 050	550	720	16 000	24 000	KV14×17×10S	0.0040
	18	10	6 900	8 000	705	815	16 000	24 000	K14×18×10	0.0046
	18	11	7 600	9 050	775	925	16 000	24 000	K14×18×11	0.0053
	18	13	8 300	10 100	845	1 030	16 000	24 000	K14×18×13	0.0063
14	18	15 $_{-0.2}$	9 650	12 300	985	1 250	16 000	24 000	K14×18×15S	0.0076
14	18	$17^{-0.55}$	10 900	14 400	1 120	1 470	16 000	24 000	K14×18×17V5	0.0079
	18	39	18 800	28 900	1 910	2 950	16 000	24 000	K14×18×39ZW	0.0180
	19	13	8 950	9 650	915	985	16 000	24 000	K14×19×13	0.0080
	20	12	9 350	9 150	955	930	16 000	24 000	K14×20×12	0.0095
	20	17	13 500	14 600	1 370	1 490	16 000	24 000	K14×20×17	0.0140
	18	14	7 850	11 600	800	1 190	15 000	23 000	K15×18×14	0.0060
15	19	8 -0.2	5 350	5 850	545	600	15 000	23 000	KV15×19×7.8XS	0.0033
13	19	$10^{-0.55}$	6 850	8 050	700	820	15 000	23 000	K15×19×10	0.0055
	19	13	8 250	10 200	840	1 040	15 000	23 000	K15×19×13	0.0067
	_		1				!			I

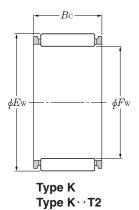
Type K
Type K··T2
Type K··S
Type K··ZW
Type KMJ
Type KV··S



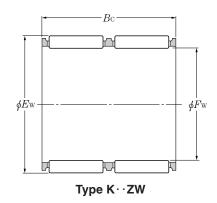
Type K ⋅ ⋅ S

Fw 15∼18mm

Boundary dimensions mm				d ratings		Limiting	speeds	Bearing numbers	Mass	
		dynamic static dynamic static N kgf		mi	n ⁻¹		kg			
$F_{ m w}$	$E_{ m w}$	$B_{ m c}$	$C_{ m r}$	Cor	$C_{ m r}$	Cor	grease	oil		(approx.)
	19	17	10 900	14 600	1 110	1 490	15 000	23 000	K15×19×17	0.0090
	19	24	14 100	20 400	1 440	2 080	15 000	23 000	K15×19×24ZW	0.0130
	20	13	10 100	11 500	1 030	1 170	15 000	23 000	K15×20×13	0.0088
15	20	$16 {}^{-0.2}_{-0.55}$	12 600	15 200	1 280	1 550	15 000	23 000	KMJ15 \times 20 \times 15.8XS	0.0090
	21	15	11 900	12 500	1 210	1 280	15 000	23 000	K15×21×15	0.0130
	21	17	14 900	16 800	1 510	1 720	15 000	23 000	KMJ15×21×16.8X1SK	0.0120
	21	21	16 500	19 100	1 680	1 950	15 000	23 000	K15×21×21	0.0170
	20	10	7 500	9 250	765	945	15 000	23 000	K16×20×10	0.005
	20	11	8 300	10 500	845	1 070	15 000	23 000	K16×20×11	0.006
	20	13	9 050	11 800	925	1 200	15 000	23 000	K16×20×13	0.007
	20	17	11 900	16 800	1 220	1 710	15 000	23 000	K16×20×17S	0.009
16	22	$12 {-0.2 \atop -0.55}$	11 700	12 500	1 190	1 280	15 000	23 000	K16×22×12	0.010
	22	13	12 600	13 900	1 290	1 410	15 000	23 000	KMJ16×22×13	0.011
	22	16	13 600	15 200	1 380	1 550	15 000	23 000	K16×22×15.8X	0.014
	22	17	14 400	16 400	1 470	1 670	15 000	23 000	K16×22×17	0.015
	22	20	16 000	18 800	1 640	1 920	15 000	23 000	K16×22×20	0.017
	21	10	7 450	9 300	760	950	15 000	22 000	K17×21×10S	0.005
	21	13	9 400	12 600	960	1 280	15 000	22 000	K17×21×13S	0.007
	21	15	10 400	14 400	1 060	1 460	15 000	22 000	K17×21×15	0.008
17	21	$17 {-0.2 \atop -0.55}$	11 800	16 900	1 210	1 720	15 000	22 000	K17×21×17	0.009
	22	20	14 700	19 200	1 500	1 960	15 000	22 000	K17×22×20	0.015
	23	17	14 400	16 500	1 460	1 690	15 000	22 000	K17×23×17	0.016
	23	23	16 800	20 200	1 710	2 060	15 000	22 000	K17×23×22.8X1T2	0.013
	22	10	7 400	9 400	755	955	14 000	21 000	K18×22×10	0.006
	22	13	8 900	11 900	910	1 210	14 000	21 000	K18×22×13	0.007
18	22	17 $_{-0.2}$	11 700	17 000	1 200	1 730	14 000	21 000	K18×22×17	0.011
10	23	$20^{-0.55}$	14 600	19 300	1 490	1 970	14 000	21 000	K18×23×20S	0.015
	24	12	12 300	13 800	1 250	1 410	14 000	21 000	K18×24×12	0.012
	24	13	11 600	12 800	1 180	1 300	14 000	21 000	K18×24×13	0.013
lomorko:	Fuen wh	on on oudou io ni		ranga ta "Narra	minal baarins	v number" liete	d in this table, the	o ardered been	ingo are subject to being deliver	

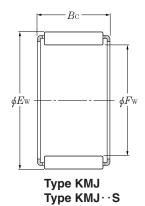


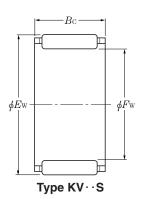
*F*w 18∼22mm


Bound	dary d	limensions	Basic load ratings			Limiting speeds		Bearing numbers	Mass	
mm			dynamic static N		dynamic static kgf		min ⁻¹			kg
		D	_	~	~	<i>a</i>	grease	oil		
F_{w}	E_{w}	$B_{ m c}$	$C_{\rm r}$	Cor	$C_{ m r}$	Cor				(approx.)
	24	17	16 000	19 300	1 630	1 970	14 000	21 000	KMJ18×24×17SV1	0.0140
18	24	$20_{-0.2}$	17 000	20 900	1 730	2 130	14 000	21 000	K18×24×20	0.0190
	25	17 ^{-0.55}	18 000	20 400	1 830	2 080	14 000	21 000	K18×25×17	0.0190
	25	22	22 100	26 600	2 250	2 710	14 000	21 000	K18×25×22	0.0240
19	23	13 _{-0.2}	9 650	13 500	985	1 370	14 000	21 000	K19×23×13	0.0082
 13	23	$17^{-0.55}$	12 700	19 200	1 300	1 960	14 000	21 000	K19×23×17	0.0110
	24	10	8 300	11 200	845	1 150	13 000	20 000	K20×24×10S	0.0065
	24	11	9 500	13 400	970	1 370	13 000	20 000	K20×24×11	0.0072
	24	13	10 000	14 300	1 020	1 460	13 000	20 000	K20×24×13S	0.0086
	24	17	13 200	20 400	1 340	2 080	13 000	20 000	K20×24×17S	0.0110
	24	45	16 400	27 100	1 680	2 760	13 000	20 000	K20×24×45ZW	0.0280
	25	40	29 000	48 000	2 950	4 900	13 000	20 000	K20×25×40ZW	0.0330
	26	12 _0.2	12 900	15 100	1 320	1 540	13 000	20 000	K20×26×12	0.0130
20	26	13 $^{-0.55}$	14 000	16 700	1 420	1 700	13 000	20 000	KMJ20×26×13	0.0120
	26	14	15 800	1 9 600	16 100	2 000	13 000	13 000	KMJ20×26×13.8X1S	0.0130
	26	17	17 800	22 800	1 810	2 330	13 000	20 000	KMJ20×26×17S	0.0160
	26	20	20 600	27 600	2 100	2 820	13 000	20 000	KMJ20×26×20S	0.0190
	28	17	21 700	2 4600	2 210	2 510	13 000	20 000	KMJ20×28×16.8XS	0.0220
	28	20	24 600	2 8900	2 500	2 940	13 000	20 000	KMJ20×28×19.8X4S	0.0260
	28	25	27 100	3 2500	2 760	3 300	13 000	20 000	8Q-K20×28×25	0.0390
04	25	13 _{-0.2}	10 700	1 5900	1 090	1 620	13 000	19 000	KMJ21×25×12.8X1S	0.0081
21	25	$17^{-0.55}$	13 600	2 1500	1 380	2 200	13 000	19 000	K21×25×17	0.0120
	26	10	8 500	1 1900	865	1 220	12 000	18 000	K22×26×10S	0.0071
	26	11	10 100	1 4900	1 030	1 520	12 000	18 000	8Q-K22×26×11	0.0090
	26	13	10 200	1 5200	1 040	1 550	12 000	18 000	K22×26×13	0.0094
22	26	$17_{-0.2}$	13 500	21 600	1 370	2 200	12 000	18 000	K22×26×17S	0.0120
22	27	$20^{-0.55}$	17 500	2 5900	1 780	2 640	12 000	18 000	K22×27×20	0.0200
	27	28.5	24 200	3 9500	2 470	4 000	12 000	18 000	K22×27×28.3X	0.0276
	27	40	50 500	10 3000	5 150	10 500	12 000	18 000	K22×27×40ZW	0.0390
	28	17	17 700	2 3300	1 810	2 380	12 000	18 000	K22×28×17V1	0.0200
			l				l			

Type K Type K · · T2 Type K ⋅ ⋅ S Type K ⋅ ⋅ ZW Type KMJ

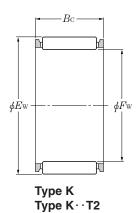
Type KMJ⋅⋅S Type KV··S

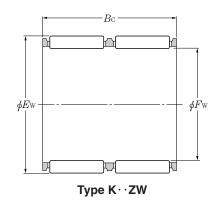

Type K⋅⋅S



Fw 22~25mm

Boun	dary d	limensions	Basic load ratings				Limiting speeds		Bearing numbers	Mass
mm			dynamic static N		dynamic static kgf		min ⁻¹ grease oil			kg
F_{w}	E_{w}	$B_{ m c}$	$C_{ m r}$	Cor	C_{r}	Cor				(approx.
	29	16	18 700	2 2700	1 910	2 310	12 000	18 000	K22×29×16	0.023
00	30	-0.2	19 300	21 700	1 970	2 210	12 000	18 000	K22×30×15	0.022
22	30		23 200	2 7500	2 370	2 800	12 000	18 000	KMJ22 \times 30 \times 17.3X2S	0.024
	30	24	31 000	4 0000	3 150	4 100	12 000	18 000	KMJ22×30×23.8X3S	0.034
	27	13	11 400	1 7700	1 160	1 800	11 000	17 000	KMJ23×27×12.8X1S	0.008
23	28	$24 {}^{-0.2}_{-0.55}$	19 800	3 1000	2 020	3 150	11 000	17 000	K23×28×24	0.023
	29	18	20 600	2 8800	2 100	2 930	11 000	17 000	KMJ23×29×17.8X2S	0.019
	28	10	9 000	1 3200	915	1 350	11 000	17 000	K24×28×10	0.008
	28	13	10 800	16 800	1 100	1 710	11 000	17 000	K24×28×13	0.010
24	28	$17_{-0.2}\atop13^{-0.55}$	14 300	23 900	1 460	2 440	11 000	17 000	K24×28×17	0.013
24	29		12 300	16 900	1 250	1 720	11 000	17 000	K24×29×13	0.012
	30	17	18 400	25 200	1 880	2 570	11 000	17 000	K24×30×17	0.022
	30	31	27 900	43 000	2 840	4 350	11 000	17 000	$K24 \times 30 \times 31ZW$	0.039
	29	10	8 950	13 300	910	1 350	11 000	16 000	K25×29×10	0.008
	29	13	10 800	16 900	1 100	1 720	11 000	16 000	K25×29×13	0.010
	29	17	14 200	24 000	1 450	2 450	11 000	16 000	K25×29×17S	0.014
	30	13	13 200	18 800	1 350	1 920	11 000	16 000	K25×30×13	0.013
	30	17	17 400	2 6800	1 770	2 730	11 000	16 000	K25×30×17S	0.017
	30	20	19 400	3 1000	1 980	3 150	11 000	16 000	K25×30×20SV3	0.021
	30	22	22 300	3 7000	2 270	3 750	11 000	16 000	KMJ25 \times 30 \times 21.8XS	0.020
25	30	26 _{-0.2}	36 500	7 1500	3 750	7 300	11 000	16 000	$K25 \times 30 \times 26ZW$	0.027
	30	39 ^{-0.55}	29 800	5 3500	3 050	5 450	11 000	16 000	$K25 \times 30 \times 39ZW$	0.040
	31	13	15 200	19 900	1 550	2 030	11 000	16 000	$K25 \times 31 \times 13V3$	0.018
	31	14	16 500	22 100	1 680	2 250	11 000	16 000	K25×31×14	0.018
	31	17	18 300	25 300	1 870	2 580	11 000	16 000	K25×31×17	0.022
	31	18.5	21 000	30 000	2 140	3 050	11 000	16 000	$KMJ25 \times 31 \times 18.3X1SK$	0.02
	31	21	22 500	33 000	2 290	3 350	11 000	16 000	K25×31×21V3	0.028
	32	16	19 500	24 700	1 990	2 520	11 000	16 000	K25×32×16	0.027
	33	24	34 500	47 000	3 500	4 800	11 000	16 000	$KMJ25 \times 33 \times 24S$	0.040

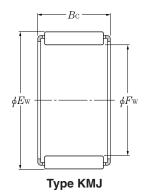


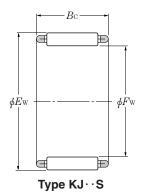


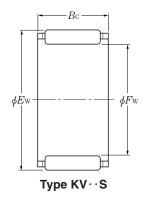
Fw 26~30mm

Bour	ndary di	mensions	Basic load ratings dynamic static dynamic static			Limiting speeds		Bearing numbers	Mass	
mm			N N		dynamic static kgf		min ⁻¹			kg
							grease	oil		
$F_{ m w}$	E_{w}	$B_{\rm c}$	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor				(approx.)
	30	13	11 800	19 200	1 200	1 960	10 000	15 000	K26×30×13	0.011
26	30	17 _0.2	15 500	27 400	1 580	2 790	10 000	15 000	K26×30×17	0.015
_0	31	$24^{-0.55}$	21 400	35 500	2 180	3 600	10 000	15 000	8E-K26 \times 31 \times 23.8X1ZW	0.029
	34	22	24 200	30 000	2 470	3 050	10 000	15 000	K26×34×22	0.041
	32	17	15 300	27 500	1 560	2 810	9 500	14 000	K28×32×17	0.017
	32	21	18 700	35 500	1 910	3 650	9 500	14 000	K28×32×21	0.020
	33	13	13 900	20 900	1 420	2 130	9 500	14 000	K28×33×13	0.015
	33	17	18 300	29 800	1 870	3 050	9 500	14 000	K28×33×17S	0.020
28	33	$26_{-0.2}$	23 900	42 000	2 430	4 250	9 500	14 000	K28×33×26ZW	0.033
20	33	$27^{-0.55}$	28 300	52 000	2 890	5 300	9 500	14 000	K28×33×27	0.032
	34	14	17 500	24 800	1 790	2 530	9 500	14 000	K28×34×14	0.020
	34	17	18 100	25 800	1 850	2 630	9 500	14 000	K28×34×17V1	0.025
	35	16	21 200	28 400	2 160	2 900	9 500	14 000	K28×35×16	0.029
	35	18	21 500	28 900	2 190	2 950	9 500	14 000	K28×35×18	0.031
00	34	17 _{-0.2}	18 900	31 000	1 920	3 200	9 500	14 000	K29×34×17S	0.022
29	34	27 -0.55	28 100	52 000	2 870	5 300	9 500	14 000	K29×34×27	0.033
	34	14	12 400	21 500	1 260	2 190	8 500	13 000	KV30×34×13.8XS	0.014
	34	23	18 000	34 500	1 830	3 500	8 500	13 000	K30×34×22.8X1T2	0.013
	35	11	12 200	18 000	1 240	1 840	8 500	13 000	K30×35×11S	0.014
	35	13	14 700	22 900	1 500	2 340	8 500	13 000	KV30×35×13S	0.017
	35	17	18 800	31 500	1 910	3 200	8 500	13 000	KJ30×35×17S	0.021
	35	20	21 600	37 500	2 200	3 850	8 500	13 000	K30×35×20S	0.025
30	35	$26_{-0.2}$	25 200	46 000	2 570	4 650	8 500	13 000	K30×35×26ZWV1	0.036
30	35	$27^{-0.55}$	29 900	57 000	3 050	5 800	8 500	13 000	K30×35×27S	0.033
	36	14	18 600	27 400	1 900	2 790	8 500	13 000	KMJ30×36×14V2	0.021
	37	16	21 900	30 500	2 230	3 100	8 500	13 000	K30×37×16	0.029
	37	18	23 300	33 000	2 370	3 350	8 500	13 000	K30×37×18	0.034
	37	20	26 200	38 000	2 670	3 850	8 500	13 000	KMJ30 \times 37 \times 20S	0.032
	37	48	40 000	65 500	4 050	6 700	8 500	13 000	K30×37×48ZW	0.075
	38	18	25 000	33 000	2 550	3 350	8 500	13 000	K30×38×18	0.036

Type K Type K · · T2 Type K ⋅ · ZW Type KMJ Type KJ··S Type KV··S

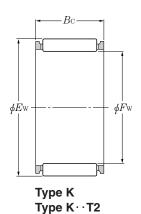


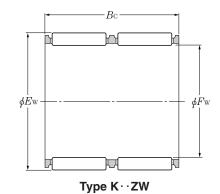




Fw 31∼35mm

	mı		dynamia	Basic load ratings			Lilling	speeds	Bearing numbers	Mass
	mm			dynamic static N		dynamic static kgf		n ⁻¹		kg
$F_{ m w}$	E_{w}	$B_{ m c}$	$C_{ m r}$	Cor	$C_{ m r}$	Cor	grease	oil		(approx.)
31	35	24 _{-0.2}	21 200	43 500	2 160	4 400	8 500	13 000	KV31×35×23.8XS	0.022
31	36	$14^{-0.55}$	15 800	25 400	1 610	2 590	8 500	13 000	KV31×36×13.8XS	0.017
	36	15	14 300	26 400	1 460	2 700	8 500	13 000	K32×36×15S	0.017
	37	13	14 500	23 000	1 480	2 350	8 500	13 000	K32×37×13	0.018
	37	17	19 200	33 000	1 950	3 350	8 500	13 000	K32×37×17S	0.022
	37	24	22 900	41 500	2 340	4 200	8 500	13 000	K32×37×24.8X2	0.018
	37	26	24 900	46 000	2 540	4 700	8 500	13 000	K32×37×26ZWV3	0.032
32	37	$27_{-0.2}$	29 600	57 500	3 000	5 850	8 500	13 000	K32×37×27	0.037
32	38	$14^{-0.55}$	19 800	30 500	2 020	3 100	8 500	13 000	KMJ32×38×14	0.022
	38	20	25 100	41 000	2 560	4 150	8 500	13 000	$KJ32 \times 38 \times 20S$	0.031
	38	26	31 500	54 000	3 200	5 550	8 500	13 000	K32×38×26	0.041
	39	16	22 600	32 000	2 310	3 300	8 500	13 000	K32×39×16V1	0.033
	39	18	24 000	35 000	2 450	3 550	8 500	13 000	K32×39×18	0.037
	39	20	26 800	40 000	2 740	4 100	8 500	13 000	KJ32×39×20S	0.041
33	38	$30.5 {}^{-0.2}_{-0.55}$	28 400	55 000	2 900	5 600	8 000	12 000	K33×38×30.3X1T2	0.026
34	40	$39.5 \ ^{-0.2}_{-0.55}$	39 000	73 500	4 000	7 500	8 000	12 000	KV34×40×39.3X1ZWS	0.066
	39	22.5	21 500	46 000	2 200	4 700	7 500	11 000	KV35×39×22.3XS	0.024
	39	24	21 300	45 000	2 170	4 600	7 500	11 000	K35×39×23.8X1T2	0.015
	40	13	15 200	25 100	1 550	2 560	7 500	11 000	K35×40×13	0.019
	40	17	20 000	36 000	2 040	3 650	7 500	11 000	K35×40×17	0.025
	40	19	22 300	41 000	2 270	4 200	7 500	11 000	K35×40×19	0.029
	40	26	44 000	100 000	4 450	10 200	7 500	11 000	$K35 \times 40 \times 26ZW$	0.037
35	40	$27_{-0.2}$	32 000	65 000	3 250	6 600	7 500	11 000	$KJ35 \times 40 \times 27S$	0.039
00	40	30 ^{-0.55}	26 100	50 000	2 660	5 100	7 500	11 000	$K35 \times 40 \times 30ZW$	0.043
	41	14	19 400	30 500	1 980	3 100	7 500	11 000	K35×41×14	0.026
	41	15	20 900	33 500	2 130	3 400	7 500	11 000	K35×41×15	0.027
	41	24	31 000	55 500	3 200	5 650	7 500	11 000	$K35 \times 41 \times 23.8X1$	0.042
	41	40	72 000	168 000	7 350	17 100	7 500	11 000	$K35 \times 41 \times 40ZW$	0.055
	42	16	24 100	36 000	2 450	3 650	7 500	11 000	K35×42×16	0.035
	42	18	24 700	37 000	2 510	3 750	7 500	11 000	K35×42×18	0.039

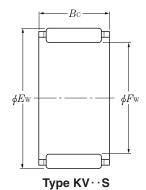



Fw 35∼42mm

Bou	ndary d	imensions		Basic loa	•		Limiting	speeds	Bearing numbers	Mass
	mr	n	dynamic N	static	dynami	ic static kgf	mi	n ⁻¹		kg
							grease	oil		
$F_{ m w}$	$E_{ m w}$	$B_{ m c}$	$C_{\rm r}$	Cor	$C_{ m r}$	Cor				(approx.)
	42	20	26 500	40 500	2 700	4 100	7 500	11 000	KV35×42×20SV2	0.040
35	42	$30 {}^{-0.2}_{-0.55}$	39 500	68 000	4 050	6 950	7 500	11 000	K35×42×30	0.062
	42	45	42 500	74 000	4 300	7 550	7 500	11 000	K35×42×45ZW	0.106
36	42	$46 ^{-0.2}_{-0.55}$	51 000	106 000	5 200	10 800	7 500	11 000	K36×42×46ZW	0.086
	42	13	15 900	27 100	1 620	2 770	7 500	11 000	K37×42×13V4	0.021
	42	17	21 000	38 500	2 140	3 950	7 500	11 000	K37×42×17V2	0.026
37	42	$27_{-0.2}$	32 500	67 500	3 300	6 900	7 500	11 000	KJ37×42×27S	0.041
37	43	$33.5^{-0.55}$	39 000	76 000	4 000	7 750	7 500	11 000	$KV37 \times 43 \times 33.3XS$	0.062
	44	18	26 300	41 000	2 680	4 150	7 500	11 000	K37×44×18	0.042
	45	25	37 000	58 000	3 800	5 900	7 500	11 000	K37×45×24.8XT2	0.039
	43	17	20 900	38 500	2 130	3 950	7 500	11 000	8E-K38×43×17	0.027
	43	27	32 000	67 500	3 300	6 900	7 500	11 000	K38×43×27	0.043
38	43	$29 {}^{-0.2}_{-0.55}$	32 500	68 000	3 300	6 950	7 500	11 000	K38×43×28.8X	0.047
	46	20	34 000	52 000	3 450	5 350	7 500	11 000	KMJ38×46×20	0.046
	46	32	54 000	95 500	5 500	9 700	7 500	11 000	K38×46×32	0.073
	45	13	16 500	29 200	1 680	2 980	6 500	10 000	K40×45×13V2	0.023
	45	17	21 800	41 500	2 220	4 250	6 500	10 000	K40×45×17	0.027
	45	21	26 700	54 000	2 720	5 500	6 500	10 000	K40×45×21V2	0.035
	45	27	33 500	72 500	3 400	7 400	6 500	10 000	K40×45×27	0.044
40	46	$17_{-0.2}$	24 600	43 000	2 500	4 350	6 500	10 000	K40×46×17	0.030
40	46	$34^{-0.55}$	40 500	80 500	4 100	8 250	6 500	10 000	KV40×46×33.8XS	0.063
	47	18	27 700	45 000	2 820	4 550	6 500	10 000	K40×47×18	0.045
	47	20	31 000	51 500	3 150	5 250	6 500	10 000	K40×47×20	0.048
	48	20	33 000	51 000	3 350	5 200	6 500	10 000	K40×48×20	0.052
	48	25	41 000	68 000	4 200	6 900	6 500	10 000	KV40×48×25SV1	0.065
41	49	$22 {}^{-0.2}_{-0.55}$	30 500	46 000	3 100	4 700	6 500	9 500	8E-KV41×49×21.8XS	0.065
	47	17	22 100	43 000	2 250	4 400	6 500	9 500	K42×47×17	0.028
42	47	$27_{-0.2}$	34 000	75 500	3 450	7 700	6 500	9 500	K42×47×27	0.047
42	48	$17^{-0.55}$	25 700	46 000	2 630	4 700	6 500	9 500	K42×48×17	0.036
	_ 50	20	34 000	53 500	3 450	5 500	6 500	9 500	K42×50×20	0.054

Remarks: Even when an order is placed with reference to "Nominal bearing number" listed in this table, the ordered bearings are subject to being delivered with different cage type.

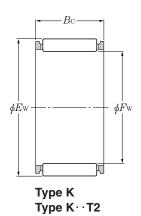
Type K Type K · · T2 Type K ⋅ · ZW Type KV··S

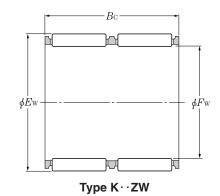


Fw 43~50mm

Bour	ndary c	limensions		Basic loa	•		Limiting	speeds	Bearing numbers	Mass
	m	m	dynamic N		dynami	c static kgf	mir grease	n ⁻¹ oil		kg
$F_{ m w}$	E_{w}	$B_{ m c}$	$C_{\rm r}$	$C_{ m or}$	$C_{ m r}$	Cor	3			(approx.)
	48	17	22 000	43 000	2 240	4 400	6 500	9 500	K43×48×17	0.029
40	48	27 _{-0.2}	34 000	75 500	3 450	7 700	6 500	9 500	K43×48×27	0.046
43	48	$38^{-0.55}$	41 000	96 000	4 150	9 800	6 500	9 500	KV43×48×37.8XZWS	0.058
	50	18	29 100	49 000	2 960	5 000	6 500	9 500	K43×50×18	0.049
44	50	31 $^{-0.2}_{-0.55}$	43 500	91 500	4 400	9 300	6 500	9 500	KV44×50×30.8XS	0.067
	49	19	22 100	52 000	2 260	5 300	6 000	9 000	K45×49×19	0.027
	50	17	22 300	44 500	2 280	4 550	6 000	9 000	K45×50×17	0.033
	50	25.8	30 500	66 500	3 100	6 750	6 000	9 000	KV45×50×25.8XS	0.045
	50	27	34 500	78 000	3 500	7 950	6 000	9 000	K45×50×27	0.050
45	51	$27_{-0.2}$	34 500	68 000	3 500	6 950	6 000	9 000	KV45×51×26.8XS	0.058
45	52	$18^{-0.55}$	29 700	51 000	3 000	5 200	6 000	9 000	K45×52×18	0.051
	52	3 20	32 000	56 500	3 300	5 750	6 000	9 000	K45×52×21	0.061
	53		36 000	59 000	3 650	6 000	6 000	9 000	K45×53×20	0.062
	53	25	46 500	82 000	4 700	8 400	6 000	9 000	K45×53×25	0.077
	53	28	49 500	90 000	5 050	9 200	6 000	9 000	KJ45×53×28S	0.078
	52	15.5	19 400	38 000	1 980	3 900	5 500	8 500	8E-K47×52×15.3X2	0.031
	52	17	23 200	47 500	2 360	4 850	5 500	8 500	K47×52×17	0.033
47	52	$23_{\;-0.2}$	29 600	65 500	3 000	6 650	5 500	8 500	$KV47 \times 52 \times 22.8XS$	0.044
47	52	$24^{-0.55}$	33 500	76 500	3 400	7 800	5 500	8 500	K47×52×23.8X	0.044
	52	27	35 500	83 000	3 650	8 450	5 500	8 500	K47×52×27	0.051
	52	33	38 000	90 500	3 900	9 250	5 500	8 500	$KV47 \times 52 \times 32.8 \times ZWS$	0.064
	53	22.5	31 000	69 500	3 150	7 050	5 500	8 500	KV48×53×22.3XS	0.042
	53	26	36 500	86 500	3 750	8 850	5 500	8 500	K48×53×25.8X3T2	0.029
	53	30	36 500	85 500	3 700	8 750	5 500	8 500	K48×53×29.8X1	0.062
48	53	$37 {}^{-0.2}_{-0.55}$	45 000	112 000	4 550	11 400	5 500	8 500	KV48×53×36.8XZWS	0.064
	53	37.5	41 500	101 000	4 200	10 300	5 500	8 500	K48×53×37.5ZW	0.072
	54		31 000	61 000	3 150	6 250	5 500	8 500	K48×54×19	0.044
	55	24.5	39 000	73 500	4 000	7 600	5 500	8 500	KV48×55×24.3XS	0.070
50	55	13.5 _{-0.2}	18 100	35 500	1 850	3 600	5 500	8 000	K50×55×13.5	0.023
50	55	$20^{-0.55}$	27 900	62 000	2 850	6 300	5 500	8 000	KV50×55×20S	0.040

Remarks: Even when an order is placed with reference to "Nominal bearing number" listed in this table, the ordered bearings are subject to being delivered with different cage type.

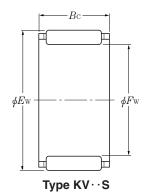



F_w 50∼60mm

Bour	ndary di	imensions		Basic loa	•		Limiting	speeds	Bearing numbers	Mass
	mn	n	dynamic N	static	dynami	ic static kgf	mir	1 ⁻¹		kg
							grease	oil		
$F_{ m w}$	E_{w}	$B_{ m c}$	$C_{\rm r}$	Cor	$C_{ m r}$	Cor				(approx.)
	55	27	37 000	88 500	3 750	9 000	5 500	8 000	K50×55×27	0.053
	55	30	39 500	97 000	4 050	9 900	5 500	8 000	K50×55×30	0.059
50	57	18 _0.2	31 500	57 000	3 200	5 800	5 500	8 000	K50×57×18	0.053
	58	$20^{-0.55}$	38 500	67 500	3 950	6 850	5 500	8 000	K50×58×20	0.065
	58	25	48 500	90 000	4 950	9 150	5 500	8 000	K50×58×25	0.081
	58	58	83 500	181 000	8 500	18 400	5 500	8 000	$KV50 \times 58 \times 57.8XZWS$	0.188
	57	18	22 800	48 000	2 320	4 900	5 000	7 500	KV52×57×17.8XS	0.037
52	57	$23 {}^{-0.2}_{-0.55}$	30 500	69 500	3 100	7 100	5 000	7 500	KV52×57×22.8X1S	0.048
	58	19	32 000	65 500	3 250	6 650	5 000	7 500	K52×58×19	0.048
54	59	$23 {}^{-0.2}_{-0.55}$	31 500	73 500	3 200	7 500	5 000	7 500	KV54×59×22.8XS	0.049
	60	17	25 800	58 000	2 630	5 900	5 000	7 500	K55×60×17	0.043
	60	20	28 800	66 500	2 940	6 750	5 000	7 500	K55×60×20	0.045
	60	30	42 000	108 000	4 300	11 000	5 000	7 500	KV55×60×30S	0.069
	60	37	47 500	127 000	4 850	12 900	5 000	7 500	K55×60×36.8X	0.086
	61	19	33 000	69 500	3 350	7 100	5 000	7 500	K55×61×19	0.051
55	61	$20 {}^{-0.2}_{-0.55}$	33 000	69 500	3 350	7 100	5 000	7 500	K55×61×20	0.054
	61	30	48 000	113 000	4 900	11 500	5 000	7 500	K55×61×30	0.081
	62	18	33 500	63 000	3 400	6 450	5 000	7 500	K55×62×18	0.054
	63	20	39 000	70 000	3 950	7 100	5 000	7 500	K55×63×20	0.073
	63	25	50 500	97 500	5 150	9 950	5 000	7 500	K55×63×25	0.088
	63	32	61 000	125 000	6 200	12 700	5 000	7 500	K55×63×32	0.117
56	66	$41 {}^{-0.2}_{-0.55}$	90 000	178 000	9 200	18 100	5 000	7 500	K56×66×40.8XT2	0.148
57	65	$40 ^{-0.2}_{-0.55}$	66 000	140 000	6 750	14 300	4 700	7 000	KV57×65×39.8XZWS	0.145
58	64	$19 {}^{-0.2}_{-0.55}$	34 000	73 500	3 450	7 500	4 700	7 000	K58×64×19	0.052
	65	20	29 800	71 500	3 050	7 300	4 300	6 500	K60×65×20	0.051
	65	27	40 000	104 000	4 050	10 600	4 300	6 500	K60×65×26.8X	0.067
60	65	$\begin{array}{c} 30 & -0.2 \\ -0.55 \end{array}$	43 500	116 000	4 450	11 800	4 300	6 500	K60×65×30	0.071
	66	19	33 500	73 500	3 450	7 500	4 300	6 500	K60×66×19	0.053
	66	20	33 500	73 500	3 450	7 500	4 300	6 500	K60×66×20	0.056

Remarks: Even when an order is placed with reference to "Nominal bearing number" listed in this table, the ordered bearings are subject to being delivered with different cage type.

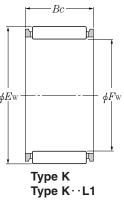
Type K Type K · · T2 Type K ⋅ ⋅ ZW Type KV··S

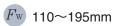


Fw 60∼73mm

Bour	ndary c	dimensions	dynomia		ad ratings	ia atatia	Limiting	speeds	Bearing numbers	Mass
	m	m	dynamic N		dynami	ic static kgf	min	₋ -1		kg
П	П	D				a	grease	oil		(
$F_{ m w}$	E_{w}	$B_{ m c}$	$C_{\rm r}$	Cor	$C_{ m r}$	$C_{ m or}$				(approx.)
	66	30		119 000	5 000	12 200	4 300	6 500	K60×66×30	0.084
	68	15	27 200	45 500	2 780	4 650	4 300	6 500	K60×68×15	0.058
	68	20	40 000	75 000	4 100	7 650	4 300	6 500	K60×68×20	0.077
60	68	$23 {}^{-0.2}_{-0.55}$	44 500	85 000	4 500	8 700	4 300	6 500	K60×68×23	0.092
	68	25	52 000	105 000	5 300	10 700	4 300	6 500	K60×68×25	0.097
	68	27	52 000	105 000	5 300	10 700	4 300	6 500	K60×68×27	0.098
	68	30	46 500	91 000	4 750	9 300	4 300	6 500	K60×68×30ZW	0.119
61	66	$20_{-0.2}$	29 700	71 500	3 050	7 300	4 300	6 500	K61×66×20	0.054
01	66	30 ^{-0.55}	43 500	116 000	4 400	11 900	4 300	6 500	K61×66×30	0.073
	70	21 _0.2	44 500	95 500	4 500	9 700	4 300	6 500	K63×70×21	0.075
63	71	$50.5^{-0.55}$	74 500	167 000	7 600	17 000	4 300	6 500	KV63×71×50.3XZWS	0.193
64	70	16 ^{-0.2} _{-0.55}	28 400	60 500	2 900	6 150	4 300	6 500	K64×70×16	0.053
	70	20	30 500	75 000	3 100	7 650	4 000	6 000	K65×70×20	0.055
	70	21.5	30 500	75 000	3 100	7 650	4 000	6 000	KV65×70×21.3X1S	0.056
65	70	$30 {}^{-0.2}_{-0.55}$	45 000	124 000	4 600	12 700	4 000	6 000	K65×70×30	0.083
	73	23	47 000	94 000	4 800	9 600	4 000	6 000	K65×73×23	0.100
	73	30	61 000	132 000	6 200	13 400	4 000	6 000	K65×73×30	0.126
	74	20	36 000	83 500	3 700	8 550	4 000	6 000	K68×74×20	0.065
co	74	30 _0.2	51 500	133 000	5 250	13 500	4 000	6 000	K68×74×30	0.097
68	74	$35^{-0.55}$	49 500	125 000	5 050	12 800	4 000	6 000	K68×74×35ZW	0.116
	75	21	45 500	101 000	4 600	10 300	4 000	6 000	K68×75×21	0.077
	76	20	36 500	86 000	3 700	8 750	3 700	5 500	K70×76×20	0.070
	76	30	53 000	139 000	5 400	14 200	3 700	5 500	K70×76×30	0.100
70	77	$21 {}^{-0.2}_{-0.55}$	45 000	101 000	4 600	10 300	3 700	5 500	K70×77×21	0.080
	78	23	49 500	103 000	5 050	10 500	3 700	5 500	K70×78×23	0.107
	78	30	65 500	149 000	6 700	15 200	3 700	5 500	K70×78×30	0.136
72	79	$21 {}^{-0.2}_{-0.55}$	46 500	106 000	4 750	10 800	3 700	5 500	K72×79×21	0.085
70	79	200.2	37 500	90 000	3 800	9 150	3 700	5 500	K73×79×20	0.074
73	79	30 -0.55	54 500	146 000	5 550	14 900	3 700	5 500	K73×79×30	0.106
74	90	$50 {}^{-0.2}_{-0.55}$	157 000	287 000	16 000	29 200	3 700	5 500	K74×90×49.8XT2	0.380

Remarks: Even when an order is placed with reference to "Nominal bearing number" listed in this table, the ordered bearings are subject to being delivered with different cage type.




*F*_w 75∼105mm

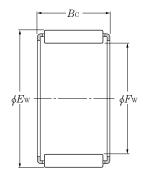
Boui	ndary di	mensions		Basic loa	•		Limiting	speeds	Bearing numbers	Mass
	mn	า	dynamic N		dynami	c static kgf	min	-1		kg
	_		~	~	~		grease	oil		
$F_{ m w}$	E_{w}	$B_{ m c}$	$C_{\rm r}$	Cor	$C_{ m r}$	Cor				(approx.)
	81	20	40 000	99 500	4 100	10 200	3 700	5 500	KV75×81×19.8X1S	0.071
	81	30	56 000	152 000	5 700	15 500	3 700	5 500	K75×81×30	0.108
75	82	$21 {}^{-0.2}_{-0.55}$	46 000	106 000	4 700	10 800	3 700	5 500	K75×82×21	0.088
	83	23		109 000	5 150	11 100	3 700	5 500	K75×83×23	0.113
	83	30	67 500	157 000	6 850	16 100	3 700	5 500	K75×83×30	0.147
	86	20	39 000	98 000	4 000	10 000	3 300	5 000	KV80×86×20SV1	0.077
	86	30	57 000	159 000	5 800	16 200	3 300	5 000	K80×86×30	0.110
80	88	$23 {}^{-0.2}_{-0.55}$	53 000	118 000	5 400	12 100	3 300	5 000	K80×88×23	0.125
	88	26	61 000	142 000	6 250	14 500	3 300	5 000	K80×88×26	0.131
	88	30	69 000	166 000	7 050	17 000	3 300	5 000	K80×88×30	0.157
	92	20	47 500	115 000	4 850	11 700	3 100	4 700	KMJ85×92×20	0.083
0.5	92	30 _0.2	66 000	176 000	6 750	18 000	3 100	4 700	K85×92×30	0.142
85	93	$27^{-0.55}$	64 000	153 000	6 500	15 600	3 100	4 700	K85×93×27	0.145
	93	30	71 000	175 000	7 200	17 900	3 100	4 700	$8Q-K85 \times 93 \times 30$	0.174
	97	20	46 000	113 000	4 700	11 500	2 900	4 400	K90×97×20	0.103
	97	30	67 500	184 000	6 850	18 700	2 900	4 400	K90×97×30	0.151
90	98	$26 {}^{-0.2}_{-0.55}$	64 000	157 000	6 550	16 000	2 900	4 400	K90×98×26	0.148
	98	27	64 000	157 000	6 550	16 000	2 900	4 400	K90×98×27	0.150
	98	30	72 500	184 000	7 400	18 800	2 900	4 400	K90×98×30	0.172
	102	21	48 000	122 000	4 900	12 400	2 800	4 200	K95×102×21	0.115
95	102	31 _{-0.2}	70 500	199 000	7 200	20 300	2 800	4 200	K95×102×31	0.172
95	103	$27^{-0.55}$	65 500	165 000	6 700	16 800	2 800	4 200	K95×103×27	0.159
	103	30	74 000	193 000	7 550	19 600	2 800	4 200	K95×103×30	0.165
	107	21	47 500	122 000	4 850	12 500	2 700	4 000	KV100×107×21S	0.120
100	107	31 _{-0.3}	71 500	207 000	7 300	21 100	2 700	4 000	K100×107×31	0.173
100	108	$27^{-0.65}$	61 000	153 000	6 250	15 600	2 700	4 000	K100×108×27	0.176
	108	30	76 000	201 000	7 700	20 500	2 700	4 000	K100×108×30	0.190
	112	21	48 500	127 000	4 950	12 900	2 500	3 800	K105×112×21	0.130
105	112	$31 {-0.3 \atop -0.65}$	71 000	207 000	7 250	21 100	2 500	3 800	K105×112×31	0.176
	113	30	77 500	210 000	7 900	21 400	2 500	3 800	K105×113×30	0.198

Remarks: Even when an order is placed with reference to "Nominal bearing number" listed in this table, the ordered bearings are subject to being delivered with different cage type.

Type K Type K · · L1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	79 000 219 00 64 000 170 00 95 000 241 00 57 500 165 00 82 000 260 00 87 000 260 00	7 900 8 050 0 6 550 0 9 700 0 5 850 0 8 350	15 200 24 000 22 300 17 300 24 600 16 800 26 600	2 400 2 400 2 400 2 400 2 300 2 300 2 200	oil 3 600 3 600 3 600 3 500 3 500 3 300	K110×117×24 K110×117×34 K110×118×30 K115×123×27 K115×125×34	kg (approx.) 0.145 0.205 0.217 0.200 0.330
117 24 110 117 34 -0.3 118 30 115 123 27 -0.3 125 34 -0.66 127 24 -0.3 127 34 -0.66 127 34 -0.66 133 35 -0.3 135 34 -0.66 135 143 35 -0.3 137 34 -0.66 150 160 38 -0.66 153 26 153 36 150 160 46 -0.3 155 163 26 -0.3 163 36 -0.66 163 36 -0.66 160 170 46 -0.3 173 26	54 500 149 00 77 500 235 00 79 000 219 00 64 000 170 00 95 000 241 00 57 500 165 00 82 000 260 00	5 550 7 900 8 050 6 550 9 700 5 850 0 8 350	15 200 24 000 22 300 17 300 24 600 16 800	2 400 2 400 2 400 2 300 2 300 2 200	3 600 3 600 3 600 3 500 3 500	K110×117×34 K110×118×30 K115×123×27	0.145 0.205 0.217 0.200
110 117 34 -0.8 118 30 118 30 115 123 27 -0.3 125 34 -0.69 127 24 -0.3 127 34 -0.69 130 137 -0.69 137 24 -0.3 137 34 -0.69 150 38 -0.69 153 26 145 153 -0.69 153 26 -0.3 153 36 150 160 -0.69 163 26 -0.3 163 26 -0.3 163 26 -0.3 160 170 -0.69 173 26	77 500 235 00 79 000 219 00 64 000 170 00 95 000 241 00 57 500 165 00 82 000 260 00	7 900 8 050 0 6 550 0 9 700 0 5 850 0 8 350	24 000 22 300 17 300 24 600 16 800	2 400 2 400 2 300 2 300 2 200	3 600 3 600 3 500 3 500	K110×117×34 K110×118×30 K115×123×27	0.205 0.217 0.200
118 30 118 30 118 30 118 30 118 30 118 30 119 31 32	79 000 219 00 64 000 170 00 95 000 241 00 57 500 165 00 82 000 260 00	8 050 6 550 9 700 0 5 850 0 8 350	22 300 17 300 24 600 16 800	2 400 2 300 2 300 2 200	3 600 3 500 3 500	K110×118×30 K115×123×27	0.217
118 30 115 123 27 -0.3 125 34 -0.69 120 127 24 -0.3 127 34 -0.69 125 133 35 -0.3 135 34 -0.69 130 137 24 -0.3 137 34 -0.69 131 35 36 143 35 -0.3 150 38 -0.69 153 26 153 26 153 36 150 160 46 -0.3 151 163 26 -0.3 163 36 -0.69 163 36 -0.69 160 170 46 -0.3 173 26	79 000 219 00 64 000 170 00 95 000 241 00 57 500 165 00 82 000 260 00 87 000 260 00	6 550 9 700 5 850 8 350	17 300 24 600 16 800	2 300 2 300 2 200	3 500 3 500	K115×123×27	0.200
125 34 -0.68 127 24 -0.3 127 34 -0.68 125 133 35 -0.3 135 34 -0.68 137 24 -0.3 137 34 -0.68 137 34 -0.68 137 34 -0.68 150 150 38 -0.68 153 26 153 26 153 36 150 160 46 -0.3 155 163 26 -0.3 163 36 -0.68 163 36 -0.68 163 36 -0.68 163 36 -0.68 163 36 -0.68 163 36 -0.68 163 36 -0.68 163 36 -0.68	5 95 000 241 00 57 500 165 00 82 000 260 00 87 000 260 00	9 700 5 850 8 350	24 600 16 800	2 300 2 200	3 500		
125 34 -0.66 127 24 -0.3 127 34 -0.66 128 133 35 -0.3 135 34 -0.66 130 137 24 -0.3 137 34 -0.66 131 35 36 -0.66 143 35 -0.3 150 38 -0.66 153 26 -0.3 153 36 150 160 46 -0.3 151 163 26 -0.3 152 163 36 -0.66 153 36 -0.66 154 155 163 26 -0.3 155 163 36 -0.66 165 170 46 -0.3 173 26	57 500 165 00 82 000 260 00 87 000 260 00	5 850 0 8 350	16 800	2 200		K115×125×34	0.330
127 34 -0.69 125 133 35 -0.3 135 34 -0.69 130 137 24 -0.3 137 34 -0.69 131 35 36 143 35 -0.3 150 38 -0.69 153 26 153 26 153 36 150 160 46 -0.3 163 26 -0.3 163 36 -0.69 160 170 46 -0.3 173 26	82 000 260 00 87 000 260 00	8 350			3 300		
127 34 -0.69 125 133 35 -0.3 135 34 -0.69 130 137 24 -0.3 137 34 -0.69 131 35 36 143 35 -0.3 150 38 -0.69 153 26 153 26 153 36 150 160 46 -0.3 163 26 -0.3 163 36 -0.69 160 170 46 -0.3 173 26	82 000 260 00 87 000 260 00		26 600	0.000		K120×127×24	0.160
125 135 $34^{-0.6}$ 130 137 $24^{-0.3}$ 137 $34^{-0.6}$ 135 143 $35^{-0.3}$ 150 $38^{-0.6}$ 153 $26^{-0.3}$ 153 $28^{-0.6}$ 153 $36^{-0.6}$ 150 160 $46^{-0.3}$ 163 $26^{-0.3}$ 163 $36^{-0.6}$ 160 170 $46^{-0.3}$ 173 $26^{-0.3}$	- 1	0 8 900		2 200	3 300	K120×127×34	0.235
135 34 -0.68 137 24 -0.3 137 34 -0.68 138 35 -0.68 143 35 -0.68 150 38 -0.68 153 26 153 26 153 36 150 160 46 -0.68 153 36 150 163 26 -0.3 163 36 -0.68 160 170 46 -0.68 173 26	- 1		26 500	2 100	3 200	K125×133×35	0.275
137 34 -0.69 137 34 -0.69 143 35 _0.3 150 38 -0.69 153 26 145 153 28 -0.69 153 36 150 160 46 -0.3 163 26 _0.3 163 36 -0.69 160 170 46 -0.3 173 26		10 200	27 000	2 100	3 200	K125×135×34	0.350
137 34 -0.69 137 34 -0.69 143 35 _0.3 150 38 -0.69 153 26 145 153 28 -0.69 153 36 150 160 46 -0.3 163 26 _0.3 163 36 -0.69 160 170 46 -0.3 173 26	59 000 175 00	0 6 000	17 900	2 100	3 100	K130×137×24	0.170
150 38 -0.68 153 26 145 153 28 -0.68 153 36 150 160 46 -0.3 155 163 26 -0.68 163 36 -0.68 160 170 46 -0.3 173 26	84 500 277 00	8 600	28 300	2 100	3 100	K130×137×34	0.240
150 38 -0.68 153 26 145 153 28 -0.68 153 36 150 160 46 -0.3 155 163 26 -0.3 163 36 -0.68 160 170 46 -0.3 173 26	92 500 288 00	9 450	29 400	2 000	3 000	K135×143×35L1	0.313
145 153 28 -0.68 153 36 150 160 46 -0.68 155 163 26 -0.3 163 36 -0.68 160 170 46 -0.3 173 26	145 000 325 00	14 800	33 500	2 000	3 000	K135×150×38	0.590
153 36 150 160 46 -0.69 155 163 26 -0.3 163 36 -0.69 160 170 46 -0.3 173 26	72 000 214 00	7 350	21 800	1 900	2 800	K145×153×26	0.250
150 160 46 -0.69 155 163 26 -0.69 160 170 46 -0.69 173 26	80 500 247 00	8 200	25 200	1 900	2 800	K145×153×28	0.252
155 163 26 -0.3 163 36 -0.69 160 170 46 -0.69 173 26	100 000 325 00	10 200	33 000	1 900	2 800	K145×153×36	0.335
163 36 -0.69 160 170 46 -0.69 173 26	149 000 470 00	15 200	48 000	1 800	2 700	K150×160×46	0.550
163 36 0.00 160 170 46 -0.60 173 26		7 500	22 800	1 700	2 600	K155×163×26	0.270
173 26	102 000 340 00	10 400	34 500	1 700	2 600	K155×163×36	0.355
	₅ 155 000 505 00	15 800	51 500	1 700	2 500	K160×170×46	0.570
165 173 32 $^{-0.3}_{-0.69}$	79 000 251 00	0 8 050	25 600	1 600	2 400	K165×173×26	0.290
	97 000 330 00	9 900	33 500	1 600	2 400	K165×173×32	0.340
173 36	109 000 380 00	11 100	39 000	1 600	2 400	K165×173×36	0.375
170 180 46 $^{-0.3}_{-0.68}$		16 400	55 000	1 600	2 400	K170×180×46	0.620
175 183 32 $^{-0.3}_{-0.65}$		0 10 300	35 500	1 500	2 300	K175×183×32L1	0.379
185 195 37 $^{-0.3}_{-0.68}$	5 101 000 350 00	13 300	43 500	1 500	2 200	K185×195×37L1	0.581
195 205 37 $^{-0.3}_{-0.6}$		13 800	46 000	1 400	2 100	K195×205×37L1	0.620

Remarks: Even when an order is placed with reference to "Nominal bearing number" listed in this table, the ordered bearings are subject to being delivered with different cage type.

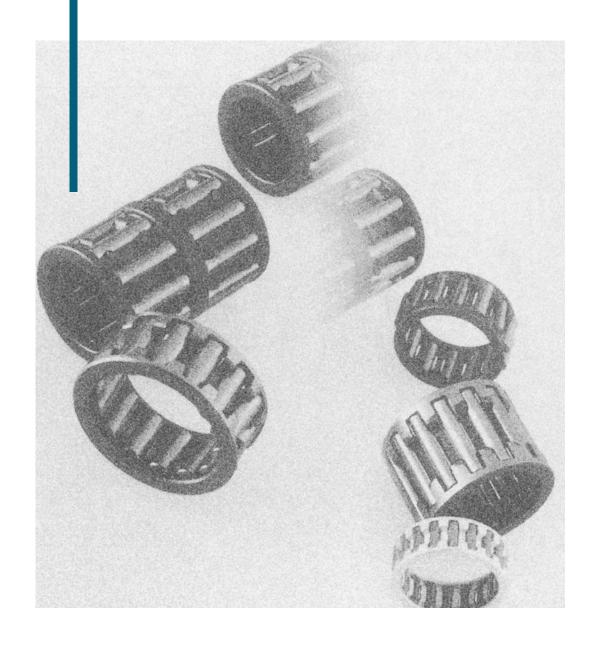

Fw 210~285mm

Bou		imensions	dynamic	static		ic static	Limiting		Bearing numbers	Mass
	mn	n	١	N		kgf	mir grease	oil		kg
$F_{ m w}$	$E_{ m w}$	$B_{ m c}$	$C_{\rm r}$	Cor	$C_{ m r}$	$C_{ m or}$	greate			(approx.)
210	220	$42 ^{-0.3}_{-0.65}$	156 000	560 000	15 900	57 000	1 300	1 900	K210×220×42	0.740
220	230	$42 ^{-0.3}_{-0.65}$	161 000	590 000	16 400	60 000	1 200	1 800	K220×230×42	0.790
240	250	$42 ^{-0.3}_{-0.65}$	167 000	635 000	17 000	64 500	1 100	1 700	K240×250×42L1	0.849
265	280	$50 {}^{-0.3}_{-0.65}$	256 000	850 000	26 100	87 000	1 000	1 500	K265×280×50L1	1.768
285	300	$50 {}^{-0.3}_{-0.65}$	268 000	930 000	27 300	94 500	950	1 400	K285×300×50	1.970

Remarks: Even when an order is placed with reference to "Nominal bearing number" listed in this table, the ordered bearings are subject to being delivered with different cage type.

Inch System

Type PCJ

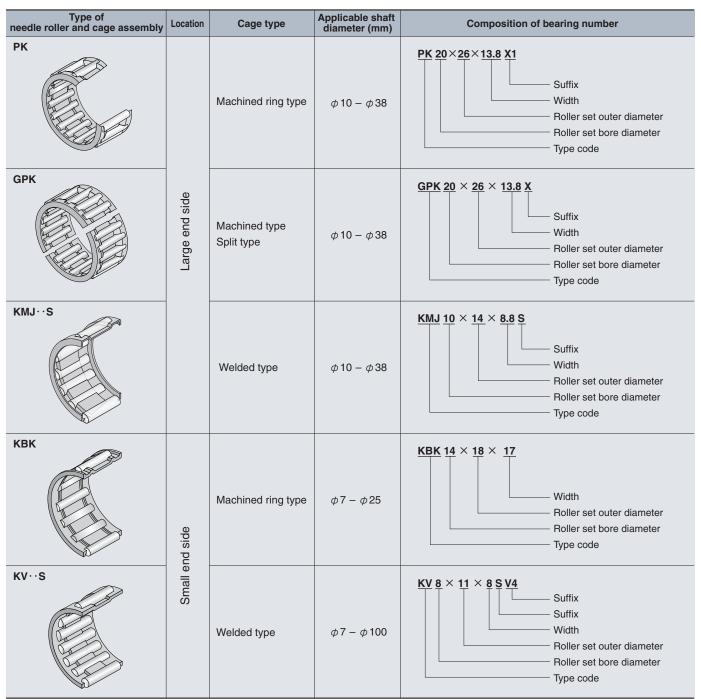

*F*_w 12.700∼63.500mm

Bou	ındary dimensio	ns	dynamic	Basic loa	nd ratings dynamic	static	Limiting	g speeds	Bearing numbers	Mass
	mm			N	-	gf	m	in ⁻¹	numbers	kg
$F_{ m w}$	$E_{ m w}$	B_{c} $-0.35\begin{pmatrix} 0 \\ -0.014 \end{pmatrix}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grease	oil		(approx.)
12.700(½)	15.875(%)	12.70(½)	6 650	8 600	680	875	16 000	24 000	PCJ081008	0.003
19.050(3/4)	25.400(1)	25.40(1)		35 000	2 620	3 550	13 000	20 000	PCJ121616	0.023
			25 700							
22.225(1/8)	28.575(1½)	25.40(1)	29 600	44 000	3 000	4 450	11 000	17 000	PCJ141816	0.028
25.400(1)	33.338(1½) 33.338(1½)	19.05(¾) 25.40(1)	29 200 38 000	38 500 54 000	2 980 3 850	3 950 5 500	10 000	15 000 15 000	PCJ162112 PCJ162116	0.032
28.575(1½)	38.100(1½)	25.40(1)	44 000	59 500	4 450	6 050	9 500	14 000	PCJ182416	0.058
	38.100(1½)	31.75(1¼)	53 500	77 000	5 450	7 850	9 500	14 000	PCJ182420	0.073
	41.275(1%)	19.05(3/4)	35 000	46 000	3 600	4 700	8 500	13 000	PCJ202612	0.045
31.750(11/4)	41.275(1%)	25.40(1)	35 000	46 000	3 600	4 700	8 500	13 000	PCJ202616	0.062
	41.275(1%)	38.10(1½)	65 000	101 000	6 600	10 300	8 500	13 000	PCJ202624	0.096
34.925(1¾)	44.450(1¾)	31.75(1¼)	60 000	94 500	6 150	9 650	7 500	11 000	PCJ222820	0.090
	47.625(1%)	25.40(1)	51 000	78 000	5 200	7 950	6 500	10 000	PCJ243016	0.075
38.100(1½)	47.625(1%)	31.75(11/4)	62 000	101 000	6 300	10 300	6 500	10 000	PCJ243020	0.095
	47.625(1%)	38.10(1½)	72 500	123 000	7 400	12 600	6 500	10 000	PCJ243024	0.114
	53.975(21/8)	25.40(1)	55 500	92 000	5 650	9 400	6 000	9 000	PCJ283416	0.086
44.450(1¾)	53.975(21/8)	31.75(11/4)	68 000	119 000	6 900	12 100	6 000	9 000	PCJ283420	0.110
	53.975(21/8)	38.10(1½)	79 000	145 000	8 050	14 800	6 000	9 000	PCJ283424	0.132
	60.325(23/8)	25.40(1)	58 000	102 000	5 950	10 400	5 000	7 500	PCJ323816	0.094
50.800(2)	60.325(23/8)	31.75(11/4)	71 000	131 000	7 250	13 400	5 000	7 500	PCJ323820	0.120
	60.325(2%)	38.10(1½)	83 000	160 000	8 450	16 300	5 000	7 500	PCJ323824	0.144
52.388(2½6)	61.913(27/6)	25.40(1)	55 000	95 500	5 600	9 750	5 000	7 500	PCJ333916	0.087
E0.07E(01/)	63.500(2½)	25.40(1)	56 500	99 500	5 750	10 200	5 000	7 500	PCJ344016	0.091
53.975(21/8)	63.500(2½)	38.10(1½)	82 000	161 000	8 350	16 400	5 000	7 500	PCJ344024	0.144
57.150(2 ¹ ⁄ ₄)	66.675(25/)	25.40(1)	57 500	104 000	5 900	10 600	4 300	6 500	PCJ364216	0.094
60.325(2¾)	69.850(2 ³ ⁄ ₄)	38.10(1½)	87 500	182 000	8 950	18 500	4 300	6 500	PCJ384424	0.161
63.500(2½)	73.025(27/8)	25.40(1)	61 500	117 000	6 250	11 900	4 000	6 000	PCJ404616	0.105

Fw 63.500~101.600mm

В	oundary dimension	ons		Basic loa	ad ratings		Limiting	speeds	Bearing	Mass
			dynamic	static N	dynamic		mi		numbers	Len
$F_{ m w}$	$rac{mm}{E_{\mathrm{w}}}$	$B_{ m c}$		IN	K	gf	grease	n · oil		kg
		$-0.35 \left(\begin{array}{c} 0 \\ -0.014 \end{array}\right)$	$C_{ m r}$	Cor	C_{r}	$C_{ m or}$				(approx.)
63.500(2½)	73.025(27/8)	38.10(1½)	89 000	189 000	9 100	19 300	4 000	4 000	PCJ404624	0.167
69.850(2¾)	79.375(3½)	25.40(1)	65 000	130 000	6 650	13 200	3 700	5 500	PCJ445016	0.116
76.200(3)	85.725(3%)	25.40(1)	68 500	143 000	7 000	14 600	3 300	5 000	PCJ485416	0.127
	85.725(3%)	38.10(1½)	99 500	231 000	10 100	23 500	3 300	5 000	PCJ485424	0.201
	98.425(3%)	25.40(1)	75 000	169 000	7 650	17 200	2 900	4 400	PCJ566216	0.149
88.900(3½)	101.600(4)	25.40(1)	82 000	154 000	8 350	15 700	2 900	4 400	PCJ566416	0.187
	101.600(4)	38.10(1½)	121 000	253 000	12 300	25 800	2 900	4 400	PCJ566424	0.305
101.600(4)	114.300(4½)	25.40(1)	87 500	176 000	8 950	18 000	2 500	3 800	PCJ647216	0.212
101.000(4)	114.300(4½)	38.10(1½)	129 000	290 000	13 200	29 500	2 500	3 800	PCJ647224	0.345
										l

Needle Roller and Cage Assemblies for connecting rod bearings



Needle Roller and Cage Assemblies for connecting rod bearings

These needle roller and cage assemblies are specially designed so as to be adaptable to the operating environmental conditions for the connecting rods of small and medium reciprocal engines and compressors.

The connecting rods are used under a severe operating condition wherein acting load magnitude and

direction fluctuate rapidly as well as under an high temperature and strict lubrication environment. Therefore, special measures are manly undertaken for the cage structure, material and machining method so that the needle roller and cage assemblies are resistible to the said operating condition and environment.

Data for the GPK, KMJ··S, KV··S types are not included in the dimension table. For detailed information, contact NTN Engineering.

Bearing number	Code items and respective dimensions	Remarks
PK20×26×13.8×1	Roller set bore diameter : ϕ 20 Roller set outer diamete r: ϕ 26 Width : 13.8 X1 : numbered entry	Cage intended to guide outer ring, eventually surface- treated by non-ferrous plating, etc.
GPK20× 26 ×13.8X	Roller set bore diameter : ϕ 20 Roller set outer diameter : ϕ 26 Width :13.8 X : numbered entry	Cage intended to guide outer ring, eventually surface- treated by non-ferrous plating, etc. Can be applied to a crank of integral structure.
KMJ10×14×8.8S	Roller set bore diameter : ϕ 10 Roller set outer diameter : ϕ 14 Width :8.8 S : welded type	Cage intended to guide outer ring, eventually surface- treated by non-ferrous plating, etc.
KBK14×18×17	Roller set bore diameter : ϕ 14 Roller set outer diameter : ϕ 18 Width : 17	Type KBK is intended to guide inner ring, which of the guide surface is designed as long as possible to thereby reduce the surface pressure. In addition, the roller length is so
KV8×11×8SV4	Roller set bore diameter : ϕ 8 Roller set outer diameter : ϕ 11 Width : 8 S : welded type V4 : Special specification	designed as to be maximum against the width of connecting rod, for high load capacity. On the other hand, Type V··S intended for outer ring guide needs a guide along the bore surface of connecting rod.

Radial clearance

Table 1 shows the recommended clearance values though the radial clearance differs depending on bearing clearance, load, revolutions and ambient temperature.

The proper radial clearance can be got by proper selection and combination of roller diameter, connecting rod hole diameter and pin diameter. **Table 2** shows the examples of selection and combination of those.

Table 1 Recommended clearance values

Unit : μ m

	ameter nm incl.	Large end side	Small end side
6	10	9~23	5∼17
10	18	10~24	5∼17
18	30	10~24	5∼17
30	40	18~33	_

Table 2 Radial clearance values obtainable by selection and combination

Case of needle roller and cage assembly Type PK for crank pin Crank pin hole diameter 22mm H6 (0 to +13 μ m)

Crank pin diameter 14mm h5 (0 to -8 μ m)

Unit: μ m

0~+4	+4~+8	+8~+13
-4~-6	-2~-4	0~-2
10~17	10~17	10~18
13~20	13~20	13~21
16~22	16~22	16~23
	-4~-6 10~17 13~20	$-4 \sim -6$ $-2 \sim -4$ $10 \sim 17$ $10 \sim 17$ $13 \sim 20$ $13 \sim 20$

Connecting rod and pin specifications

Connecting rod (bore surface), crank pin and piston pin (outer surface) can be used as direct raceway surface. However, these surfaces must be resistible to great load while maintaining high accuracy. For that, connecting rods and pins acting as the direct raceway surface must comply with the specifications specified hereunder.

Any connecting rods shall be made of cement steel, e.g. chrome molybdenum steel (SCM415, etc.), nickel chrome molybdenum steel (SNCM420, etc.) and any crank pins and piston pins shall also be made of cement steel, e.g. chrome steel (SCr420, etc.), all of which shall be surface-hardened by carburizing.

The surface hardness of each shall range from HRC58 to 64 and adequate depth of effective carburizing-hardened layer shall be secured up to Hv550. The depth of effective carburizing-hardened layer differs depending on actual load and pin diameter.

Feel free to contact **NTN** for the more detailed information.

The respective profile accuracy of connecting rod hole, crank and piston pin outer surfaces shall be as specified in **Table 3**.

Furthermore, the parallelism of crank pin and piston pin shall be 0.02mm or less against 100mm. (**Fig. 1**)

The surface roughness shall be 0.2a for connecting rod and 0.1a for pin outer surface as a guideline.

Table 3 Recommended accuracy of connecting rod and pin

Unit: μ m

						<u> </u>		
Parts	Characteristics	Pin o	Pin diameter classification					
Faits	Characteristics	~14	14~18	18~25	25~30	30~40		
Connecting	Roundness (max)	3	4	4	5	5		
rod	Cylindricality (max)	2	3	3	4	4		
Pin	Roundness (max)	2	2	3	3	4		
1 111	Cylindricality (max)	1	1	2	2	3		

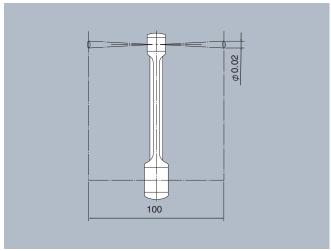


Fig. 1

Regulation to connecting rod

Two methods are available as follows to regulate axial motion of a connecting rod; one method is to make smaller a clearance between the rod and crank web at large end side (Method of regulating at large end side) and another method is to narrow a clearance between the rod and piston boss at the small end side (Method of regulating at small end side).

In general, the method of regulation at large end side is mostly adopted to get accurate motion of a connecting rod

On the other hand, the method of regulation at small end side is adopted when regulation at large end side disables to secure good lubrication to the bearing and the guide surface at large end side due to short connecting rod and comparatively high revolutions.

Regulation at large end side

This method regulates axial motion of a connecting rod by forming a sliding surface between the large end of the connecting rod and the side face of crank web. For the use of this method, however, the connecting rod must be provided, on its bore surface, with oil hole, slot and oil groove to feed lubrication oil in and onto the bearing and guide surface at large end side.

The crank web end face shall be surface-hardened as necessary or otherwise a side washer of copper alloy or hardened steel shall be fitted on the guide surface.

On the other hand, the needle roller and cage assembly at small end side shall be guided in axial direction by the side face of piston boss. A great play shall be secured between the piston boss and the connecting rod.

Regulation at small end side

This method regulates axial motion at the small end face of a connecting rod and the side face of a piston rod. Generally a connecting rod is not provided with oil groove and slot to lubricate the guide surface at small end side, but on occasion it is surface-hardened and uses a side washer.

Usually a connecting rod shall be provided with a through-hole (at its small end side) to lubricate the bearing unit.

On the other hand, at the large end side a free clearance exists between the connecting rod and the crank web and, therefore, generally special measures such as oil groove to lubricate, etc.

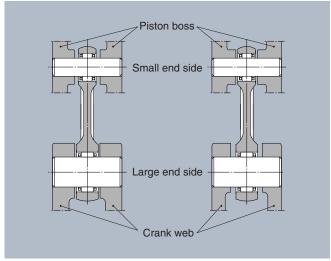
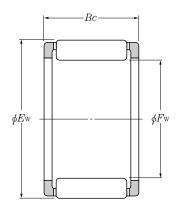
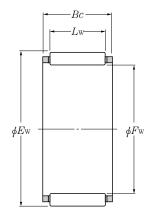



Fig. 2. Regulation at large end side Fig. 3 Regulation at small end side

For crank-pin

Type PK

F_w 10∼28mm

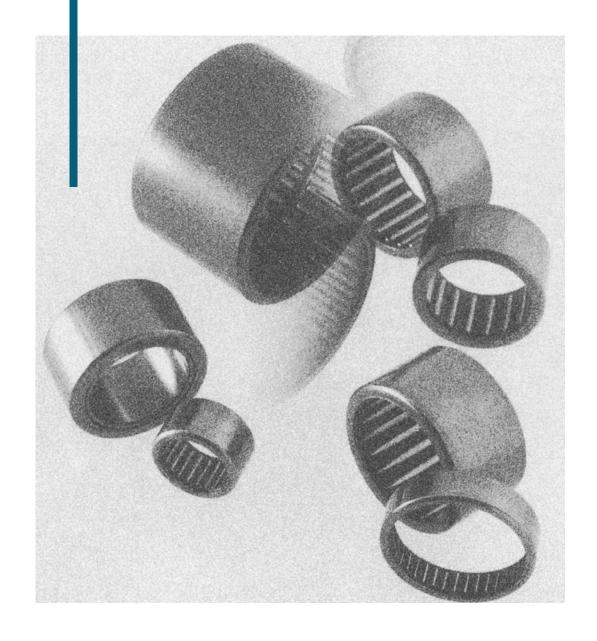

Boundary dimensions				Basic load	d ratings	Bearing numbers	Mass	
	mm		dynamic	static N	dynamic	static kgf		kg
$F_{ m w}$	E_{w}	B_{c}				Kgi		, kg
		-0.2	$C_{ m r}$	Cor	$C_{ m r}$	Cor		(approx.)
10	14	9.8	5 050	4 900	515	500	PK10×14×9.8X14	0.0037
12	16	10	5 450	5 600	555	570	PK12×16×10.2	0.0044
	17	9.8	6 800	6 550	695	670	PK12×17×9.8X15	0.0053
	19	9.7	7 300	7 400	745	755	PK14×19× 9.7X1	0.0065
14	19	11.8	8 200	8 600	840	880	PK14×19×11.8X1	0.0070
	20	11.8	19 100	10 000	1 030	1020	PK14×20×11.8X3	0.0091
15	20	9.8	7 250	7 450	740	760	PK15×20× 9.8X	0.0067
	21	11.8	10 000	10 200	1 020	1 040	PK15×21×11.8X8	0.0095
16	22	11.8	10 000	10 300	1 020	1 050	PK16×22×11.8X2	0.0097
10	22	13.2	10 900	11 500	1 110	1 170	PK16×22×13.2X	0.0110
18	24	11.8	11 300	12 400	1 150	1 260	PK18×24×11.8X3	0.0110
10	24	13.3	13 300	15 300	1 360	1 560	PK18×24×13.3X1	0.0120
19	24	13.9	11 900	15 200	1 220	1 550	PK19×24×13.9X	0.0110
	25	15.8	14 300	17 000	1 460	1 730	PK19×25×15.8X1	0.0150
20	26	13.8	14 000	16 700	1 420	1 700	PK20×26×13.8X6	0.0140
	28	15.8	15 900	20 200	1 620	2 060	PK22×28×15.8X1	0.0170
22	29	17.8	18 800	22 800	1 920	2 320	PK22×29×17.8X7	0.0240
	30	14.7	16 900	18 200	1 720	1 860	PK22×30×14.7X2	0.0240
	30	17.8	21 900	25 400	2 230	2 590	PK22×30×17.8X2	0.0270
24	31	16.8	20 800	26 600	2 120	2 710	PK24×31×16.8X7	0.0240
	32	19.8	22 900	27 500	2 340	2 810	PK24×32×19.8X6	0.0330
	31	13.8	14 200	20 900	1 450	2 130	PK26×31×13.8X31	0.0139
26	32	13.8	16 400	22 200	1 670	2260	PK26×32×13.8X	0.0180
	34	16.8	21 600	26 100	2 200	2 660	PK26×34×16.8X7	0.0320
27	36	20.8	30 500	38 500	3 150	3 950	PK27×36×20.8X1	0.0440
28	35	14	18 400	23 700	1 880	2 420	PK28×35×13.8X1	0.0226
20	36	14	20 600	25 100	2 100	2 560	PK28×36×13.8X4	0.0250

F_w 28∼38mm

Bound	dary dii	mensions	dynamic	Basic load	d ratings dynamic	static	Bearing numbers	Mass
$F_{ m w}$	m m $E_{ m w}$	$B_{ m c}$		N		kgf		kg
1 "	2"	0 -0.2	$C_{ m r}$	Cor	$C_{ m r}$	Cor		(approx.)
28	36	15.8	23 700	30 000	2 410	3 050	PK28×36×15.8X6	0.0310
	37	20.8	32 500	41 500	3 300	4 250	PK28×37×20.8X	0.0480
29	39	21.4	32 500	39 500	3 300	4 000	PK29×39×21.4X2	0.0550
	37	15.9	21 900	30 500	2 230	3 100	PK30×37×15.9X	0.0280
30	38	13.8	21 400	26 900	2 180	2 750	PK30×38×13.8X1	0.0294
30	38	15.8	24 600	32 000	2 510	3 300	PK30×38×15.8X	0.0320
	38	17.8	27 700	37 500	2 820	3 800	PK30×38×17.8X1	0.037
31	41	21.4	34 000	43 000	3 500	4 350	PK31×41×21.4X	0.057
32	43	22.4	40 000	49 500	4 100	5 050	PK32×43×22.4X	0.069
34	42	19.8	31 500	45 500	3 200	4 650	PK34×42×19.8X	0.046
38	47	19.8	35 500	51 000	3 600	5 200	PK38×47×19.8X1	0.056

For piston-pin

Type KBK



Fw 7~22mm

	Boundary dimensions			dynamic	Basic lo static	ad ratings dynamic	static	Bearing numbers	Mass
		mm		_	V	kg			kg
$F_{ m w}$	$E_{ m w}$	Bc 0 −0.2	$L_{ m w}$	$C_{ m r}$	Cor	$C_{ m r}$	Cor		(approx.)
7	10	9.8	6.8	3 050	2 780	310	284	KBK 7×10× 9.8X	0.0022
8	11	11.8	8.8	4 100	4 200	415	430	KBK 8×11×11.8X1	0.0028
9	12	11.5	8.8	4 400	4 750	450	485	KBK9×12×11.7V2	0.0030
	14	9.8	6.8	4 500	4 200	460	430	KBK10×14× 9.8X	0.0042
10	14	12.5	9.8	6 100	6 200	620	635	KBK10×14×12.5X1	0.0053
	14	14.8	9.8	6 100	6 200	620	635	KBK10×14×14.8X	0.0064
	14	13.5	10.8	5 850	7 250	595	740	KBK11×14×13.5X1	0.0044
11	15	12.3	9.8	7 050	7 700	720	785	KBK11×15×12.3X5	0.0049
	15	15.8	11.8	7 050	7 650	720	780	KBK11×15×15.8X2	0.0069
	15	16.4	13.8	7 500	10200	765	1040	KBK12×15×16.6V1	0.0056
	16	14.8	11.8	7 600	8 600	775	875	KBK12×16×14.8X1	0.0062
12	16	15.4	9.8	7 000	7 800	715	795	KBK12×16×15.6	0.0079
	16	15.8	12.8	8 100	9 350	825	955	KBK12×16×16	0.0073
	17	14.8	9.8	8 400	8 550	855	875	KBK12×17×14.8X	0.0094
	18	16.8	13.8	9 750	12 400	995	1 260	KBK14×18×17	0.0089
14	18	19.8	13.8	9 150	11 300	930	1 160	KBK14×18×20	0.0130
	19	17.1	12.8	11 100	12 700	1 130	1 300	KBK14 ×19×17.1X	0.0120
15	19	17.3	13.8	10 900	14 600	1 110	1 490	KBK15×19×17.3X	0.0100
	20	16.8	13.8	10 800	14 700	1 100	1 500	KBK16×20×17	0.0100
16	20	19.6	13.8	10 200	13 600	1 040	1 390	KBK16×20×19.8	0.0130
10	20	23.8	19.8	13 600	19 700	1 390	2 010	KBK16 \times 20 \times 23.8X	0.0150
	21	19.6	15.8	13 900	17 600	1 420	1 790	KBK16×21×19.6X	0.0160
	21	23	15.8	13 200	19 400	1 340	1 980	KBK17×21×23.2	0.0160
17	21	25	17.8	13 100	19 200	1 340	1 960	KBK17 \times 21 \times 25X	0.0170
	22	22	18.8	16 900	22 900	1 720	2 340	KBK17×22×22X1	0.0170
18	22	21.8	15.8	12 500	18 300	1 270	1 870	KBK18×22×21.8X3	0.0150
	22	23.8	17.8	13 000	19 300	1 330	1 970	KBK18×22×23.8X1	0.0160
20	25	27.9	21.8	20 800	31 500	2 120	3 200	KBK20×25×27.9X	0.0270
22	28	29.9	23.8	26 000	38 000	2 650	3 900	KBK22×28×29.9X4	0.038

Drawn Cup Needle Roller Bearings

Drawn Cup Needle Roller Bearings

This bearing type is composed of an outer ring drawn from a thin steel plate by precision drawing, needle rollers and a cage assembled in the outer ring after the raceway surface thereof was hardened (A bearing marked with a suffix including "M" is subjected to heat-treatment after assembly.). Of the bearings with outer ring, this bearing type is a bearing with the smallest section height which enables space-saving and cost-saving.

Usually design is so made as to use a shaft as the direct raceway surface without using inner ring. The outer ring of this bearing type is of such a construction that the needle rollers and the cage are not separated from one another, so that the bearing is only press-fitted in a rigid housing with proper fit torque. Thus, this bearing type needs no snap ring, etc. to fix itself in axial direction and, in addition, is easy to handle.

Type of bea	ring	1	Applicable shaft diameter (mm)	Composition of bearing number	Bearing number	Code items and dimensions	Remarks
HK (HK··T2)		Open end	φ3 – φ50	HK 06 09 T2 Suffix Width Roller set bore diameter Type code [Suffix] T2: Resin cage C: Welding cage	HK0609T2	Roller set bore diameter : \$\phi\$ 6 Width : 9 T2 : Resin cage	The bearings with suffix T2 using polyamide resin cage shall be used at allowable temperature 120°C and, under continuous running, at 100°C and less. A bearing marked with a suffix including "F" is a Premium Shell bearing. For detailed information about Premium Shell bearings, refer to NTN CAT. NO. 3029 (Premium Shell Bearings). A bearing marked with a suffix including "M" is a drawn cup bearing that is heat-treated after assembly ("pre-bent" specification).
HK··L	d series	Open end single side seal	φ12 – φ50	HK 20 18 L / 3AS Suffix Suffix Width Roller set bore diameter Type code	HK2018L/3AS	Roller set bore diameter : ϕ 20 Width : 18 L : single side seal 3AS : grease	This seal type (Tail code: L or LL) synthetic rubber seal built in at its single side or double sides is internally filled with lithium soap base grease. To avoid deterioration of seal and grease, use a bearing in a temperature range of -20 to 120°C.
HK··LL	Standard	Open end double-side seal	φ12 – φ50	HK 20 20 LL / 3AS Suffix Suffix Width Roller set bore diameter Type code	HK2020LL/3AS	Roller set bore diameter : ϕ 20 Width : 20 LL: Double-side seal 3AS : grease	For continuous machine operation, limit the maximum permissible operating temperature to 100°C. The roller length and rated load of this bearing type are shorter and smaller than those of the open type of same dimension.
HK··ZWD	1	Open end double-row type	φ15 – φ30	HK 20 30 ZW D Suffix Suffix Width Roller set bore diameter Type code	HK2030ZWD	Roller set bore diameter: \$\phi\$ 20 Width: 30 ZW: Double-row cage D: Outer ring with oil hole	This type is provided with oil hole on its outer ring.

The lower limit of safety factor S_0 for NTN drawn cup needle roller bearings shall be 3. The lower limit for NTN Premium Shell bearings shall be 2.

Type of bea	aring		Applicable shaft diameter (mm)	Composition of bearing number	Bearing number	Code items and dimensions	Remarks
HMK (HMK··T2)		Open end	φ8 – φ50	HMK 20 15 Width Roller set bore diameter Type code	HMK2015	Roller set bore diameter : ϕ 20 Width : 15	The bearings with suffix T2 using polyamide resin cage shall be used at allowable temperature 120°C and, under continuous running, at 100°C and less.
HMK··L	id series	Open end single side seal	φ8 – φ50	HMK 20 18 L / 3AS Suffix Suffix Width Roller set bore diameter Type code	HMK2018L/3AS	Roller set bore diameter : \$\phi\$20 Width : 18 L : single side seal 3AS : Grease	This seal type (Tail code: L or LL) synthetic rubber seal built in at its single side or double sides is internally filled with lithium soap base grease. To avoid deterioration of seal and grease, use a bearing in a temperature range of -20 to 120°C.
HMK··LL	_	Open end double-side seal	φ8 – φ50	HMK 20 20 LL / 3AS Suffix Suffix Suffix Width Roller set bore diameter Type code	HMK2020LL/3AS	Roller set bore diameter : \$\phi\$20 Width : 20 LL: Double-side seal 3AS : Grease	For continuous machine operation, limit the maximum permissible operating temperature to 100°C. The roller length and rated load of this bearing type are shorter and smaller than those of the open type of same dimension.
HMK··ZWD		Open end double-row type	φ38 – φ50	HMK 38 45 ZW D Suffix Suffix Width Roller set bore diameter Type code	HK3845ZWD	Roller set bore diameter: \$\phi\$ 38 Width: 45 ZW: Double-row cage D: Outer ring with oil hole	This type is provided with oil hole on its outer ring.

Type of bea	ring	l	Applicable shaft diameter (mm)	Composition of bearing number	Bearing number	Code items and dimensions	Remarks
BK (BK··T2)		Closed end	φ3-φ50	BK 20 20 C Suffix Width Roller set bore diameter Type code	BK2020C	Roller set bore diameter : \$\phi\$20 Width : 20 C : Welding cage	The bearings with suffix T2 using polyamide resin cage shall be used at allowable temperature 120°C and, under continuous running, at 100°C and less.
BK··L	Standard series	Closed end single side seal	φ12 – φ50	BK 20 18 L / 3AS Suffix Suffix Width Roller set bore diameter Type code	BK2018L/3AS	Roller set bore diameter : \$\phi\$ 20 Width : 18 L : single side seal 3AS : greas code	This seal type (Tail code: L) is internally filled up with lithium soap base grease. To avoid deterioration of seal and grease, use a bearing in a temperature range of -20 to 120°C. For continuous machine operation, limit the maximum permissible operating temperature to 100°C.
BK··ZWD		Closed end double-row type	φ15 – φ30	BK 20 30 ZW D Suffix Suffix Width Roller set bore diameter Type code	BK2030ZWD	Roller set bore diameter : \$\phi\$ 20 Width : 30 ZW : Double-row cage D : Outer ring with oil hole	Inscribed circle diameter
DCL	Inch series	Open end	φ6.35 – φ50.8	DCL 16 20 Width code Roller set bore diameter code Type code	DCL1620	Roller set bore diameter : \$\phi\$ 25.4 Width : 31.75	
HCK	Bearing series for universal joints	Closed end	φ10 – φ20	HCK 16 22 Vn Suffix Outer diameter Roller set bore diameter Type code	HCK1622Vn	Roller set bore diameter : φ16 Width : φ22 Vn : Special specification	Full complement roller type with no cage. Already filled up with specific grease.

Bearing Fits

It is common that drawn cup needle bearing is press-fitted in a housing by shrinkage fit so post press-fit inscribed circle diameter $(F_{\rm w})$ comes to ISO Tolerance Rang Class F8. The post press-fit inscribed circle diameter $(F_{\rm w})$ depends on the housing material and rigidity. It is therefore desirable to decide the interference based on the data measured in pre-testing.

Where the housing rigidity is adequately high, the post press-fit inscribed circle diameter ($F_{\rm w}$) is secured in nearly F8 range and nearly ordinary radial clearance can be got by adopting the data of bearing fit in housing and on shaft as shown in **Table-1**.

Table 1 Bearing fit in housing and on shaft (recommended)

Bearing type	Hou	sing	Shaft		
bearing type	Iron series	Light alloy	Without inner ring	With inner ring	
HK,BK	N6 (N7)	R6 (R7)	1.5 (1.0)	1.5 (10)	
HMK,DCL	J6 (J7)	M6 (M7)	h5 (h6)	k5 (j6)	
HCK	F7	_	k6		

Accuracy of housing and shaft

Since the outer ring of drawn cup needle roller bearing is thin-walled, the bearing performance is significantly affected by the dimensional accuracy, profile accuracy and bore surface roughness of the housing into which the bearing is press-fitted. Therefore, the housing bore should satisfy the accuracy levels summarized in **Table 2**. For accuracy of a shaft that uses an inner ring, refer to **Table 8.3** in Sec. **8.3** "Accuracy of shaft and housing" (page A-40); for accuracy of a shaft that is directly used as a raceway surface, refer to **Table 8.4** in Sec. **8.4** "Accuracy of raceway surface" (page A-40).

Table 2 Accuracy of housing bore (recommended)

Property	Tolerance
Roundness (Max)	IT4 or less
Cylindricality (Max)	IT4 or less
Surface roughness (Max)	1.6a

Oil hole dimension in outer ring

The outer rings of double-row (Tail code : ZW) needle roller and cage assembly Type HK and Type BK are

provided with an oil hole to facilitate oil lubrication to the bearing. **Table 3** shows the nominal oil hole diameter.

Table 3 Diameter of oil hole in outer ring (Metric system) Unit: mm

	3 ()	/ Unit : mm
Outer ring	diameter	Nominal oil hole
over	incl.	diameter
5	10	1.5
10	20	2.0
20	40	2.5
40	80	3.0
80	200	3.5

Bearing installation

When installing a drawn cup needle roller bearing to a housing, place the jig on the marking side of the bearing, and then press-fit the bearing into the correct location in the housing bore. (A "pre-bent" bearing marked with a suffix including "M" has no directivity for installation.)

Further, hammering directly the bearing ring in installing (press-fitting) is not allowed absolutely. In installing, it is recommended to use a mandrel with O-ring as illustrated in Fig.1 as a press-fitting jig. The use of this mandrel would enable to insert easily any drawn cup needle bearing in a housing without risk of twisting and fall-down.

Drawn cup needle roller bearing needs no a snap ring and a shoulder for positioning itself in a housing, but the bearing must be press-fitted so carefully as not to allow its side face to strike the shoulder for preventing it from deforming, where press-fitted in a housing with shoulder.

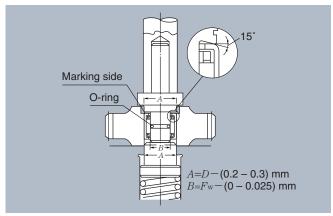


Fig. 1

The Type HCK for application to universal joints is fixed to the joint yoke by caulking, using a special-purposed assembler. Feel free to contact NTN for any inquiry about the special-purposed assembler (IPH Machine).

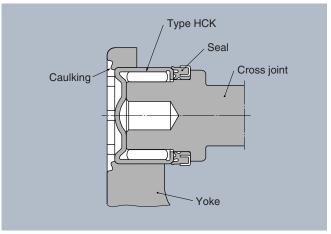


Fig. 2

Bearing Tolerances and Measuring Methods

The outer ring of drawn cup needle roller bearing is so thin-walled that deformation thereof to a certain extent is unavoidable in the manufacturing processes, particularly in the heat-treating process. However, the outer ring is so designed that it is reformed normally from such deformation when being press-fitted in a housing with specific dimensional accuracy and, as a result, it can have the accuracy required to fulfill its specific function.

Table 4 Dimensional tolerance for inscribed circle diameter (Type HK and BK)

Unit: mm

	O				
	Nominal inscribed circle dia.	Nominal outer ring outer dia.	Ring gauge bore dia.	Tolera inscribed cir	nce for cle diameter
	$F_{ m W}$	D		High	Low
	3	6.5	6.484	3.016	3.006
	4	8	7.984	4.022	4.010
	5	9	8.984	5.022	5.010
	6	10	9.984	6.022	6.010
	7	11	10.980	7.028	7.013
	8	12	11.980	8.028	8.013
	9	13	12.980	9.028	9.013
	10	14	13.980	10.028	10.013
	12	16	15.980	12.034	12.016
	12	18	17.980	12.034	12.016
	13	19	18.976	13.034	13.016
	14	20	19.976	14.034	14.016
	15	21	20.976	15.034	15.016
	16	22	21.976	16.034	16.016
	17	23	22.976	17.034	17.016
	18	24	23.976	18.034	18.016
	20	26	25.976	20.041	20.020
	22	28	27.976	22.041	22.020
	25	32	31.972	25.041	25.020
	28	35	34.972	28.041	28.020
	30	37	36.972	30.041	30.020
	35	42	41.972	35.050	35.025
	40	47	46.972	40.050	40.025
	45	52	51.967	45.050	45.025
	50	58	57.967	50.050	50.025
	50	50	37.307	50.000	00.020

Table 5 Dimensional tolerance for inscribed circle diameter (Type HMK)

Unit : mm

Nominal inscribed circle dia.	Nominal outer ring outer dia.	Ring gauge bore dia.		nce for cle diameter
$F_{ m W}$	D D	2010 0.0.	High	Low
8	15	14.995	8.028	8.013
9	16	15.995	9.028	9.013
10	17	16.995	10.028	10.013
12	19	18.995	12.034	12.016
14	22	21.995	14.034	14.016
15	22	21.995	15.034	15.016
16	24	23.995	16.034	16.016
17	24	23.995	17.034	17.016
18	25	24.995	18.034	18.016
19	27	26.995	19.041	19.020
20	27	26.995	20.041	20.020
21	29	28.995	21.041	21.020
22	29	28.995	22.041	22.020
24	31	30.994	24.041	24.020
25	33	32.994	25.041	25.020
26	34	33.994	26.041	26.020
28	37	36.994	28.041	28.020
29	38	37.994	29.041	29.020
30	40	39.994	30.041	30.020
32	42	41.994	32.050	32.025
35	45	44.994	35.050	35.025
37	47	46.994	37.050	37.025
38	48	47.994	38.050	38.025
40	50	49.994	40.050	40.025
45	55	54.994	45.050	45.025
50	62	61.994	50.050	50.025

Hence, it is meaningless to measure the dimensional accuracy of bearing itself before being press-fitted. So, the following measuring method is used; a bearing to be measured is press-fitted in a linkage of specific dimension (20mm or more in wall thickness) and thereafter the inscribed circle diameter $(F_{\rm w})$ is measured using a plug gauge or a taper gauge to evaluate the bearing accuracy.

Tables 4 to **7** show the dimensional tolerances for the bore diameter of each ring gauge and the roller set bore diameter (F_w) each of standard metric series drawn cup needle roller bearings Type HK and BK, heavy load series Type HMK (metric series), inch series Type DCL, and inch series HCK for application to universal joints.

When measuring the roller set bore diameter $(F_{\rm w})$ of a drawn cup needle roller bearing, the GO side dimension shall be the lower limit of dimensional tolerance of the roller set bore diameter; and the NOT GO side dimension shall be a sum of the upper limit of dimensional tolerance of the roller set bore diameter and $2\,\mu\,\rm m$.

When measuring the roller set bore diameter of a drawn cup needle roller bearing, do not repeat insertion/removal with the ring gage. Also, do not install a bearing, which has been press-fitted into the ring gage for inspection, to an actual machine product.

Table 6 Dimensional tolerance for inscribed circle diameter (Type DCL)

Unit : mm

(туре	DOL)			OTHL: IIIII
Nominal inscribed circle dia.	Nominal outer ring outer dia.	Ring gauge bore dia.		nce for cle diameter
$F_{ m W}$	D		High	Low
6.350	11.112	11.125	6.411	6.388
7.938	12.700	12.713	7.998	7.976
9.525	14.288	14.300	9.586	9.563
11.112	15.875	15.888	11.173	11.151
12.700	17.462	17.475	12.761	12.738
14.288	19.050	19.063	14.348	14.326
15.875	20.638	20.650	15.936	15.913
17.462	22.225	22.238	17.523	17.501
19.050	25.400	25.387	19.086	19.063
20.638	26.988	26.975	20.673	20.650
22.225	28.575	28.562	22.261	22.238
23.812	30.162	30.150	23.848	23.825
25.400	31.750	31.737	25.436	25.413
26.988	33.338	33.325	27.023	27.000
28.575	34.925	34.912	28.611	28.588
30.162	38.100	38.087	30.198	30.175
31.750	38.100	38.087	31.786	31.763
34.925	41.275	41.262	34.963	34.938
38.100	47.625	47.612	38.141	38.113
41.275	50.800	50.787	41.316	41.288
44.450	53.975	53.962	44.493	44.463
47.625	57.150	57.137	47.668	47.638
50.800	60.325	60.312	50.846	50.815

Table 7 Dimensional tolerance for inscribed circle diameter (Type HCK)

Unit: mm

Nominal inscribed circle dia.	Nominal outer ring outer dia.	Ring gauge bore dia.		nce for cle diameter
$F_{ m W}$	D		High	Low
10	15	15.016	10.026	10.011
11.656	17.1	17.116	11.687	11.669
13	19	19.020	13.031	13.013
14	20	20.020	14.031	14.013
16	22	22.020	16.031	16.013
18	24	24.020	18.031	18.013
18	24.6	24.620	18.031	18.013
20	27.9	27.920	20.038	20.017

Calculation Examples

Shrinkage factor and post-installation clearance of drawn cup needle roller bearing

The recommended fit data for the standard bearings is as described in **Table 1** on page B-35. This paragraph describes hereunder the calculation methods to be used when the bearing fit conditions are reviewed in detail.

1) Calculation of bearing shrinkage factor

For the drawn cup bearings, the shrinkage factor is calculated using the following method.

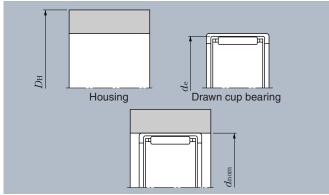


Fig. 3

$$\lambda = \frac{2t}{E_2} \cdot \frac{1 - S^2}{\underbrace{(0.7S^2 + 1.3) (1 - t^2)}_{E_1} + \underbrace{(0.7 + 1.3t^2) (1 - S^2)}_{E_2}} \cdots$$
 (1)

Where,

 λ : Outer ring shrinkage factor

 D_H : Housing outer diameter mm

 $d_{
m nom}$: Nominal diameter of fitting portion $\,\,\,$ mm

 l_e : Rolling surface diameter of outer ring $\,$ mm

 E_1 : Modulus of housing vertical elasticity

(Young's modulus) MPa (kgf/mm²)

 \mathbb{E}_2 : Modulus of outer ring vertical elasticity

(Young's modulus)

2.07×106MPa (21 200kgf/mm2)

$$S = \frac{d_{\text{nom}}}{D_H}$$

$$t = \frac{de}{dnom}$$

2) Inscribed circle diameter after complete bearing fit in the housing on actual machine

[1] Inscribed circle diameter in press-fitting of master ring

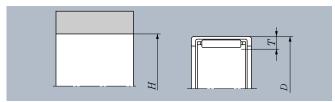


Fig. 4

H: Housing inner diameter mm

T : Roller diameter + plate thickness mm

D : Outer diameter of drawn cup needle roller bearing mm

 L_i : Post press-fit inscribed circle diameter mm

When the master ring is press-fitted, the dimension of "roller diameter + plate thickness" remains unchanged. Hence, the inscribed circle diameter L_i is determined by the following **formula**.

$$L_i = D - 2T - \lambda (D - H) = (1 - \lambda)D - 2T + \lambda H \cdots (2)$$

Determine the mean value of "roller diameter + plate thickness" (=T) and standard deviation from **formula (2)**. The mean value of **formula (2)** is determined as follows.

$$m_{Li} = (1 - \lambda) m_D - m_{2T} + \lambda m_H$$
(3)

Standard deviation of formula (2)

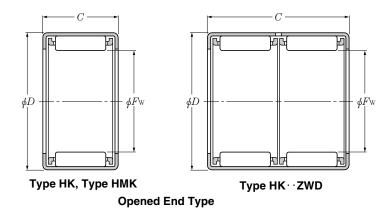
$$\sigma_{Li2} = (1 - \lambda)_2 \cdot \sigma_{D2} + \sigma_{2T2} + \lambda_2 \sigma_{H2}$$
(4)

In the case of master ring, due to σ H2=0 the **formula** (4) is expressed as follows.

$$\sigma_{Li2} = (1 - \lambda)_2 \cdot \sigma_{D2} + \sigma_{2T2}$$
(5)

The unknown values in **formulas (3)**, **(5)** are only m_{2T} and σ_{2T}^2 . Hence, substitute the known numerical values for **formulas (3)**, **(5)** to determine m_{2T} and σ_{2T}^2 .

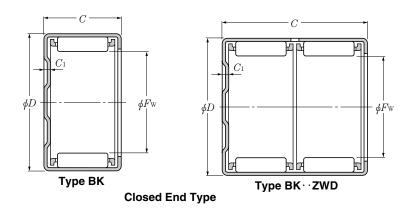
[2] Even when bearing ring is press-fitted in the housing on actual machine, consider the inscribed circle diameter similarly to the master ring press-fit. Herein, the calculation formulas for press-fit in the housing on actual machine can be discriminated as follows from **formula (3)**, **(4)** by adding " ' " to each formula.

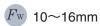

$$m_{Li}' = (1 - \lambda') m_D - m_{2T} + \lambda' m_{H}'$$
(6)
 $\sigma_{Li}'_2 = (1 - \lambda')_2 \cdot \sigma_{D2} + \sigma_{2T2} + \lambda'_2 \sigma_{H2}'$ (7)

- [3] For m_{2T} and σ_{2T}^2 in **formula (6), (7)**, substitute the values determined previously for the respective formula.
- [4] From the calculations, the inscribed circle diameter in press-fitting in the housing on actual machine can be expressed in the following **formula**

$$L_i'=m_{Li}'\pm 3 \sigma_{Li}'\cdots (8)$$

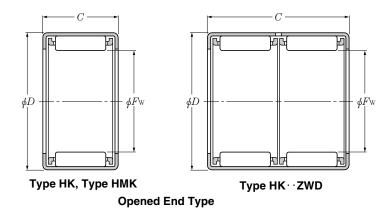
- [5] Radial internal clearance can be determined considering the mean value and standard deviation of shaft in **formulas (6)**, **(7)**.
- [6] The aiming radial internal clearance value is generally set up so an ordinary clearance can be got. However, the recommended clearance values are available every the individual portions in the case of bearing application to automobile. Feel free to contact NTN for the detail.


Type HK, Type HK ⋅ · ZWD Type HMK Type BK, Type BK ⋅ ⋅ ZWD



Boui	Boundary dimensions		nsions	Ва	sic load	ratings		Limiting	speeds	Bearing n	umbers	Mass	Appropriate ¹⁾
	mı			dynamic		dynamic			1			l.a.	inner ring
$F_{ m w}$	D		C_1	ľ	N	kg	JI	mii grease	oil	open end	closed end	kg	
		<i>C</i> 0 -0.2	max	C_{r}	Cor	$C_{\rm r}$	Cor			design	design	(approx.)	(as a reference)
3	6.5	6	_	925	565	94	58	33 000	50 000	HK0306FT2	_	0.0006	_
	6.5	6	0.8	925	565	94	58	33 000	50 000	_	BK0306T2	0.0007	_
4	8	8	_	1 770	1 270	180	129	30 000	45 000	HK0408FT2	_	0.0016	_
	8	8	1.6	1 770	1 270	180	129	30 000	45 000	_	BK0408T2	0.0018	_
5	9	9	_	2 450	1 990	349	203	27 000	40 000	HK0509FM	_	0.0019	_
	9	9	1.6	2 640	2 190	269	224	27 000	40 000	_	BK0509T2	0.0021	
6	10	9	_	2 920	2 590	298	264	25 000	37 000	HK0609FM	_	0.0022	_
	10	9	1.6	2 660	2 280	272	233	25 000	37 000	_	BK0609T2	0.0024	<u> </u>
7	11	9	_	3 150	2 930	320	299	23 000	34 000	HK0709FM	_	0.0025	_
	11	9	1.6	3 150	2 930	320	299	23 000	34 000	_	BK0709CT	0.0027	_
	12	10	_	3 850	3 950	395	400	20 000	30 000	HK0810FM	_	0.0032	IR $5 \times 8 \times 12$
	12	10	1.6	3 850	3 950	395	400	20 000	30 000	_	BK0810CT	0.0034	IR 5× 8×12
8	15	10	-	4 200	3 300	430	335	20 000	30 000	HMK0810C	_	0.0067	IR 5× 8×12
	15	15	_	6 600	5 800	675	590	20 000	30 000	HMK0815	_	0.0100	IR 5× 8×16
	15	20	_	9 050	8 750	925	890	20 000	30 000	HMK0820T2		0.0130	_
	13	10	_	4 300	4 650	440	475	18 000	27 000	HK0910FM	_	0.0035	IR $6 \times 9 \times 12$
	13	10	1.6	4 750	5 300	485	540	18 000	27 000	_	BK0910	0.0039	IR $6 \times 9 \times 12$
9	13	12	_	5 400	6 250	550	640	18 000	27 000	HK0912F	_	0.0042	IR $6 \times 9 \times 12$
Ū	13	12	1.6	5 650	6 650	575	680	18 000	27 000	_	BK0912	0.0045	IR $6 \times 9 \times 12$
	16	12	_	5 300	4 450	540	455	18 000	27 000	HMK0912	_	0.0087	IR $6 \times 9 \times 16$
	16	16	—	7 400	6 850	755	700	18 000	27 000	HMK0916	_	0.0120	_
	14	10	_	4 500	5 100	460	520	16 000	24 000	HK1010FM	_	0.0038	IR 7×10×10.5
	14	10	1.6	4 500	5 100	460	520	16 000	24 000	_	BK1010	0.0042	IR 7×10×10.5
	14	12	_	5 650	6 800	575	695	16 000	24 000	HK1012F	_	0.0045	IR $7\times10\times16$
10	14	12	1.6	5 900	7 250	605	735	16 000	24 000	_	BK1012	0.0050	IR 7×10×16
10	14	15	_	7 250	9 400	740	955	16 000	24 000	HK1015F	_	0.0056	IR 7×10×16
	14	15	1.6	7 100	9 150	725	935	16 000	24 000	_	BK1015	0.0062	IR $7 \times 10 \times 16$
	17	10	_	4 250	3 450	435	350	16 000	24 000	HMK1010	_	0.0079	IR 7×10×10.5
	17	12	_	5 600	4 850	570	495	16 000	24 000	HMK1012	_	0.0094	IR 7×10×16

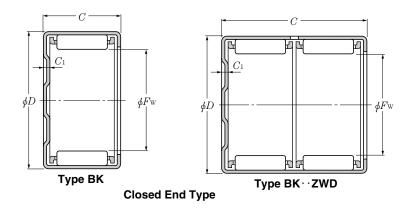
Note 1) Bearing with inner ring is represented by HK+IR. (Refer to "Inner Ring Dimensions Table" on page B-129.) EX. HK1012 + IR7×10×16

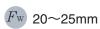


Bour	oundary dimensions		sions	B dynamic	asic load static		c static	Limiting	speeds	Bearing numbers		Mass	Appropriate ¹⁾ inner ring
	n	nm			N	•	gf	mir	n ⁻¹			kg	illier ring
$F_{ m w}$	D	C 0 -0.2	$egin{array}{c} C_1 \\ max \end{array}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grease	oil	open end design	closed end design	(approx.)	(as a reference)
	17	15		7 400	6 950	755	710	16 000	24 000	HMK1015	_	0.0120	IR 7×10×16
10	17	20	_	10 200	10 500		1 070	16 000	24 000	HMK1020	_	0.0160	_
	16	10	_	5 050	6 250	515	635	13 000	20 000	HK1210FM	_	0.0046	IR 8×12×10.5
	16	10	1.6	5 050	6 250	515	635	13 000	20 000	_	BK1210	0.0052	IR $8\times12\times10.5$
	18	12	_	6 600	7 300	675	745	13 000	20 000	HK1212FM	_	0.0091	IR 8×12×12.5
12	18	12	2.7	6 600	7 300	675	745	13 000	20 000	_	BK1212	0.0100	IR 8×12×12.5
12	19	12	_	7 100	6 900	725	705	13 000	20 000	HMK1212	_	0.0110	IR 8×12×12.5
	19	15	_	9 400	9 900	955	1 010	13 000	20 000	HMK1215	_	0.0140	IR 9×12×16
	19	20	_	12 300	14 000	1 260	1 430	13 000	20 000	HMK1220	_	0.0180	_
	19	25	_	15 300	18 600	1 560	1 890	13 000	20 000	HMK1225	_	0.0230	_
40	19	12	_	6 950	7 900	705	805	12 000	18 000	HK1312FM	_	0.0100	IR10×13×12.5
13	19	12	2.7	6 950	7 900	705	805	12 000	18 000	_	BK1312	0.0110	IR10×13×12.5
	20	12	_	7 200	8 500	735	865	11 000	17 000	HK1412FM	_	0.0110	IR10×14×13
	20	12	2.7	7 200	8 500	735	865	11 000	17 000	_	BK1412	0.0120	$IR10\times14\times13$
14	20	16	_	10 300	13 400	1 050	1 370	11 000	17 000	HK1416F	_	0.0150	_
14	20	16	2.7	10 700	14 000	1 090	1 430	11 000	17 000	_	BK1416	0.0160	_
	22	16	-	11 500	12 000	1 180	1 220	11 000	17 000	HMK1416C	_	0.0190	$IR10\times14\times20$
	22	20	_	14 600	16 200	1 490	1 650	11 000	17 000	HMK1420C	_	0.0240	_
	21	12	_	7 500	9 100	765	930	11 000	16 000	HK1512FM	_	0.0110	IR12×15×12.5
	21	12	2.7	7 500	9 100	765	930	11 000	16 000	_	BK1512	0.0130	IR12×15×12.5
	21	16	_	10 700	14 400	1 090	1 470	11 000	16 000	HK1516F	_	0.0150	IR12×15×16.5
	21	16	2.7	10 700	14 400	1 090	1 470	11 000	16 000	_	BK1516	0.0170	IR12×15×16.5
	21	22	-	12 900	18 200	1 310	1 860	11 000	16 000	HK1522ZWFD	_	0.0200	IR12×15×22.5
15	21	22	2.7	12 900	18 200	1 310	1 860	11 000	16 000	_	BK1522ZWD	0.0220	$IR12\times15\times22.5$
	22	10	_	6 100	6 000	620	610	11 000	16 000	HMK1510	_	0.0110	IR10×15×12.5
	22	12	_	7 950	8 450	810	860	11 000	16 000	HMK1512	_	0.0130	IR12×15×12.5
	22	15	_	10 500	12 100	1 070	1 240	11 000	16 000	HMK1515C	_	0.0160	$IR12\times15\times16$
	22	20	_	14 900	18 900	1 510	1 920	11 000	16 000	HMK1520	_	0.0220	IR12×15×22.5
	22	25	_	18 500	25 000	1 880	2 550	11 000	16 000	HMK1525		0.0270	
16	22	12	$-\mid$	7 750	9 700	795	990		15 000	HK1612FM	_	0.0120	IR12×16×13

Note 1) Bearing with inner ring is represented by HK+IR. (Refer to "Inner Ring Dimensions Table" on page B-129, B130.) EX. HK1312FM + IR10×13×12.5

Type HK, Type HK ⋅ · ZWD Type HMK Type BK, Type BK ⋅ · ZWD

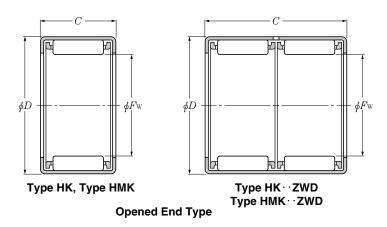




Fw 16~20mm

Bou	ndary	dimer	nsions		asic load		4-4:-	Limiting	speeds	Bearing n	umbers	Mass	Appropriate ¹⁾
	n	nm		dynamic	static N	•	static gf	mir	า ⁻¹			kg	inner ring
$F_{ m w}$	D	C 0 -0.2	$\overset{C_1}{max}$	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$	grease	oil	open end design	closed end design	(approx.)	(as a reference)
	22	12	2.7	7 750	9 700	795	990	10 000	15 000	_	BK1612	0.014	IR12×16×13
	22	16	_	11 100	15 300	1 130	1 560	10 000	15 000	HK1616F	_	0.016	IR12×16×20
	22	16	2.7	11 100	15 300	1 130	1 560	10 000	15 000	_	BK1616	0.018	IR12×16×20
16	22	22	_	13 300	19 400	1 360	1 980	10 000	15 000	HK1622ZWFD	_	0.022	_
	22	22	2.7	13 300	19 400	1 360	1 980	10 000	15 000	_	BK1622ZWD	0.023	_
	24	16	_	12 400	13 500	1 260	1 370	10 000	15 000	HMK1616	_	0.021	$IR12\times16\times20$
	24	20	—	15 600	18 200	1 590	1 860	10 000	15 000	HMK1620CT	_	0.027	IR12×16×22
	23	12	_	8 050	10 300	820	1 050	9 500	14 000	HK1712FM	_	0.012	_
	23	12	2.7	8 500	11 100	865	1 130	9 500	14 000	_	BK1712	0.015	_
17	24	15	_	12 100	15 000	1 230	1 530	9 500	14 000	HMK1715	_	0.018	IR14×17×17
	24	20	_	15 200	20 000	1 540	2 040	9 500	14 000	HMK1720CT	_	0.024	IR12×17×20.5
	24	25	_	19 3000	26 700	1 930	2 720	9 500	14 000	7E-HMK1725CT	· —	0.030	IR12×17×25.5
	24	12	_	8 300	10 900	845	1 110	8 500	13 000	HK1812FM	_	0.013	IR15×18×12.5
	24	12	2.7	8 300	10 900	845	1 110	8 500	13 000	_	BK1812	0.015	IR15×18×12.5
	24	16	_	11 800	17 300	1 210	1 760	8 500	13 000	HK1816F	_	0.018	IR15×18×16.5
	24	16	2.7	11 800	17 300	1 210	1 760	8 500	13 000	_	BK1816	0.020	IR15×18×16.5
18	25	13	_	10 200	12 200	1 040	1 240	8 500	13 000	HMK1813	_	0.016	IR15×18×16
10	25	15	_	12 000	15 100	1 220	1 540	8 500	13 000	HMK1815	_	0.019	IR15×18×16
	25	17	—	13 300	17 200	1 360	1 760	8 500	13 000	HMK1817C	_	0.021	IR15×18×17.5
	25	19	_	15 500	20 900	1 580	2 130	8 500	13 000	HMK1819	_	0.024	IR15×18×20.5
	25	20	_	16 300	22 300	1 660	2 280	8 500	13 000	HMK1820	_	0.025	IR15×18×20.5
	25	25	_	20 300	29 600	2 070	3 000	8 500	13 000	HMK1825	_	0.031	IR15×18×25.5
19	27	16	_	13 900	16 300	1 410	1 660	8 500	13 000	HMK1916	_	0.025	IR15×19×20
19	27	20	_	17 500	22 100	1 790	2 250	8 500	13 000	HMK1920	_	0.031	_
	26	12	_	8 750	12 100	895	1240	8 000	12 000	HK2012FM	_	0.014	IR15×20×13
	26	12	2.7	9 250	13 000	945	1330	8 000	12 000	_	BK2012	0.017	IR15×20×13
20	26	16	_	12 500	19 200	1 280	1 960	8 000	12 000	HK2016F	_	0.019	IR17×20×16.5
20	26	16	2.7	13 000	20 100	1 320	2 050	8 000	12 000	_	BK2016	0.022	IR17×20×16.5
	26	20	—	16 000	26 200	1 630	2 670	8 000	12 000	HK2020F	_	0.024	IR17×20×20.5
	26	20	2.7	16 400	27 100	1 670	2 760	8 000	12 000	_	BK2020	0.027	IR17×20×20.5
				١ .				l				I	

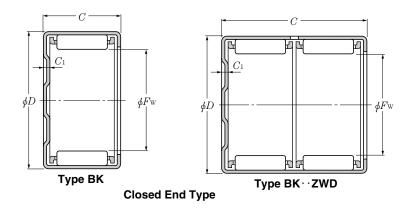
Note 1) Bearing with inner ring is represented by HK+IR. (Refer to "Inner Ring Dimensions Table" on page B-130, B131.) EX. HK1812FM + IR15×18×12.5

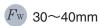


Bou	ndary	dimer	nsions	B dynamic	asic load static		c static	Limiting	speeds	Bearing n	umbers	Mass	Appropriate ¹⁾ inner ring
	n	nm			N		gf	mir	n-1			kg	initer ring
$F_{ m w}$	D	C 0 -0.2	C_1 max	$C_{ m r}$	Cor	$C_{ m r}$	Cor	grease	oil	open end design	closed end design	(approx.)	(as a reference)
	26	30	_	21 500	38 500	2 190	3 900	8 000	12 000	HK2030ZWFD	_	0.035	IR17×20×30.5
	26	30	2.7	22 200	40 000	2 270	4 100	8 000	12 000	_	BK2030ZWD	0.037	IR17×20×30.5
20	27	15	_	13 000	17 300	1 330	1 760	8 000	12 000	HMK2015	_	0.021	IR17×20×16.5
20	27	20	_	17 700	25 600	1 800	2 610	8 000	12 000	HMK2020	_	0.027	IR17×20×20.5
	27	25	_	22 000	34 000	2 240	3 450	8 000	12 000	HMK2025	_	0.034	IR15×20×26
	27	30	_	26 100	42 000	2 660	4 300	8 000	12 000	HMK2030	_	0.041	IR17×20×30.5
21	29	16	_	15 300	19 100	1 560	1 940	7 500	11 000	HMK2116	_	0.027	IR17×21×20
21	29	20	_	19 400	25 800	1 970	2 630	7 500	11 000	HMK2120	_	0.033	_
	28	12	_	9 200	13 400	940	1 360	7 500	11 000	HK2212FM	_	0.013	IR17×22×13
	28	12	2.7	9 750	14 300	995	1 460	7 500	11 000	_	BK2212	0.015	IR17×22×13
	28	16	_	13 200	21 100	1 340	2 150	7 500	11 000	HK2216F	_	0.021	$IR17 \times 22 \times 18$
	28	16	2.7	13 600	22 100	1 390	2 250	7 500	11 000	_	BK2216	0.024	IR17×22×18
	28	20	_	16 800	28 800	1 710	2 940	7 500	11 000	HK2220F	_	0.026	IR17×22×20.5
22	28	20	2.7	17 200	29 800	1 760	3 050	7 500	11 000	_	BK2220	0.030	IR17×22×20.5
	29	10	_	8 400	10 100	855	1 030	7 500	11 000	HMK2210	_	0.015	IR17×22×13
	29	15	_	13 400	18 500	1 370	1 890	7 500	11 000	HMK2215	_	0.022	$IR17 \times 22 \times 16D$
	29	20	_	18 200	27 400	1 860	2 790	7 500	11 000	HMK2220	_	0.030	IR17×22×20.5
	29	25	_	23 600	38 500	2 410	3 900	7 500	11 000	HMK2225	_	0.037	IR17×22×26
	29	30	_	26 900	45 000	2 740	4 600	7 500	11 000	HMK2230	_	0.045	IR17×22×32
24	31	20	_	18 300	28 200	1 860	2 880	6 500	10 000	HMK2420CT	_	0.032	_
24	31	28	_	26 000	44 500	2 650	4 500	6 500	10 000	HMK2428	_	0.045	IR20×24×28.5
	32	12	_	11 100	15 200	1 140	1 550	6 500	9 500	HK2512F	_	0.021	IR20×25×12.5
	32	12	2.7	11 800	16 300	1 200	1 660	6 500	9 500	_	BK2512	0.023	IR20×25×12.5
	32	16	_	15 900	24 000	1 620	2 450	6 500	9 500	HK2516F	_	0.027	IR20×25×17
	32	16	2.7	15 900	24 000	1 620	2 450	6 500	9 500	_	BK2516	0.031	IR20×25×17
25	32	20	_	20 300	33 000	2 070	3 350	6 500	9 500	HK2520	_	0.034	IR20×25×20.5
	32	20	2.7	20 300	33 000	2 070	3 350	6 500	9 500	_	BK2520	0.039	IR20×25×20.5
	32	26	_	26 400	46 000	2 690	4 700	6 500	9 500	HK2526	_	0.045	IR20×25×26.5
	32	26	2.7	26 400	46 000	2 690	4 700	6 500	9 500	_	BK2526	0.049	IR20×25×26.5
	32	38	-	35 000	65 500	3 550	6 700	6 500	9 500	HK2538ZWD	_	0.065	IR20×25×38.5
Note 1	\ Doori	ag with		oa io roproo	الليانية المعمومة	LID (Dof	orto Ilano	l r Dina Dimon	oiono Toblo!	l on nome D 101 D	100 \	1	

Note 1) Bearing with inner ring is represented by HK+IR. (Refer to "Inner Ring Dimensions Table" on page B-131, B132.) EX. HK2512F + IR20×25×12.5

Type HK, Type HK ⋅ · ZWD Type HMK, Type HMK ⋅ · ZWD Type BK, Type BK ⋅ ⋅ ZWD

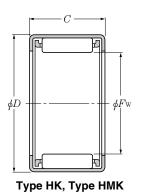


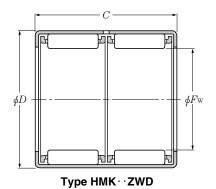


Fw 25∼30mm

В	oun	dary	dimen	sions	B dynamic	asic load static		c static	Limiting	speeds	Bearing n	umbers	Mass	Appropriate ¹⁾ inner ring
		m	ım		•	N	•	gf	min	-1			kg	9
	$F_{ m w}$	D	C 0 -0.2	$\overset{C_1}{max}$	$C_{ m r}$	Cor	C_{r}	Cor	grease	oil	open end design	closed end design	(approx.)	(as a reference)
		32	38	2.7	35 000	65 500	3 550	6 700	6 500	9 500	_	BK2538ZWD	0.069	IR20×25×38.5
		33	10	_	9 150	10 400	935	1 060	6 500	9 500	HMK2510	_	0.019	IR20×25×12.5
,		33	15	_	15 200	19 900	1 550	2 030	6 500	9 500	HMK2515CT	_	0.029	$IR20\times25\times16$
4	25	33	20	_	21 800	31 500	2 220	3 200	6 500	9 500	HMK2520	_	0.039	IR20×25×20.5
		33	25	_	26 700	41 000	2 720	4 200	6 500	9 500	HMK2525	_	0.048	IR20×25×26.5
		33	30	_	32 500	53 000	3 300	5 400	6 500	9 500	HMK2530	_	0.058	$IR20{\times}25{\times}32$
_		34	16	_	17 100	23 400	1 740	2 390	6 000	9 000	HMK2616	_	0.032	IR22×26×20
_	26	34	20	_	21 100	30 500	2 150	3 150	6 000	9 000	7E-HMK2620CT	_	0.040	_
		35	16	_	16 700	26 400	1 700	2 690	5 500	8 500	HK2816C	_	0.030	IR22×28×17
		35	16	2.7	17 300	27 600	1 760	2 820	5 500	8 500	_	BK2816	0.034	IR22×28×17
,	8	35	20	_	21 300	36 000	2 170	3 700	5 500	8 500	HK2820	_	0.038	$IR22{\times}28{\times}20.5$
_	.0	35	20	2.7	21 300	36 000	2 170	3 700	5 500	8 500	_	BK2820	0.043	IR22×28×20.5
		37	20	_	23 600	32 500	2 410	3 350	5 500	8 500	HMK2820	_	0.049	$IR22{\times}28{\times}20.5$
		37	30	_	35 000	54 500	3 600	5 550	5 500	8 500	HMK2830	_	0.073	
	9	38	20	_	24 600	35 000	2 510	3 550	5 500	8 500	HMK2920	_	0.050	_
_	.ฮ	38	30	_	34 500	54 000	3 550	5 550	5 500	8 500	HMK2930	_	0.075	
		37	12	_	13 000	19 500	1 320	1 990	5 500	8 000	HK3012	_	0.024	IR25×30×12.5
		37	12	2.7	13 000	19 500	1 320	1 990	5 500	8 000	_	BK3012	0.028	IR25 \times 30 \times 12.5
		37	16	_	18 100	30 000	1 850	3 050	5 500	8 000	HK3016	_	0.032	$IR25 \times 30 \times 17$
		37	16	2.7	18 100	30 000	1 850	3 050	5 500	8 000	_	BK3016	0.037	$IR25\times30\times17$
		37	20	_	22 300	39 500	2 280	4 000	5 500	8 000	HK3020F	_	0.040	$IR25{\times}30{\times}20.5$
		37	20	2.7	22 300	39 500	2 280	4 000	5 500	8 000	_	BK3020	0.047	$IR25\times30\times20.5$
	0	37	26	_	28 500	54 000	2 910	5 500	5 500	8 000	HK3026F	_	0.053	$IR25\times30\times26.5$
		37	26	2.7	28 500	54 000	2 910	5 500	5 500	8 000	_	BK3026	0.059	$IR25\times30\times26.5$
		37	38	_	38 500	78 500	3 900	8 000	5 500	8 000	HK3038ZWD	_	0.076	$IR25\times30\times38.5$
		37	38	2.7	38 500	78 500	3 900	8 000	5 500	8 000	_	BK3038ZWD	0.083	$IR25\times30\times38.5$
		40	13	_	14 100	17 100	1 430	1 750	5 500	8 000	HMK3013	_	0.040	$IR25 \times 30 \times 16$
		40	15	_	17 100	22 100	1 750	2 250	5 500	8 000	HMK3015	_	0.044	IR25×30×16
		40	20	_	24 200	34 500		3 500	5 500	8 000	HMK3020	_	0.058	IR25×30×20.5
		40	25	-	31 000	47 000	3 150	4 800	5 500	8 000	HMK3025	_	0.073	IR25×30×26.5
NI	٠ 1	Daarin		 		اللياما امرالا	UD (Def	o = to lone =	l Dina Dimana	: T -1-1-1	l an naga D 101 D	100)		

Note 1) Bearing with inner ring is represented by HK+IR. (Refer to "Inner Ring Dimensions Table" on page B-131, B-132.) EX. HK2820 + IR22×28×20.5

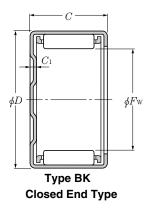


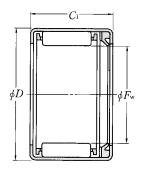


Boui	ndary	dimer	nsions		Basic load		4-4:-	Limiting	speeds	Bearing I	numbers	Mass	Appropriate ¹⁾
	n	nm		dynamic	static N	•	c static	min	-1			kg	inner ring
$F_{ m w}$	D	C 0 -0.2	C_1 max	~	~	~	~	grease	oil	open end	closed end		
		-0.2	тах	$C_{\rm r}$	$C_{ m or}$	$C_{\rm r}$	$C_{ m or}$			design	design	(approx.)	(as a reference)
30	40	30	_	36 000	57 500	3 700	5 850	5 500	8 000	HMK3030	_	0.087	IR25×30×32
32	42	20	_	27 500	38 000	2 800	3 850	5 000	7 500	HMK3220	_	0.062	_
	42	30	_	41 500	64 500	4 250	6 550	5 000	7 500	HMK3230	_	0.092	
	42	12	_	14 000	22 800	1 430	2 320	4 700	7 000	HK3512	_	0.028	_
	42	12	2.7	14 000	22 800	1 430	2 320	4 700	7 000	_	BK3512	0.033	_
	42	16	_	19 000	33 500	1 940	3 400	4 700	7 000	HK3516C	_	0.037	_
	42	16	2.7	19 700	35 000	2 000	3 600	4 700	7 000	_	BK3516	0.044	_
	42	20	_	24 800	47 500	2 530	4 850	4 700	7 000	HK3520	_	0.046	_
35	42	20	2.7	24 800	47 500	2 530	4 850	4 700	7 000	_	BK3520	0.055	_
	45	12	_	14 900	17 600	1 520	1 800	4 700	7 000	HMK3512	_	0.040	_
	45	15	_	20 200	26 200	2 060	2 670	4 700	7 000	HMK3515	_	0.050	_
	45	20	_	28 400	40 500	2 890	4 100	4 700	7 000	HMK3520	_	0.067	_
	45	25	_	36 000	54 500	3 650	5 550	4 700	7 000	HMK3525	_	0.083	_
	45	30	_	43 000	69 000	4 400	7 000	4 700	7 000	HMK3530	_	0.100	
37	47	20	_	29 300	43 000	2 990	4 350	4 300	6 500	HMK3720	_	0.070	_
31	47	30	_	44 500	73 000	4 550	7 450	4 300	6 500	HMK3730	_	0.105	
	48	15	_	21 700	29 300	2 210	2 990	4 300	6 500	HMK3815	_	0.054	_
	48	20	_	30 500	45 000	3 100	4 600	4 300	6 500	HMK3820	_	0.072	_
38	48	25	_	38 500	61 000	3 900	6 250	4 300	6 500	HMK3825	_	0.090	_
	48	30	_	46 000	77 000	4 700	7 850	4 300	6 500	HMK3830	_	0.107	$IR32 \times 38 \times 32$
	48	45	_	62 000	113 000	6 300	11 500	4 300	6 500	HMK3845ZWI) —	0.161	_
	47	12	_	15 100	26 000	1 540	2 660	4 000	6 000	HK4012	_	0.031	IR35×40×12.5
	47	12	2.7	15 100	26 000	1 540	2 660	4 000	6 000	_	BK4012	0.038	IR35 \times 40 \times 12.5
	47	16	_	20 300	38 500	2 070	3 900	4 000	6 000	HK4016C	_	0.041	$IR35 \times 40 \times 17$
	47	16	2.7	21 100	40 000	2 150	4 100	4 000	6 000	_	BK4016	0.051	$IR35 \times 40 \times 17$
40	47	20	_	25 900	52 500	2 650	5 350	4 000	6 000	HK4020	_	0.052	IR35×40×20.5
	47	20	2.7	25 900	52 500	2 650	5 350	4 000	6 000	_	BK4020	0.064	IR35×40×20.5
	50	15	_	23 100	32 500	2 350	3 300	4 000	6 000	HMK4015	_	0.056	IR35 \times 40 \times 17
	50	20	_	32 500	50 000	3 300	5 100	4 000	6 000	HMK4020	_	0.075	IR35×40×20.5
	50	25	_	41 000	67 500	4 150	6 900	4 000	6 000	HMK4025	_	0.094	_
Note 1) Bearir	ng with	inner rir	ng is repres	ented by HK	+IR. (Ref	er to "Innei	r Ring Dimens	sions Table'	। ' on page B-132 to	B134.)		

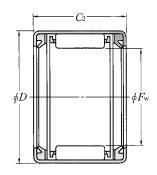
Note 1) Bearing with inner ring is EX. HK4012 + IR35 \times 40 \times 12.5

Type HK Type HMK, Type HMK ⋅ · ZWD Type BK


Opened End Type

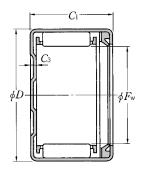

Fw 40∼50mm

Bour	ndary (dimen	sions	dynamic	Basic load static	_	c static	Limiting	speeds	Bearing n	umbers	Mass	Appropriate ¹⁾ inner ring
	m	ım			N	1	kgf	min	-1			kg	
$F_{ m w}$	D	C 0 -0.2	C_1 max	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	Cor	grease	oil	open end design	closed end design	(approx.)	(as a reference)
40	50	30	_	49 000	85 000	5 000	8 700	4 000	6 000	HMK4030	_	0.112	IR35×40×34
40	50	40	_	58 500	107 000	5 950	10 900	4 000	6 000	HMK4040ZWD	_	0.150	_
	52	16		21 600	43 000	2 210	4 400	3 700	5 500	HK4516	_	0.046	IR40×45×17
	52	16	2.7	21 600	43 000	2 210	4 400	3 700	5 500	_	BK4516	0.058	$IR40\times45\times17$
	52	20	_	27 600	59 000	2 810	6 000	3 700	5 500	HK4520	_	0.058	IR40×45×20.
45	52	20	2.7	27 600	59 000	2 810	6 000	3 700	5 500	_	BK4520	0.072	IR40×45×20.
45	55	20	_	32 000	51 000	3 250	5 200	3 700	5 500	HMK4520CT	· _	0.083	IR40×45×20.
	55	25	_	41 500	71 500	4 250	7 300	3 700	5 500	HMK4525	_	0.104	IR40×45×26.
	55	30	_	49 500	90 000	5 050	9 150	3 700	5 500	HMK4530	_	0.125	IR40×45×34
	55	40	_	59 500	113 000	6 050	11 500	3 700	5 500	HMK4540ZWD	_	0.167	_
	58	20	_	31 500	63 000	3 200	6 450	3 200	4 800	HK5020	_	0.072	IR40×50×22
	58	20	2.7	31 500	63 000	3 200	6 450	3 200	4 800	_	BK5020	0.087	IR40×50×22
	58	25	_	38 500	82 000	3 900	8 400	3 200	4 800	HK5025	_	0.090	IR45×50×25.
	58	25	2.7	38 500	82 000	3 900	8 400	3 200	4 800	_	BK5025	0.109	IR45×50×25.
	62	12	_	18 200	23 600	1 860	2 410	3 200	4 800	HMK5012	_	0.067	_
50	62	15	_	25 900	37 000	2 650	3 800	3 200	4 800	HMK5015	_	0.084	_
	62	20	_	37 500	60 000	3 850	6 100	3 200	4 800	HMK5020	_	0.112	IR40×50×22
	62	25	_	48 000	82 500	4 900	8 450	3 200	4 800	HMK5025	_	0.140	IR45×50×25.
	62	30	_	58 500	105 000	5 950	10 700	3 200	4 800	HMK5030B	_	0.168	IR45×50×32
	62	40	_	70 000	134 000	7 150	13 600	3 200	4 800	HMK5040ZWD	_	0.224	_
	62	45	_	79 000	156 000	8 050	15 900	3 200	4 800	HMK5045ZWBD) —	0.252	_


Note 1) Bearing with inner ring is represented by HK+IR. (Refer to "Inner Ring Dimensions Table" on page B-134, B135.) EX. HK4516 + IR40×45×17

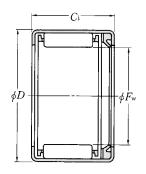
Type HK · · L Type HMK · · L Type HK · · LL Type HMK · · LL Type BK · · L

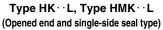
Type HK··L, Type HMK··L (Opened end and single-side seal type)

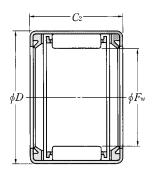

Type HK··LL, Type HMK··LL (Opened end and double-side seal type)

Fw 8∼25mm

	Boundary dimensions mm					dynamic	Basic load	ratings dynamic	static	Limiting speeds		Bearing numbers	
			mm			,	V	kg		min ⁻¹			
	$F_{ m w}$	D	C_1 0 -0.2	C_2 0 -0.2	C_3 max	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$	grease	open end single seal	open end double seal	closed end single seal
	8	15	12	14	_	3 800	2 870	390	293	10 000	HMK0812L/3AS	HMK0814LL/3AS	-
	10	17	12	14	_	4 250	3 450	435	350	10 000	HMK1012L/3AS	HMK1014LL/3AS	-
	12	18	14	16	2.7	6 600	7 300	675	745	10 000	HK 1214L/3AS	HK 1216LL/3AS	BK1214L/3AS
	12	19	14	16	_	7 100	6 900	725	705	10 000	HMK1214L/3AS	HMK1216LL/3AS	-
	14	20	14	16	2.7	7 200	8 500	735	865	10 000	HK 1414L/3AS	HK 1416LL/3AS	BK1414L/3AS
_	14	22	19	22	_	11 500	12 000	1 180	1 220	10 000	HMK1419L/3AS	HMK1422LL/3AS	-
		21	14	16	2.7	7 500	9 100	765	930	10 000	HK 1514L/3AS	HK 1516LL/3AS	BK1514L/3AS
	15	22	13	16	_	6 100	6 000	620	610	10 000	HMK1513L/3AS	HMK1516LL/3AS	_
_		22	18	21	_	10 900	12 700	1 120	1 300	10 000	HMK1518L/3AS	HMK1521LL/3AS	-
	16	22	14	16	2.7	7 750	9 700	795	990	10 000	HK 1614L/3AS	HK 1616LL/3AS	BK1614L/3AS
		24	23	26	_	15 600	18 200	1 590	1 860	10 000	HMK1623CLT/3AS	HMK1626CLLT/3AS	-
	17	24	18	21	_	12 100	15 000	1 230	1 530	9 500	HMK1718L/3AS	HMK1721LL/3AS	-
		24	14	16	2.7	8 300	10 900	845	1 110	9 000	HK 1814L/3AS	HK 1816LL/3AS	BK1814L/3AS
	18	25	18	21	_	12 000	15 100	1 220	1 540	9 000	HMK1818L/3AS	HMK1821LL/3AS	-
_		25	20	23	_	13 800	18 000	1 400	1 830	9 000	HMK1820L/3AS	HMK1823LL/3AS	-
	19	27	19	22	_	13 900	16 300	1 410	1 660	8 500	HMK1919L/3AS	HMK1922LL/3AS	-
		26	_	16	_	9 250	13 000	945	1 330	8 000	_	HK 2016LL/3AS	-
	20	26	18	20	2.7	13 000	20 100	1 320	2 050	8 000	HK 2018L/3AS	HK 2020LL/3AS	BK2018L/3AS
	20	27	18	21	_	13 000	17 300	1 330	1 760	8 000	HMK2018L/3AS	HMK2021LL/3AS	_
_		27	23	26	_	17 700	25 600	1 800	2 610	8 000	HMK2023L/3AS	HMK2026LL/3AS	-
		28	_	16	_	9 750	14 300	995	1 460	7 500	_	HK 2216LL/3AS	-
	22	28	18	20	2.7	13 600	22 100	1 390	2 250	7 500	HK 2218L/3AS	HK 2220LL/3AS	BK2218L/3AS
		29	18	21	_	13 400	18 500	1 370	1 890	7 500	HMK2218L/3AS	HMK2221LL/3AS	_
		29	23	26	_	18 200	27 400	1 860	2 790	7 500	HMK2223L/3AS	HMK2226LL/3AS	-
	24	31	23	26	_	18 300	28 200	1 860	2 880	6 500	HMK2423CLT /3AS	HMK2426CLLT/3AS	-
	25	32	_	16	_	11 800	16 300	1 200	1 660	6 500	-	HK 2516LL/3AS	-
		32	18	20	2.7	15 900	24 000	1 620	2 450	6 500	HK 2518L/3AS	HK 2520LL/3AS	BK2518L/3AS
N.	-4- 4\ D		uith inna	r ring io	********	ntad by LUC I	D (Defer to "	Innar Dina	Dimension	Toble" on ne	age R-129 to R131)		


Note 1) Bearing with inner ring is represented by HK+IR. (Refer to "Inner Ring Dimensions Table" on page B-129 to B131.) EX. HK1416LL/3AS + IR10 \times 14 \times 20




 $\label{eq:TypeBK} \textbf{Type BK} \cdot \cdot \textbf{L}$ (Closed end and single-side seal type)

	Mass kg (approx.)		Approp inner (as a refe	ring erence)
open end single seal	open end double seal	closed end single seal	single seal	double seal
0.0071	0.0075	_	IR 5×8×16	IR 5× 8×16
0.0084	0.0089	_	IR 7×10×16	IR 7×10×16
0.011 0.011	0.0120 0.0120	0.012 —	IR 9×12×16 IR 9×12×16	_ _
0.012 0.020	0.0140 0.0210	0.014 —	IR10×14×16 IR10×14×20	IR10×14×20 _
0.013 0.014 0.017	0.0140 0.0150 0.0180	0.014 _ _	IR12×15×16.5 IR12×15×16 IR12×15×22.5	IR12×15×16.5 IR12×15×16.5 IR12×15×22.5
0.013 0.028	0.0150 0.0290	0.015 —	IR12×16×16	IR12×16×20
0.019	0.0200	_	IR12×17×20.5	IR12×17×25.5
0.015 0.020 0.023	0.0170 0.0210 0.0240	0.017 _ _	IR15×18×16 IR15×18×20.5 IR15×18×20.5	IR15×18×17.5 IR15×18×25.5 IR15×18×25.5
0.027	0.0290	_	IR15×19×20	_
- 0.021 0.022 0.029	0.0190 0.0240 0.0240 0.0310	- 0.024 - -	- IR17×20×20 IR17×20×20 IR15×20×26	IR15×20×18 IR17×20×20.5 IR15×20×23 IR17×20×30.5
- 0.024 0.024 0.032	0.0200 0.0260 0.0260 0.0330	- 0.027 - -	- IR17×22×20.5 IR17×22×20.5 IR17×22×26	IR17×22×18 IR17×22×23 IR17×22×23
0.035	0.0370	_	_	IR20×24×28.5
_ 0.031	0.0270 0.0330	_ 0.035	_ IR20×25×20	IR20×25×18D IR20×25×23

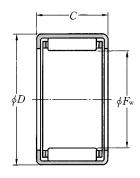
Type HK · · L Type HMK · · L Type HK · · LL Type HMK · · LL Type BK · · L



Type HK··LL, Type HMK··LL (Opened end and double-side seal type)

Во	oundary	y dimer	nsions		dynamic	Basic load	d ratings dynamic	etatic	Limiting speeds		Bearing numbers	3
		mm			•	V	kg		min ⁻¹			
$F_{ m w}$	D	C_1 0 -0.2	C_2 0 -0.2	C_3 max	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$	grease	open end single seal	open end double seal	closed end single seal
0.5	33	18	21	_	15 200	19 900	1 550	2 030	6 500	HMK2518CLT/3AS	HMK2521CLLT/3AS	-
25	33	23	26	_	21 800	31 500	2 220	3 200	6 500	HMK2523L/3AS	HMK2526LL/3AS	_
	35	_	20	_	17 300	27 600	1 760	2 820	5 500	_	HK 2820LL/3AS	_
28	37	23	26	_	23 600	32 500	2 410	3 350	5 500	HMK2823L/3AS	HMK2826LL/3AS	-
	37	_	16	_	13 000	19 500	1 320	1 990	5 500	_	HK 3016LL/3AS	_
	37	18	20	2.7	18 100	30 000	1 850	3 050	5 500	HK 3018L/3AS	HK 3020LL/3AS	BK3018L/3AS
30	40	23	26	_	24 200	34 500	2 470	3 500	5 500	HMK3023L/3AS	HMK3026LL/3AS	_
	40	28	31	_	31 000	47 000	3 150	4 800	5 500	HMK3028L/3AS	HMK3031LL/3AS	-
32	42	23	26	_	27 500	38 000	2 800	3 850	5 000	HMK3223L/3AS	HMK3226LL/3AS	-
	42	_	16	_	14 000	22 800	1 430	2 320	4 600	_	HK 3516LL/3AS	-
0.5	42	18	20	2.7	19 700	35 000	2 000	3 600	4 600	HK 3518L/3AS	HK 3520LL/3AS	BK3518L/3AS
35	45	18	21	_	20 200	26 200	2 060	2 670	4 600	HMK3518L/3AS	HMK3521LL/3AS	_
	45	28	31	_	36 000	54 500	3 650	5 550	4 600	HMK3528L/3AS	HMK3531LL/3AS	-
38	48	28	31	_	38 500	61 000	3 900	6 250	4 200	HMK3828L/3AS	HMK3831LL/3AS	-
	47	_	16	_	15 100	26 000	1 540	2 660	4 000	_	HK 4016LL/3AS	_
40	47	18	20	2.7	21 100	40 000	2 150	4 100	4 000	HK 4018L/3AS	HK 4020LL/3AS	BK4018L/3AS
40	50	18	21	_	23 100	32 500	2 350	3 300	4 000	HMK4018L/3AS	HMK4021LL/3AS	-
	50	28	31	_	41 000	67 500	4 150	6 900	4 000	HMK4028L/3AS	HMK4031LL/3AS	_
45	52	18	20	2.7	21 600	43 000	2 210	4 400	3 600	HK 4518L/3AS	HK 4520LL/3AS	BK4518L/3AS
45	55	23	26	_	32 000	51 000	3 250	5 200	3 600	HMK4523CLT/3AS	HMK4526CLLT/3AS	-
50	58	22	24	2.7	31 500	63 000	3 200	6 450	3 200	HK 5022L/3AS	HK 5024LL/3AS	BK5022L/3AS
50	62	28	31	_	48 000	82 500	4 900	8 450	3 200	HMK5028L/3AS	HMK5031LL/3AS	-
										ma P 101 to P105 \		

Note 1) Bearing with inner ring is represented by HK+IR. (Refer to "Inner Ring Dimensions Table" on page B-131 to B135.) EX. HK5022L/3AS + IR45 \times 50 \times 25



 $\label{eq:TypeBK} \textbf{Type BK} \cdot \textbf{L}$ (Closed end and single-side seal type)

	Mass kg (approx.)		Appropriate ¹⁾ inner ring (as a reference)					
open end single seal	open end double seal	closed end single seal	single seal	double seal				
0.031	0.034	_	IR20×25×20	IR20×25×23				
0.041	0.043	_	IR20×25×26.5	IR20×25×26.5				
	0.037	_	_	IR22×28×23				
0.051	0.054	_	_	IR22×28×30				
-	0.027	-	-	IR25×30×18D				
0.037	0.039	0.045	IR25×30×20	IR25×30×23				
0.061	0.064	-	IR25×30×26	IR25×30×26.5				
0.076	0.078	-	IR25×30×30	IR25×30×32				
0.065	0.069	-	_	IR28×32×30				
 0.037 0.053 0.086	0.036 0.040 0.056 0.089	0.047 — —	- - - -	- - -				
0.094	0.098	_	IR32×38×32	IR32×38×32				
-	0.041	-	-	IR35×40×17				
0.047	0.050	0.062	IR35×40×20	-				
0.060	0.063	-	IR35×40×20	-				
0.097	0.100	-	IR35×40×30	IR32×40×36				
0.054	0.057	0.072	IR40×45×20	_				
0.087	0.091		IR40×45×26.5	IR40×45×26.5				
0.086	0.089	0.104	IR45×50×25	IR45×50×25.5				
0.144	0.149	—	IR45×50×32	IR45×50×32				

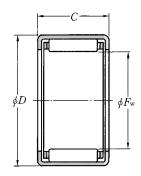
Inch series

Type DCL

Fw 6.350~15.875mm

Воц	undary dimens	sions		Basic load	l ratings		Limiting	speeds	Bearing	Mass	Appropriate ¹⁾
	mm (½5.4mm)		dynamic		dynamic			1	numbers	l.e.	inner ring
$F_{ m w}$	D	C		N		kgf	mii grease	n-i oil		kg	
		-0.2	$C_{ m r}$	$C_{ m or}$	$C_{\rm r}$	$C_{ m or}$	ground			(approx.)	(as a reference)
	11.112(1/16)	6.350(1/4)	1 580	1 110	161	113	25 000	38 000	DCL 44T2	0.0022	_
6.350(1/4)	11.112(7/16)	$7.938(\frac{5}{16})$	2 160	1 670	221	170	25 000	38 000	DCL 45T2	0.0033	_
	11.112(1/16)	11.112(7/16)	3 550	3 150	360	320	25 000	38 000	DCL 47T2	0.0038	_
	12.700(1/2)	7.938(5/16)	2 940	2 610	300	266	20 000	30 000	DCL 55	0.0032	_
7.938(5/16)	12.700(1/2)	9.525(3/8)	3 900	3 750	400	385	20 000	30 000	DCL 56	0.0039	_
7.930(/16)	12.700(1/2)	11.112(7/16)	4 800	4 950	490	505	20 000	30 000	DCL 57	0.0048	_
	12.700(½)	14.288(16)	6 500	7 250	665	740	20 000	30 000	DCL 59	0.0058	_
	14.288(16)	7.938(5/16)	3 100	2 910	315	297	17 000	25 000	DCL 65	0.0037	_
9.525(¾)	14.288(16)	9.525(%)	4 100	4 200	420	430	17 000	25 000	DCL 66	0.0045	_
9.525(/8)	14.288(16)	12.700(1/2)	5 900	6 650	600	675	17 000	25 000	DCL 68	0.0065	_
	14.288(16)	15.875(5%)	7 500	9 050	765	925	17 000	25 000	DCL 610	0.0075	_
11.112(7/16)	15.875(5/8)	12.700(½)	6 450	7 800	660	795	15 000	22 000	DCL 78	0.0068	_
	17.462(11/16)	7.938(5/16)	3 550	3 700	360	380	13 000	19 000	DCL 85	0.0047	_
	17.462(11/16)	9.525(%)	4 700	5 350	480	550	13 000	19 000	DCL 86	0.0057	_
12.700(½)	17.462(11/16)	11.112(7/16)	5 800	7 050	590	715	13 000	19 000	DCL 87	0.0066	_
12.700(/2)	17.462(11/16)	12.700(½)	6 700	8 500	685	865	13 000	19 000	DCL 88	0.0080	_
	17.462(11/16)	15.875(%)	8 550	11 600	870	1 180	13 000	19 000	DCL 810	0.0095	_
	17.462(11/16)	19.050(¾)	10 400	14 900	1 060	1 520	13 000	19 000	DCL 812	0.0120	_
	19.050(¾)	7.938(5/16)	3 800	4 250	390	430	11 000	17 000	DCL 95	0.0052	_
	19.050(¾)	9.525(%)	5 050	6 100	515	625	11 000	17 000	DCL 96	0.0063	MI-060908
14.288(⁹ / ₁₆)	19.050(¾)	11.112(7/16)	6 250	8 000	635	815	11 000	17 000	DCL 97	0.0073	MI-060908
14.200(/16)	19.050(¾)	12.700(½)	7 200	9 650	735	985	11 000	17 000	DCL 98	0.0086	MI-060908
	19.050(3/4)	15.875(5/8)	9 200	13 200	935	1 350	11 000	17 000	DCL 910	0.0110	_
	19.050(¾)	19.050(¾)	11 200	17 000	1 140	1 730	11 000	17 000	DCL 912	0.0130	_
	20.638(13/16)	7.938(5/16)	4 050	4 750	415	485	10 000	15 000	DCL 105	0.0075	_
	20.638(13/16)	11.112(7/16)	6 650	9 000	680	915	10 000	15 000	DCL 107	0.0080	_
15.875(%)	20.638(13/16)	12.700(½)	7 700	10 800	785	1 110	10 000	15 000	DCL 108	0.0091	_
	20.638(13/16)	15.875(5/8)	9 800	14 800	1 000	1 510	10 000	15 000	DCL1010	0.0130	MI-061012
	20.638(13/16)	19.050(3/4)	11 900	19 000	1 220	1 940	10 000	15 000	DCL1012	0.0140	MI-061012

Note 1) Bearing with inner ring is represented by DCL-MI. (Refer to Inner Ring Dimension Table on page B-141.)
EX. DCL96 + MI-060908
Remarks: Manufacture of the closed end type bearings under this Table is also available.


Fw 15.875~25.400mm

Bou	ındary dimensi	ons		Basic load	•	atatia	Limiting	speeds	Bearing	Mass	Appropriate ¹⁾
	mm (½5.4mm)		dynamic	static N	dynamic kg	static f	mi	n ⁻¹	numbers	kg	inner ring
$F_{ m w}$	D	C			Ĭ		grease	oil			
		-0.2	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$				(approx.)	(as a reference)
15.875(%)	20.638(13/16)	22.225(%)	14 100	23 500	1 430	2 400	10 000	15 000	DCL1014	0.0160	MI-061016
	22.225(%)	9.525(¾)	5 700	7 650	585	780	9 500	14 000	DCL 116	0.0075	_
17.462(11/16)	22.225(%)	12.700(½)	8 150	12 000	830	1 230	9 500	14 000	DCL 118	0.0110	_
17.402(/16)	22.225(%)	15.875(%)	10 400	16 400	1 060	1 680	9 500	14 000	DCL1110	0.0130	_
	22.225(%)	19.050(¾)	12 600	21 100	1 290	2 150	9 500	14 000	DCL1112	0.0160	_
	25.400(1)	9.525(¾)	6 450	6 950	660	705	8 500	13 000	DCL 126	0.0110	_
	25.400(1)	12.700(½)	9 800	11 900	1 000	1 210	8 500	13 000	DCL 128	0.0140	MI-081210
19.050(¾)	25.400(1)	15.875(%)	12 900	16 800	1 310	1 720	8 500	13 000	DCL1210	0.0170	MI-081210
19.030(/4)	25.400(1)	19.050(¾)	15 900	22 100	1 620	2 250	8 500	13 000	DCL1212	0.0210	MI-081212
	25.400(1)	22.225(%)	19 000	27 700	1 930	2 830	8 500	13 000	DCL1214	0.0260	MI-081216
	25.400(1)	25.400(1)	21 700	33 000	2 210	3 350	8 500	13 000	DCL1216	0.0300	MI-081216
	26.988(1 1/16)	9.525(%)	6 950	7 800	710	795	8 000	12 000	DCL 136	0.0120	_
	26.988(1 1/6)	12.700(½)	10 600	13 400	1 080	1 370	8 000	12 000	DCL 138	0.0160	_
	26.988(1 1/16)	15.875(%)	13 900	19 000	1 410	1 930	8 000	12 000	DCL1310	0.0200	_
20.638(13/16)	26.988(1 1/16)	19.050(¾)	17 100	24 900	1 750	2 540	8 000	12 000	DCL1312	0.0230	_
	26.988(1 1/6)	22.225(%)	20 400	31 500	2 080	3 200	8 000	12 000	DCL1314	0.0280	_
	26.988(1 1/16)	25.400(1)	23 400	37 000	2 380	3 800	8 000	12 000	DCL1316	0.0320	_
	26.988(1 1/16)	31.750(1 1/4)	29 000	49 000	2 960	5 000	8 000	12 000	DCL1320	0.0400	_
	28.575(1 1/8)	9.525(¾)	7 150	8 300	730	845	7 500	11 000	DCL 146	0.0130	MI-101406
	28.575(1 1/8)	12.700(½)	10 900	14 200	1 110	1 450	7 500	11 000	DCL 148	0.0170	MI-101408
22.225(%)	28.575(1 1/8)	19.050(¾)	17 600	26 400	1 800	2 700	7 500	11 000	DCL1412	0.0250	MI-101412
	28.575(1 1/8)	22.225(%)	21 000	33 000	2 140	3 400	7 500	11 000	DCL1414	0.0340	MI-101416
	28.575(1 1/8)	25.400(1)	24 100	39 500	2 450	4 000	7 500	11 000	DCL1416	0.0340	MI-101416
23.812(15/16)	30.162(1 3/16)	15.875(%)	14 600	21 300	1 490	2 170	6 500	10 000	DCL1510	0.0230	_
23.012(716)	30.162(1 3/16)	25.400(1)	24 700	41 500	2 520	4 250	6 500	10 000	DCL1516	0.0360	_
	31.750(1 1/4)	9.525(¾)	7 550	9 250	770	940	6 500	9 500	DCL 166	0.0140	_
25.400(1)	31.750(1 1/4)	12.700(½)	11 500	15 800	1 170	1 610	6 500	9 500	DCL 168	0.0190	_
_0.400(1)	31.750(1 1/4)	19.050(¾)	18 600	29 500	1 890	3 000	6 500	9 500	DCL1612	0.0310	MI-121612
	31.750(1 1/4)	22.225(%)	22 100	37 000	2 260	3 750	6 500	9 500	DCL1614	0.0340	MI-121616

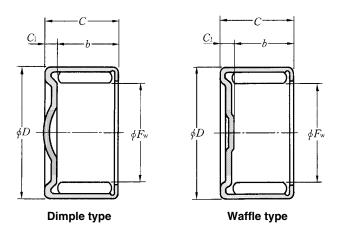
Note 1) Bearing with inner ring is represented by DCL-MI. (Refer to Inner Ring Dimension Table on page B-141.)
EX. DCL128 + MI-081210
Remarks: Manufacture of the closed end type bearings under this Table is also available.

Inch series

Type DCL

Fw 25.400~41.275mm

Martin	Bou	ndary dimensi	ions		Basic load	d ratings		Limiting	speeds	Bearing	Mass	Appropriate ¹⁾
25.400(1) 31.750(1)(1) 25.400(1) 25.400 45.00 25.90 45.00 65.00 95.00 DCL1616 0.048 1-121616 0.048 0.048 1-121616 0.048		mm (½5.4mm)		•		•			_1	numbers	Lon	inner ring
25.400(1) 31.750(1 ½) 25.400(1) 25.40 44.000 25.90 45.00 65.00 95.00 DCL1616 0.038 M-121616 0.038	$F_{ m w}$	D	C		N	Kgi					кд	
	- "		0 -0.2	$C_{ m r}$	$C_{ m or}$	$C_{\rm r}$	Cor	g			(approx.)	(as a reference)
26.988(1⅓) 33.338(1⅓) 15.875(⅓) 15 900 24 600 1 620 2510 6 000 9 000 DCL1710 0.025 — 834.925(1⅓) 9.525(⅓) 8 150 10 600 830 1 080 5 500 8 500 DCL 186 0.016 MI-141808 34.925(1⅓) 12.700(⅓) 12 400 18 200 1 260 1 850 5 500 8 500 DCL 188 0.021 MI-141808 34.925(1⅓) 19.050(⅓) 20 100 34 000 2 050 3 450 5 500 8 500 DCL 188 0.021 MI-141808 34.925(1⅓) 31.750(1⅓) 34 000 66 500 3 450 5 500 8 500 DCL 186 0.032 MI-141812 34.925(1⅓) 31.750(1⅓) 34 000 66 500 3 450 5 500 8 500 DCL 186 0.032 MI-141812 34.925(1⅓) 31.750(1⅓) 34 000 66 500 3 450 5 500 8 500 DCL 186 0.033 MI-141820 34.925(1⅓) 31.750(1⅓) 34 000 66 500 3 450 5 500 8 500 DCL 186 0.033 MI-141820 34.925(1⅓) 31.750(1⅓) 34 000 66 500 3 450 5 500 5 500 8 500 DCL 186 0.033 MI-141820 34.925(1⅓) 31.750(1⅓) 31.750(1⅓) 31.00(1⅓) 12.700(⅓) 12.500 1900 1 280 1 1940 5 000 7 500 DCL 2010 0.029 — 33.1.750(1⅙) 38.100(1⅓) 15.875(⅓) 16 400 27 000 1 670 2 750 5 000 7 500 DCL 2010 0.029 — 33.1.750(1⅙) 31.750(1⅓) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL 2010 0.029 — 33.1.750(1⅙) 31.750(1⅓) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL 2010 0.036 — 34.925(1⅙) 12.700(⅓) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL 2010 0.036 — 34.925(1⅙) 12.700(⅓) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL 2010 0.058 — 34.925(1⅙) 12.700(⅓) 31.750(1⅓) 36 500 78 500 3 000 6 050 4 700 7 000 DCL 2210 0.038 — 41.275(1⅙) 19.050(⅓) 25.400(1) 29 600 59 500 3 000 6 050 4 700 7 000 DCL 2210 0.054 — 41.275(1⅙) 15.875(⅓) 25.400(1) 29 600 59 500 3 250 4 300 6 500 DCL 2410 0.054 — 47.625(1⅙) 15.875(⅓) 26 600 40 000 27 100 3 000 6 500 DCL 2410 0.054 — 47.625(1⅙) 15.875(⅙) 26 600 40 000 27 100 40 000 4 700 7 000 DCL 2210 0.064 — 47.625(1⅙) 15.875(⅙) 26 600 40 000 27 100 40 000 4 700 7 000 DCL 2210 0.056 — 47.625(1⅙) 15.875(⅙) 26 600 40 000 27 100 40 000 4 700 7 000 DCL 2210 0.056 — 47.625(1⅙) 15.875(⅙) 26 600 40 000 3 750 60 000 4 40 000 6 500 DCL 2410 0.054 — 47.625(1⅙) 25.400(1) 36 500 6 0500 3 250 5 150 4 300 6 500 DCL 2410 0.054 — 47.625(1⅙) 25.400(1) 36 500 6 0500 3 250 5 150 4 300	25 400/1)	31.750(1 1/4)	25.400(1)	25 400	44 000	2 590	4 500	6 500	9 500	DCL1616	0.038	MI-121616
34.925(1%) 9.525(%) 8 150 10 600 830 1 080 5 500 8 500 DCL 186 0.016 MI-141808	25.400(1)	31.750(1 1/4)	31.750(1 1/4)	31 500	58 000	3 200	5 900	6 500	9 500	DCL1620	0.048	_
34.925(1⅓) 12.700⟨⅓) 12.400 18.200 1.260 1.850 5.500 8.500 DCL 188 0.021 MI-141808 34.925(1⅓) 19.050(⅓) 20.100 34.000 2.050 3.450 5.500 8.500 DCL 1812 0.032 MI-141816 34.925(1⅓) 31.750(1⅓) 34.000 66.500 3.450 6.800 5.500 8.500 DCL 1816 0.043 MI-141816 34.925(1⅓) 31.750(1⅓) 34.000 66.500 3.450 6.800 5.500 8.500 DCL 1816 0.043 MI-141816 34.925(1⅙) 31.750(1⅓) 34.000 66.500 3.450 6.800 5.500 8.500 DCL 1816 0.057 MI-141820 30.162(1⅙) 38.100(1⅓) 12.700(⅓) 12.500 19.000 1.280 1.940 5.000 7.500 DCL 208 0.023 — 38.100(1⅙) 12.700(⅙) 12.700 16.700 1.670 2.750 5.000 7.500 DCL 2010 0.029 — 31.750(1⅙) 31.750(1⅙) 34.500 70.000 3.500 2.800 5.000 7.500 DCL 2010 0.029 — 31.750(1⅙) 31.750(1⅙) 34.500 70.000 3.500 7.000 5.000 7.500 DCL 2010 0.047 — 38.100(1⅙) 12.700(⅙) 13.400 21.400 1.360 21.80 4.700 7.500 DCL 2020 0.058 — 34.925(1⅙) 12.750(1⅙) 19.050(⅙) 21.700 4.000 2.210 4.050 4.700 7.000 DCL 2212 0.038 — 34.925(1⅙) 12.750(1⅙) 19.050(⅙) 21.000 59.500 3.750 8.000 4.700 7.000 DCL 2216 0.051 — 34.925(1⅙) 12.750(1⅙) 19.050(⅙) 6.500 7.8500 3.750 8.000 4.700 7.000 DCL 2216 0.051 — 34.925(1⅙) 12.750(1⅙) 19.050(⅙) 6.500 5.8500 3.750 8.000 4.700 7.000 DCL 2216 0.051 — 34.925(1⅙) 12.750(1⅙) 19.050(1⅙) 6.500 5.8500 3.750 8.000 4.700 7.000 DCL 2216 0.051 — 34.925(1⅙) 12.55(1⅙) 19.050(1⅙) 6.500 5.8500 3.750 8.000 4.700 7.000 DCL 2216 0.051 — 34.925(1⅙) 12.55(1⅙) 19.050(1⅙) 6.500 5.8500 3.750 8.000 4.700 7.000 DCL 2216 0.051 — 34.925(1⅙) 12.55(1⅙) 19.050(1⅙) 6.500 6.500 3.750 6.500 4.700 7.000 DCL 2216 0.054 — 34.925(1⅙) 12.55(1⅙) 12.55(1⅙) 12.55(1⅙) 12.55(1⅙) 12.55(1⅙) 12.55(1⅙) 12.55	26.988(1 1/16)	33.338(1 1/16)	15.875(%)	15 900	24 600	1 620	2 510	6 000	9 000	DCL1710	0.025	_
28.575(1⅓) 34.925(1⅓) 19.050(⅓) 20 100 34 000 2 050 3 450 5 500 8 500 DCL1812 0.032 MI-141812 34.925(1⅓) 25.400(1) 27 400 50 500 2 790 5 150 5 500 8 500 DCL1816 0.043 MI-141816 34.925(1⅓) 31.750(1⅓) 34 000 66 500 3 450 6800 5 500 8 500 DCL1820 0.053 MI-141820 30.162(1⅙) 38.100(1⅓) 12.700(⅓) 12 500 19 000 1 280 1 940 5 500 7 500 DCL 208 0.023 — 38.100(1⅓) 15.875(⅓) 16 400 27 000 1 670 2 750 5 000 7 500 DCL2010 0.029 — 38.100(1⅓) 19.050(⅓) 20 300 35 500 2 070 3 600 5 000 7 500 DCL2010 0.029 — 38.100(1⅓) 19.050(⅓) 20 300 35 500 2 070 3 600 5 000 7 500 DCL2010 0.029 — 38.100(1⅓) 19.050(⅓) 20 300 35 500 2 070 3 600 5 000 7 500 DCL2010 0.029 — 38.100(1⅓) 19.050(⅓) 20 300 35 500 2 070 3 600 5 000 7 500 DCL2010 0.029 — 38.100(1⅓) 19.050(⅓) 21 700 53 000 2 830 5 400 5 000 7 5 00 DCL2010 0.047 — 38.100(1⅓) 19.050(⅓) 21 700 40 000 2 210 4 050 4 700 7 000 DCL228 0.027 — 41.275(1⅓) 19.050(⅓) 21 700 40 000 2 210 4 050 4 700 7 000 DCL2210 0.038 — 41.275(1⅓) 19.050(⅓) 21 700 40 000 2 210 4 050 4 700 7 000 DCL2210 0.054 — 41.275(1⅓) 19.050(⅓) 21 700 40 000 2 210 4 050 4 700 7 000 DCL2210 0.054 — 41.275(1⅓) 19.050(⅓) 26 600 78 500 3 750 8 000 4 700 7 000 DCL2210 0.054 — 41.275(1⅓) 19.050(⅓) 26 600 40 000 2 210 4 050 4 300 6 500 DCL2410 0.054 — 47.625(1⅓) 19.050(⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2410 0.054 — 47.625(1⅓) 19.050(⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2410 0.054 — 47.625(1⅙) 19.050(⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2410 0.054 — 47.625(1⅙) 19.050(⅓) 26 600 60 500 3 750 6 200 4 300 6 500 DCL2410 0.065 — 47.625(1⅙) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.066 MI-202416 47.625(1⅙) 31.750(1⅙) 36 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.067 MI-202416 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.067 MI-202420 47.625(1⅙) 31.750(1⅙) 36 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.067 MI-202420 47.625(1⅙) 31.750(1⅙) 31.750(1⅙) 32.500 2 200 32.500 3 300 4 000 6 000 DCL268 0.066 MI-202610 0.058 MI-202610 0.058 MI-202610 0.058 MI-202610 0.058 MI-202610 0.058		34.925(1 3/8)	9.525(¾)	8 150	10 600	830	1 080	5 500	8 500	DCL 186	0.016	MI-141808
34.925(1⅓) 25.400(1) 27 400 50 50 0 2 790 5 150 5 500 8 500 DCL1816 0.043 MI-141816 34.925(1⅓) 31.750(1⅓) 34 000 66 500 3 450 6 800 5 500 8 500 DCL1820 0.053 MI-141820 30.162(1⅙) 38.100(1⅓) 25.400(1) 33 000 54 000 3 350 5 500 5 500 8 000 DCL1916 0.057 — 38.100(1⅓) 12.700(⅓) 12.500 19 000 1 280 1 940 5 000 7 500 DCL 208 0.023 — 38.100(1⅓) 15.875(∜) 16 400 27 000 1 670 2 750 5 000 7 500 DCL2010 0.029 — 38.100(1⅓) 25.400(1) 27 700 53 000 2 830 5 400 5 000 7 500 DCL2010 0.029 — 38.100(1⅓) 25.400(1) 27 700 53 000 2 830 5 400 5 000 7 500 DCL2010 0.029 — 38.100(1⅓) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL2010 0.029 — 38.100(1⅓) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL2010 0.047 — 38.100(1⅓) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL2020 0.058 — 41.275(1⅓) 12.700(⅓) 13 400 21 400 1 360 2180 4 700 7 000 DCL2220 0.058 — 41.275(1⅓) 31.750(1⅓) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2212 0.038 — 41.275(1⅓) 31.750(1⅓) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2210 0.051 — 41.275(1⅓) 12.700(⅓) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2210 0.054 — 41.275(1⅓) 15.875(⅓) 21 000 29 700 21 50 3 050 4 300 6 500 DCL2410 0.054 — 47.625(1⅙) 15.875(⅓) 22.225(⅓) 32 000 50 500 3 250 5150 4 300 6 500 DCL2410 0.054 — 47.625(1⅙) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.057 — 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.057 — 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.057 — 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.057 — 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.058 MI-202416 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.058 MI-202416 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.058 MI-202416 50.081 MI-202420 50.081 MI		34.925(1 %)	12.700(1/2)	12 400	18 200	1 260	1 850	5 500	8 500	DCL 188	0.021	MI-141808
34.925(1⅓ 31.750(1⅓ 34.000 66.500 3 450 6.800 5.500 8.500 DCL1820 0.053 MI-141820 30.162(1⅙ 38.100(1⅓ 12.700⅓ 12.500⅓ 12.500 19.000 12.80 19.000 7.500 DCL 208 0.023 — 38.100(1⅓ 15.875⅓ 16.400 27.000 1670 2.750 5.000 7.500 DCL2010 0.029 — 38.100(1⅓ 19.050⅓ 20.300 35.500 2.070 3.600 5.000 7.500 DCL2010 0.029 — 38.100(1⅓ 19.050⅓ 20.300 35.500 2.070 3.600 5.000 7.500 DCL2010 0.029 — 38.100(1⅓ 25.400(1) 27.700 53.000 2.830 5.400 5.000 7.500 DCL2010 0.036 — 38.100(1⅓ 12.750(1⅓ 34.500 70.000 3.500 7.100 5.000 7.500 DCL2010 0.036 — 38.100(1⅓ 12.750(1⅓ 12.700⅓ 13.400 21.400 1.360 2.180 4.700 7.000 DCL2020 0.058 — 41.275(1⅓ 12.750(1⅓ 13.750(1⅓ 36.500 78.500 3.750 8.000 4.700 7.000 DCL2212 0.038 — 47.625(1⅓ 12.750(1⅓ 12.750(1⅓ 36.500 78.500 3.750 8.000 4.700 7.000 DCL2210 0.054 — 47.625(1⅓ 12.750(1⅓ 12.750(1⅓ 32.225(⅓ 32.000 2.9700 2.150 3.050 4.300 6.500 DCL2410 0.054 — 47.625(1⅓ 12.750(1⅓ 25.400(1) 36.500 6.050 3.750 8.000 4.700 7.000 DCL2210 0.054 — 47.625(1⅓ 12.750(1⅓ 25.400(1) 36.500 6.0500 3.750 8.000 4.300 6.500 DCL2410 0.054 — 47.625(1⅓ 25.400(1) 36.500 6.0500 3.750 8.000 4.300 6.500 DCL2410 0.054 — 47.625(1⅓ 25.400(1) 36.500 6.0500 3.750 8.350 4.300 6.500 DCL2410 0.054 — 47.625(1⅓ 25.400(1) 36.500 6.0500 3.750 8.350 4.300 6.500 DCL2410 0.054 — 47.625(1⅓ 25.400(1) 36.500 6.0500 3.750 6.200 4.300 6.500 DCL2410 0.054 — 47.625(1⅓ 25.400(1) 36.500 6.0500 3.750 6.200 4.300 6.500 DCL2410 0.054 — 47.625(1⅓ 25.400(1) 36.500 6.0500 3.750 6.200 4.300 6.500 DCL2410 0.054 — 47.625(1⅓ 31.750(1⅓ 46.500 8.2000 4.750 8.350 4.300 6.500 DCL2410 0.054 MI-202416 4.7625(1⅓ 31.750(1⅓ 46.500 8.2000 4.750 8.350 4.300 6.500 DCL2410 0.054 MI-202416 50.800(1) 4.7625(1⅓ 50.800(2) 15.875(⅓ 22.100 32.500 2.260 3.300 4.000 6.000 DCL2610 0.058 MI-222610 50.800(2) 15.875(⅙ 22.100 32.500 2.260 3.300 4.000 6.000 DCL2610 0.058 MI-222610 50.800(2) 15.875(⅙ 22.100 32.500 2.2600 3.300 4.000 6.000 DCL2610 0.058 MI-222610 50.000 DCL2610 50.058 MI-222610 50.000 DCL2610 50.000 DCL2610 50.058 MI-222610 50.000 DCL2610 50.000 DCL2610 50.000	28.575(1 1/8)	34.925(1 %)	19.050(3/4)	20 100	34 000	2 050	3 450	5 500	8 500	DCL1812	0.032	MI-141812
30.162(1 ⅓ 38.100(1 ⅓ 25.400(1) 33 000 54 000 3 350 5 500 8 000 DCL1916 0.057 — 38.100(1 ⅓ 12.700(⅓ 12 50 19 000 1 280 1 940 5 000 7 500 DCL 208 0.023 — 38.100(1 ⅓ 15.875(శ) 16 400 27 000 1 670 2 750 5 000 7 500 DCL2010 0.029 — 31.750(1 ⅓ 38.100(1 ⅓ 19.050(⅓ 20 300 35 500 2 070 3 600 5 000 7 500 DCL2010 0.029 — 38.100(1 ⅓ 31.750(1 ⅓ 31.750(1 ⅓ 31.750(1 ⅓ 34 500 70 000 3 500 7 100 5 000 7 500 DCL2016 0.047 — 38.100(1 ⅓ 12.700(⅓ 13 400 21 400 1 360 2 180 4 700 7 000 DCL2020 0.058 — 41.275(1 ⅙ 12.700(⅓ 21 700 40 000 2 210 4 050 4 700 7 000 DCL2212 0.038 — 41.275(1 ⅙ 12.700(⅓ 31.750(1 ⅓ 36 500 78 500 3 750 8 000 4 700 7 000 DCL2216 0.051 — 47.625(1 ⅙ 15.875(⅙ 12.700(⅙ 15.875(⅙ 21 000 29 700 2 150 3 050 4 300 6 500 DCL2410 0.054 — 47.625(1 ⅙ 15.875(⅙ 12.700(⅙ 15.875(⅙ 22.225(⅙ 32 000 50 500 3 250 5 150 4 300 6 500 DCL2410 0.054 — 47.625(1 ⅙ 15.875(⅙ 22.225(⅙ 32 000 50 500 3 250 5 150 4 300 6 500 DCL2410 0.054 — 47.625(1 ⅙ 25.400(1) 36 500 60 500 3 250 5 150 4 300 6 500 DCL2410 0.054 — 47.625(1 ⅙ 25.400(1) 36 500 60 500 3 250 5 150 4 300 6 500 DCL2410 0.054 — 47.625(1 ⅙ 25.400(1) 36 500 60 500 3 250 5 150 4 300 6 500 DCL2410 0.054 — 47.625(1 ⅙ 25.400(1) 36 500 60 500 3 250 5 150 4 300 6 500 DCL2410 0.054 — 47.625(1 ⅙ 25.400(1) 36 500 60 500 3 250 5 150 4 300 6 500 DCL2410 0.054 — 47.625(1 ⅙ 25.400(1) 36 500 60 500 3 250 5 150 4 300 6 500 DCL2410 0.054 — 47.625(1 ⅙ 25.400(1) 36 500 60 500 3 250 5 150 4 300 6 500 DCL2410 0.065 — 47.625(1 ⅙ 31.750(1 ⅙ 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.076 Mi-202416 47.625(1 ⅙ 25.400(1) 36 500 60 500 3 250 5 150 4 300 6 500 DCL2410 0.076 Mi-202416 47.625(1 ⅙ 31.750(1 ⅙ 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.076 Mi-202416 50.800 DCL2410 5		34.925(1 %)	25.400(1)	27 400	50 500	2 790	5 150	5 500	8 500	DCL1816	0.043	MI-141816
38.100(1½) 12.700½) 12 500 19 000 1 280 1 940 5 000 7 500 DCL 208 0.023 —		34.925(1 3/8)	31.750(1 1/4)	34 000	66 500	3 450	6 800	5 500	8 500	DCL1820	0.053	MI-141820
38.100(1½) 15.875(%) 16 400 27 000 1 670 2 750 5 000 7 500 DCL2010 0.029 — 31.750(1⅓) 38.100(1⅓) 19.050(⅓) 20 300 35 500 2 070 3 600 5 000 7 500 DCL2012 0.036 — 38.100(1⅓) 25.400(1) 27 700 53 000 2 830 5 400 5 000 7 500 DCL2016 0.047 — 38.100(1⅓) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL2020 0.058 — 41.275(1⅙) 12.700(⅓) 13 400 21 400 1 360 2 180 4 700 7 000 DCL222 0.038 — 41.275(1⅙) 19.050(⅙) 21 700 40 000 2 2 10 4 050 4 700 7 000 DCL2212 0.038 — 41.275(1⅙) 31.750(1⅓) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2216 0.051 — 41.275(1⅙) 12.700(⅓) 17 100 22 800 1 750 2 320 4 300 6 500 DCL2210 0.064 — 47.625(1⅙) 19.050(⅙) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2410 0.054 — 47.625(1⅙) 19.050(⅙) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2412 0.065 — 47.625(1⅙) 22.225(⅙) 32.225(⅙) 32 000 50 500 3 250 5 150 4 300 6 500 DCL2412 0.065 — 47.625(1⅙) 25.400(1) 36 500 60 500 3 750 8 350 4 300 6 500 DCL2412 0.065 — 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.076 MI-202416 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.076 MI-202416 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.076 MI-202416 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.076 MI-202416 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.076 MI-202416 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.076 MI-202416 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.076 MI-202416 50.800(2) 12.700(½) 18 000 24 900 1 840 2 540 4 000 6 000 DCL2660 0.058 MI-222610 50.800(2) 15.875(⅙) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610	30.162(1 3/16)	38.100(1½)	25.400(1)	33 000	54 000	3 350	5 500	5 500	8 000	DCL1916	0.057	_
31.750(1½) 38.100(1½) 19.050⅓) 20 300 35 500 2 070 3 600 5 000 7 500 DCL2012 0.036 — 38.100(1½) 25.400(1) 27 700 53 000 2 830 5 400 5 000 7 500 DCL2016 0.047 — 38.100(1½) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL2020 0.058 — 41.275(1⅙) 12.700⅙) 13 400 21 400 1 360 2 180 4 700 7 000 DCL2222 0.038 — 41.275(1⅙) 19.050⅙) 21 700 40 000 2 210 4 050 4 700 7 000 DCL2212 0.038 — 41.275(1⅙) 31.750(1⅓) 36 500 78 500 3 000 6 050 4 700 7 000 DCL2216 0.051 — 41.275(1⅙) 31.750(1⅓) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2216 0.051 — 41.275(1⅙) 15.875⅙) 21 000 29 700 2 150 3 050 4 300 6 500 DCL2410 0.054 — 47.625(1⅙) 19.050⅙) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2410 0.054 — 47.625(1⅙) 22.225⅙) 32 000 50 50 00 3 250 5 150 4 300 6 500 DCL2412 0.065 — 47.625(1⅙) 25.400(1) 36 500 60 500 3 750 6 200 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1⅙) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅙) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.054 — 50.800(2) 12.700⅙) 18 000 24 900 1 840 2 540 4 000 6 000 DCL268 0.046 MI-202416 47.625(1⅙) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.058 MI-202416 47.625(1⅙) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2410 0.058 MI-202416 47.625(1⅙) 50.800(2) 15.875⅙) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610		38.100(1½)	12.700(½)	12 500	19 000	1 280	1 940	5 000	7 500	DCL 208	0.023	_
38.100(1½) 25.400(1) 27 700 53 000 2 830 5 400 5 000 7 500 DCL2016 0.047 — 38.100(1½) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL2020 0.058 — 41.275(1⅓) 12.700(⅓) 13 400 21 400 1 360 2 180 4 700 7 000 DCL2212 0.038 — 41.275(1⅓) 19.050(⅓) 21 700 40 000 2 210 4 050 4 700 7 000 DCL2212 0.038 — 41.275(1⅓) 31.750(1⅓) 36 500 78 500 3 000 6 050 4 700 7 000 DCL2216 0.051 — 41.275(1⅓) 31.750(1⅓) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2220 0.064 — 41.275(1⅓) 15.875(⅓) 21 000 29 700 2 150 3 050 4 300 6 500 DCL2410 0.054 — 47.625(1⅓) 19.050(⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2410 0.054 — 47.625(1⅓) 22.225(⅓) 32 000 50 500 3 250 5 150 4 300 6 500 DCL2412 0.065 — 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 41.275(1⅙) 50.800(2) 15.875(⅙) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610		38.100(1½)	15.875(%)	16 400	27 000	1 670	2 750	5 000	7 500	DCL2010	0.029	_
38.100(1½) 31.750(1⅓) 34 500 70 000 3 500 7 100 5 000 7 500 DCL2020 0.058 — 41.275(1⅓) 12.700½) 13 400 21 400 1 360 2 180 4 700 7 000 DCL 228 0.027 — 41.275(1⅓) 19.050⅓) 21 700 40 000 2 210 4 050 4 700 7 000 DCL2212 0.038 — 41.275(1⅓) 25.400(1) 29 600 59 500 3 000 6 050 4 700 7 000 DCL2216 0.051 — 41.275(1⅓) 31.750(1⅓) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2220 0.064 — 47.625(1⅓) 12.700⅓) 17 100 22 800 1 750 2 320 4 300 6 500 DCL248 0.043 — 47.625(1⅓) 19.050⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2410 0.054 — 47.625(1⅓) 19.050⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2412 0.065 — 47.625(1⅓) 25.400(1) 36 500 50 50 50 3 250 5 150 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 47.625(1⅓) 50.800(2) 15.875∜) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610	31.750(1 1/4)	38.100(1½)	19.050(3/4)	20 300	35 500	2 070	3 600	5 000	7 500	DCL2012	0.036	_
34.925(1⅓) 12.700(⅓) 13 400 21 400 1 360 2 180 4 700 7 000 DCL 228 0.027 — 41.275(1⅙) 19.050(⅓) 21 700 40 000 2 210 4 050 4 700 7 000 DCL2212 0.038 — 41.275(1⅙) 25.400(1) 29 600 59 500 3 000 6 050 4 700 7 000 DCL2216 0.051 — 41.275(1⅙) 31.750(1⅓) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2220 0.064 — 47.625(1⅙) 12.700(⅙) 17 100 22 800 1 750 2 320 4 300 6 500 DCL248 0.043 — 47.625(1⅙) 19.050(⅙) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2410 0.054 — 47.625(1⅙) 22.225(⅙) 32 000 50 500 3 250 5 150 4 300 6 500 DCL2412 0.065 — 47.625(1⅙) 25.400(1) 36 500 60 500 3 750 6 200 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1⅙) 25.400(1) 36 500 82 000 4 750 8 350 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅙) 31.750(1⅙) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 50.800(2) 12.700(⅙) 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875(⅙) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610		38.100(1½)	25.400(1)	27 700	53 000	2 830	5 400	5 000	7 500	DCL2016	0.047	_
34.925(1⅓) 41.275(1⅓) 19.050(⅓) 21 700 40 000 2 210 4 050 4 700 7 000 DCL2212 0.038 — 41.275(1⅓) 25.400(1) 29 600 59 500 3 000 6 050 4 700 7 000 DCL2216 0.051 — 41.275(1⅓) 31.750(1⅓) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2220 0.064 — 47.625(1⅓) 12.700(⅓) 17 100 22 800 1 750 2 320 4 300 6 500 DCL 248 0.043 — 47.625(1⅓) 15.875(⅓) 21 000 29 700 2 150 3 050 4 300 6 500 DCL2410 0.054 — 47.625(1⅓) 19.050(⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2410 0.065 — 47.625(1⅓) 22.225(⅓) 32 000 50 500 3 250 5 150 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1⅓) 25.400(1) 36 500 60 500 3 750 6 200 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 50.800(2) 12.700(⅙) 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875(⅙) 22 100 32 500 2 260 3 300 4 000 6 000 DCL 2610 0.058 MI-222610		38.100(1½)	31.750(1 1/4)	34 500	70 000	3 500	7 100	5 000	7 500	DCL2020	0.058	_
34.925(1%) 41.275(1⅓) 25.400(1) 29 600 59 500 3 000 6 050 4 700 7 000 DCL2216 0.051 — 41.275(1⅓) 31.750(1¼) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2220 0.064 — 47.625(1⅓) 12.700(⅓) 17 100 22 800 1 750 2 320 4 300 6 500 DCL 248 0.043 — 47.625(1⅓) 15.875(⅓) 21 000 29 700 2 150 3 050 4 300 6 500 DCL2410 0.054 — 47.625(1⅓) 19.050(⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2412 0.065 — 47.625(1⅓) 22.225(⅓) 32 000 50 500 3 250 5 150 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1⅓) 25.400(1) 36 500 60 500 3 750 6 200 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 50.800(2) 12.700(⅓) 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875(⅓) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610		41.275(1 %)	12.700(½)	13 400	21 400	1 360	2 180	4 700	7 000	DCL 228	0.027	_
41.275(1%) 25.400(1) 29 600 59 500 3 000 6 050 4 700 7 000 DCL2216 0.051 — 41.275(1%) 31.750(1¼) 36 500 78 500 3 750 8 000 4 700 7 000 DCL2220 0.064 — 47.625(1¾) 12.700½ 17 100 22 800 1 750 2 320 4 300 6 500 DCL2410 0.054 — 47.625(1¾) 15.875⅓ 21 000 29 700 2 150 3 050 4 300 6 500 DCL2410 0.054 — 47.625(1¾) 19.050⅓ 26 600 40 000 2 710 4 100 4 300 6 500 DCL2412 0.065 — 47.625(1⅓) 22.225⅓ 32 000 50 500 3 250 5 150 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1⅓) 25.400(1) 36 500 60 500 3 750 6 200 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 50.800(2) 12.700½ 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875⅓ 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610	04 00E/4 ³ A	41.275(1 %)	19.050(¾)	21 700	40 000	2 210	4 050	4 700	7 000	DCL2212	0.038	_
38.100(1½) 47.625(1⅓) 12.700(⅓) 17 100 22 800 1 750 2 320 4 300 6 500 DCL 248 0.043 − 47.625(1⅓) 15.875(⅓) 21 000 29 700 2 150 3 050 4 300 6 500 DCL2410 0.054 − 47.625(1⅓) 19.050(⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2412 0.065 − 47.625(1⅓) 22.225(⅓) 32 000 50 500 3 250 5 150 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1⅓) 25.400(1) 36 500 60 500 3 750 6 200 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 50.800(2) 12.700(⅓) 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875(⅓) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610	34.925(1 %)	41.275(1 %)	25.400(1)	29 600	59 500	3 000	6 050	4 700	7 000	DCL2216	0.051	_
38.100(1½) 47.625(1⅓) 15.875(⅓) 21 000 29 700 2 150 3 050 4 300 6 500 DCL2410 0.054 − 47.625(1⅓) 19.050(⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2412 0.065 − 47.625(1⅓) 22.225(⅓) 32 000 50 500 3 250 5 150 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1⅓) 25.400(1) 36 500 60 500 3 750 6 200 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 50.800(2) 12.700(⅓) 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875(⅓) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610		41.275(1 %)	31.750(1 1/4)	36 500	78 500	3 750	8 000	4 700	7 000	DCL2220	0.064	_
38.100(1½) 47.625(1⅓) 19.050(⅓) 26 600 40 000 2 710 4 100 4 300 6 500 DCL2412 0.065 — 47.625(1⅓) 22.225(⅓) 32 000 50 500 3 250 5 150 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1⅓) 25.400(1) 36 500 60 500 3 750 6 200 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 50.800(2) 12.700(⅓) 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875(⅓) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610		47.625(1 %)	12.700(½)	17 100	22 800	1 750	2 320	4 300	6 500	DCL 248	0.043	_
38.100(1½) 47.625(1⅓) 22.225(⅓) 32 000 50 500 3 250 5 150 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1⅓) 25.400(1) 36 500 60 500 3 750 6 200 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 50.800(2) 12.700(⅓) 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875(⅓) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610		47.625(1 %)	15.875(5/8)	21 000	29 700	2 150	3 050	4 300	6 500	DCL2410	0.054	_
47.625(1½) 22.225(½) 32 000 50 500 3 250 5 150 4 300 6 500 DCL2414 0.076 MI-202416 47.625(1½) 25.400(1) 36 500 60 500 3 750 6 200 4 300 6 500 DCL2416 0.087 MI-202416 47.625(1⅓) 31.750(1⅓) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 50.800(2) 12.700(½) 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875(⅓) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610	20 400/4 1/	47.625(1 %)	19.050(¾)	26 600	40 000	2 710	4 100	4 300	6 500	DCL2412	0.065	_
47.625(1%) 31.750(1%) 46 500 82 000 4 750 8 350 4 300 6 500 DCL2420 0.107 MI-202420 50.800(2) 12.700(½) 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875(%) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610	36.100(1/2)	47.625(1 1/8)	22.225(%)	32 000	50 500	3 250	5 150	4 300	6 500	DCL2414	0.076	MI-202416
50.800(2) 12.700(½) 18 000 24 900 1 840 2 540 4 000 6 000 DCL 268 0.046 MI-222610 50.800(2) 15.875(%) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610		47.625(1 %)	25.400(1)	36 500	60 500	3 750	6 200	4 300	6 500	DCL2416	0.087	MI-202416
41 275(1 %) 50.800(2) 15.875(%) 22 100 32 500 2 260 3 300 4 000 6 000 DCL2610 0.058 MI-222610		47.625(1 %)	31.750(1 1/4)	46 500	82 000	4 750	8 350	4 300	6 500	DCL2420	0.107	MI-202420
41 275(1 %)		50.800(2)	12.700(½)	18 000	24 900	1 840	2 540	4 000	6 000	DCL 268	0.046	MI-222610
41.2/3(1/8) 50.800(2) 25.400(1) 38 500 66 500 3 950 6 800 4 000 6 000 DCL2616 0.106 -	/4 OZE/4 5/\	50.800(2)	15.875(5/8)	22 100	32 500	2 260	3 300	4 000	6 000	DCL2610	0.058	MI-222610
	41.2/3(1%)	50.800(2)	25.400(1)	38 500	66 500	3 950	6 800	4 000	6 000	DCL2616	0.106	_
50.800(2) 31.750(1 ¹ / ₄) 49 000 90 000 5 000 9 150 4 000 6 000 DCL2620 0.116 MI-212620		50.800(2)	31.750(1 1/4)	49 000	90 000	5 000	9 150	4 000	6 000	DCL2620	0.116	MI-212620


Note 1) Bearing with inner ring is represented by DCL-MI. (Refer to Inner Ring Dimension Table on page B-141.)
EX. DCL2414 + MI-202416
Remarks: Manufacture of the closed end type bearings under this Table is also available.

Fw 44.450~50.800mm

Bou	ndary dimens	ions		Basic loa			Limiting	Limiting speeds Bearing			Appropriate ¹⁾
	mm (½5.4mm)		dynamic	static N	dynamic kg		miı	n-1	numbers	kg	inner ring
$F_{ m w}$	D	C				3'	grease	oil		l Kg	
		-0.2	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$				(approx.)	(as a reference)
	53.975(2 1/8)	19.050(3/4)	29 200	47 500	2 980	4 850	3 700	5 500	DCL2812	0.074	MI-242812
44.450(1 ¾)	53.975(2 1/8)		40 500	72 000	4 100	7 350	3 700	5 500	DCL2816	0.099	MI-242816
	53.975(2 1/8)	38.100(1½)	62 000	126 000	6 350	12 800	3 700	5 500	DCL2824	0.149	_
	57.150(2 1/4)	12.700(½)	19 700	29 200	2 000	2 980	3 300	5 000	DCL 308	0.053	_
47.625(1 ¾)	57.150(2 1/4)	15.875(%)	24 200	38 000	2 460	3 900	3 300	5 000	DCL3010	0.066	_
	57.150(2 1/4)	25.400(1)	42 000	78 000	4 300	7 950	3 300	5 000	DCL3016	0.106	_
<u> </u>	60.325(2 3/8)	12.700(½)	20 400	31 500	2 080	3 200	3 100	4 700	DCL 328	0.056	_
50.800(2)	60.325(2 3/8)	25.400(1)	44 000	83 500	4 450	8 550	3 100	4 700	DCL3216	0.112	_
30.000(2)		31.750(1 1/4)	55 500	113 000	5 650	11 500	3 100	4 700	DCL3220	0.140	_
	60.325(2 %)	38.100(1½)	67 500	146 000	6 850	14 800	3 100	4 700	DCL3224	0.168	_
							1				

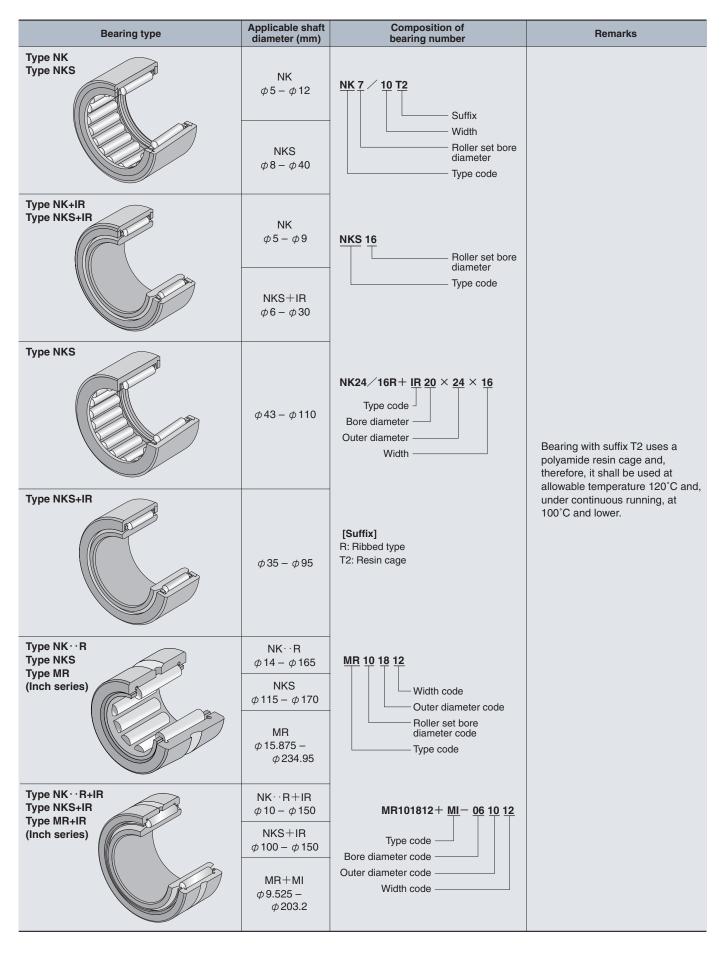
Note 1) Bearing with inner ring is represented by DCL-MI. (Refer to Inner Ring Dimension Table on page B-142.)
EX. DCL2816 + MI-242816
Remarks: Manufacture of the closed end type bearings under this Table is also available.

Type HCK

		Bour	ndary dimen	sions				d ratings		Bearing	g numb	ers	Mass
			mm			dynamic	static N		static kgf				kg
										standard type	wat	ffle type	l va
	$F_{ m w}$	D	C	b	C_1	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor				(approx.
_	10	15	9.35	7.6	1.75	6 200	9 250	635	940	HCK1015Vn	_	0	0.007
_	11.656	17.1	11.85	9.6	2.25	8 850	13 800	905	1 400	HCK1217Vn	0	_	0.013
	13	19	11.85	9.6	2.25	10 000	15 000	1 020	1 530	HCK1319Vn	0	_	0.013
	14	20	11.85	9.6	2.25	10 500	16 600	1 070	1 690	HCK1420Vn	0	0	0.014
	16	22	12.85	10.6	2.25	12 200	20 700	1 240	2 110	HCK1622Vn	0	0	0.017
	18	24	13.85	11.6	2.25	13 900	25 300	1 420	2 580	HCK1824Vn	\circ	_	0.02
	18	24.6	13.85	11.6	2.25	13 900	25 300	1 420	2 580	HCK1825Vn	0	0	0.02
	20	27.9	15.82	13.1	2.72	17 800	31 000	1 810	3 150	HCK2028Vn	0	_	0.037

 $Suffix \ (Vn) \ is \ different \ from \ the \ Dimple \ type \ and \ the \ Waffle \ type. For \ more \ informations, \ contact \ NTN \ engineering.$

Machined Ring Needle Roller Bearings


Machined Ring Needle Roller Bearings

The machined ring of this bearing type contains needle rollers and a cage. The outer ring and the needle rollers are inseparable from each other by means of double-side ribs on the outer ring or side plates.

Because of its machined (solid) outer ring enabling to make it more rigid and upgrade the bearing accuracy, this bearing type is suitable for an application requiring high speed, high load and high running accuracy. These machined ring needle roller bearings are available in two types -- one without inner ring and another with inner ring -- considering the case of using a shaft as the direct raceway surface without using inner ring.

Bearing type	Applicable shaft diameter (mm)	Composition of bearing number	Remarks
Type RNA49	φ7 – φ12	RNA 49 5 T2 Suffix Bore dia. No.	The bearings with suffix T2 using polyamide resin cage shall be used at allowable temperature 120°C and, under continuous running, at 100°C and less.
Type NA49	φ5 – φ9	Type code [Suffix] T2: Resin cage	The dimension series is in compliance with JIS B 1512 or ISO 15.
Type RNA49· R Type RNA49· L Type RNA49· LL	Type RNA49··R ϕ 14 – ϕ 490 Sealed type Type RNA49··L Type RNA49··LL ϕ 14 – ϕ 58	RNA 49 02 R Suffix Bore dia. No. Dimension series Type code	Bearing with seal type (Suffix: L or LL) - synthetic rubber seal built in at single side or double sides is internally filled up with ithium soap base grease. To avoid deterioration of seal and grease in a sealed bearing, use a bearing in a temperature range of -20 to 120°C.
Type NA49··R Type NA49··L Type NA49··LL	e NA49··L		For continuous machine operation, limit the maximum permissible operating temperature to 100°C. The dimension series is in compliance with JIS B 15 or ISO 15.

Bearing type	Applicable shaft diameter (mm)	Composition of bearing number	Remarks
Type RNA59	φ20 – φ160	RNA 59 02 Bore dia. No. Dimension series Type code	
Type NA59	φ15 – φ140	NA 59 / 22 Dimension code Dimension series Type code	The dimension series is in compliance with
Type RNA69··R	ϕ 16 – ϕ 35 Built-in cage single-row type ϕ 40 – ϕ 110	RNA 69 01 R Suffix Bore dia. No. Dimension series	JIS B 1512 or ISO 15.
	Built-in cage double-row type	Type code	
Type NA49··R	ϕ 12 – ϕ 30 Built-in cage single-row type	NA 69 / 22 Dimension code	
	ϕ 32 – ϕ 95 Built-in cage double-row type	Dimension series Type code	

Bearing Tolerances

The dimensional accuracy, profile accuracy and running accuracy of machined ring needle roller bearings are specified in JIS B 1514 (Accuracy of Rolling Bearings). (Refer to Section 4 "Bearing Tolerances", Table 4.3 on page A-26.) Although the accuracy of NTN standard bearings conforms to JIS Class-0, NTN can also supply bearings conforming to JIS Class-6, -5 and -4.

The dimensional tolerances for the roller set bore diameter ($F_{\rm w}$) of **Types NK**, **RNA**, **NKS**, and **MR** each lacking an inner ring fall in the ISO tolerance class F6.

Feel free to contact **NTN** for the further detail of these bearings.

For applications that need particularly high running accuracy, certain bearing users install the inner ring onto the shaft and then grind the raceway surface to targeted accuracy. To fulfill this type of request, NTN will supply a special inner ring whose raceway surface includes a grinding allowance. For details, contact NTN Engineering.

Radial internal clearance and bearing fits

NTN machined ring needle roller bearings (with inner ring) are manufactured to the tolerance range of radial internal clearance in **Table 5.1** in Sec. **5.1** "**Bearing radial internal clearance**" (page A-30). Because of the narrow non-interchangeable clearance range, the bearings shipped after adjusted to a specific non-interchangeable clearance must be installed with the clearance remained unchanged.

The dimensional tolerances (fits) of a shaft and housing bore to which the bearing with inner ring is installed should be in accordance with type and magnitude of load, and dimensions of the shaft and housing bore. For information about the dimensional tolerances of a shaft and housing bore, refer to Sec. 6.4 "Recommended internal fits" (page A-33). For the profile accuracy and surface roughness of the shaft and housing bore corresponding to the recommended internal fits in Table 8.3 in Sec. 8.3 "Shaft and housing accuracy" (page A-40).

A bearing not having an inner ring directly uses the shaft as raceway surface, and the dimensional tolerances of the shaft diameter (raceway diameter) can vary depending on the operating internal clearance of the bearing as summarized in **Table 1** below. For this type of bearing usage, the dimensional tolerance class for the

Table 1 Shaft diameter (raceway diameter) tolerance (recommended)

	bed circle dia.	Toleran	Tolerance range class for shaft						
n	nm	Smaller than ordinary	Ordinary class	Larger than ordinary					
Over	incl.	clearance		clearance					
	80	k5	h5	f6					
80	160	k5	g5	f6					
160	180	k5	g5	e6					
180	200	j5	g5	e6					
200	250	j5	f6	e6					
250 315		h5	f6	e6					
315	400	g5	f6	d6					

housing bore is K7, which is most commonly adopted tolerance class. When wishing to adopt a dimensional tolerance class other than K7 for the housing bore, contact NTN Engineering for technical assistance.

For the profile accuracy, surface roughness and surface hardness of the shaft that functions as raceway surface, refer to Sec. **8.4** "Raceway surface accuracy" (page A-40) and Sec. **8.5** "Material and hardness of raceway" (page A-40).

Oil hole dimension of the outer ring

The outer ring is provided with an oil hole and an oil groove to facilitate oil lubrication to bearing. (However, the description above does not apply to the **Type NK** bearings whose roller set bore diameter ($F_{\rm w}$) measures 12 mm or less and the **Type NKS** bearing whose roller set bore diameter ($F_{\rm w}$) measures 110 mm or less.)

Table 2 shows the oil hole dimension every outer ring diameter.

Table 2 Oil hole dimension

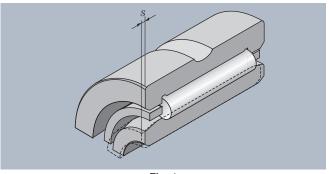
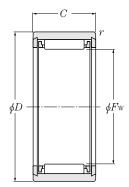
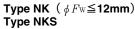
Outer ring Over	outer diameter incl.	Oil hole dia. (mm)	Number of oil hole
_	20	2.0	1
20	40	2.5	1
40	80	3.0	1
80	200	3.5	1
200	350	4.0	1
350	_	5.0	1

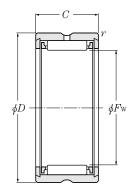
Mounting relations

In the case of raceway with an oil hole, the bearing must be installed so that the oil hole can locate on the non-load area. In addition, any bearing with inner ring must be used within the allowable stroking value (s) (with the rollers retained within the effective contact length range of inner ring).

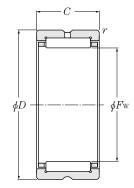
For the allowable stroking value (s), refer to **Fig. 1** and applicable "Dimensions Table".

The inner ring and outer ring of machined ring needle roller bearing must be positioned in axial direction by shoulder or snap ring in this case. The mounting relation dimensions about the shaft and housing bore for this case are found in the relevant dimension table.


Fig.

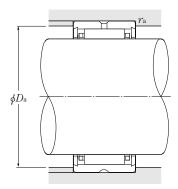
Without Inner Ring

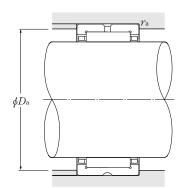

Type RNA49 Type RNA59 **Type RNA69** Type NK Type NKS

Type RNA49($\phi Fw \leq 12$ mm)

Type RNA49 \cdot R(ϕ F_W \geq 14mm) Type RNA59

Type RNA69 ·· R Type NK ·· R($\phi F_W \ge 14$ mm)

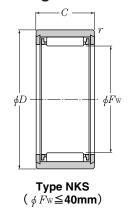


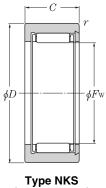

*F*_w 5∼15mm

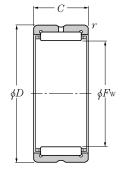
Bounda	ary di	mensi	ons		Basic load	l ratings		Limiting	speeds	Bearing	Abutr	ment	Mass
				dynamic	static	dynamic	static			numbers	dimen	sions	
	mr	n			N	ŀ	cgf		n ⁻¹ oil		$D_{ m a}$		kg
$F_{ m w}$	D	C	r _{s min} 1)	$C_{ m r}$	Cor	C_{r}	Cor	grease	Oil		max	r _{as}	(approx.)
5 +0.018	10	10	0.15	2 640	2 190	269	224	27 000	40 000	NK5/10T2	6.5	0.15	0.0031
+0.010	10	12	0.15	2 720	2 250	277	230	27 000	40 000	NK5/12T2	6.5	0.15	0.0037
6 ^{+0.018} _{+0.010}	12	10	0.15	2 660	2 280	272	233	25 000	37 000	NK6/10T2	7.5	0.15	0.0047
+0.010	12	12	0.15	3 400	3 150	345	320	25 000	37 000	NK6/12T2	7.5	0.15	0.0057
	13	10	0.15	2 670	2 350	272	239	23 000	34 000	RNA495T2	8.5	0.15	0.0055
7 ^{+0.022} _{+0.013}	14	10	0.3	2 670	2 350	272	239	23 000	34 000	NK7/10T2	8.5	0.3	0.0069
	14	12	0.3	3 400	3 200	345	330	23 000	34 000	NK7/12T2	8.5	0.3	0.0082
	15	10	0.15	3 150	3 000	320	305	21 000	32 000	RNA496T2T	9.5	0.15	0.0073
8 ^{+0.022} _{+0.013}	15	12	0.3	4 000	4 100	410	420	21 000	32 000	NK8/12T2	9.5	0.3	0.0087
+0.013	15	16	0.3	4 850	5 200	495	535	21 000	32 000	NK8/16	9.5	0.3	0.0120
	16	13	0.3	4 650	4 150	475	425	21 000	32 000	NKS8T2	10	0.3	0.011
	16	12	0.3	4 550	5 000	465	510	20 000	30 000	NK9/12T2	10.5	0.3	0.0100
9 ^{+0.022} _{+0.013}	16	16	0.3	5 500	6 400	560	650	20 000	30 000	NK9/16T2	10.5	0.3	0.0130
	17	10	0.15	3 600	3 650	365	375	20 000	30 000	RNA497	10.5	0.15	0.0095
	17	12	0.3	4 550	5 100	460	520	19 000	28 000	NK10/12T2	11.5	0.3	0.0100
10 ^{+0.022} _{+0.013}	17	16	0.3	5 450	6 450	555	660	19 000	28 000	8E-NK10/16CT	11.5	0.3	0.0130
10 _{+0.013}	19	11	0.15	5 250	5 150	535	525	19 000	28 000	RNA498CT	12	0.15	0.0130
	19	13	0.3	5 500	5 450	560	555	19 000	28 000	NKS10	12	0.3	0.015
	19	12	0.3	5 000	6 100	510	620	17 000	26 000	NK12/12	13.5	0.3	0.0130
12 ^{+0.027} _{+0.016}	19	16	0.3	6 000	7 700	615	785	17 000	26 000	NK12/16	13.5	0.3	0.0160
12 _{+0.016}	20	11	0.3	4 850	4 900	495	500	17 000	26 000	RNA499	14	0.3	0.0130
	22	16	0.3	9 000	9 400	920	960	17 000	26 000	NKS12	14.5	0.3	0.026
	22	13	0.3	8 600	9 200	875	935	16 000	24 000	RNA4900R	20	0.3	0.0170
14 ^{+0.027} _{+0.016}	22	16	0.3	10 300	11 500	1 050	1 170	16 000	24 000	NK14/16R	20	0.3	0.0210
+0.016	22	20	0.3	13 000	15 600	1 330	1 590	16 000	24 000	NK14/20R	20	0.3	0.0260
	25	16	0.3	8 950	9 650	915	985	16 000	24 000	NKS14	16.5	0.3	0.035
	23	16	0.3	10 900	12 700	1 110	1 290	15 000	23 000	NK15/16R	21	0.3	0.0220
15 ^{+0.027} _{+0.016}	23	20	0.3	13 800	17 200	1 410	1 750	15 000	23 000	NK15/20R	21	0.3	0.0270
	26	16	0.3	10 100	11 500	1 030	1 170	15 000	23 000	NKS15	17.5	0.3	0.028

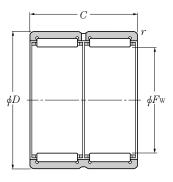
Note 1) Allowable minimum chamfer dimension \mathcal{V} .

²⁾ Max. allowable dimension of radius \mathcal{V}_a for corner roundness on shaft/housing.


Fw 16~24mm


Boundary dimensions			Basic load	•		Limiting	speeds	Bearing	Abutment dimensions		Mass		
	mr	n		dynamic	static N	dynamic k	static gf	mi	n ⁻¹	numbers	m		kg
$F_{ m w}$	D	C	_{√s min} 1)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grease	oil		$D_{ m a}$ max	$r_{ m as}$ max	(approx.)
I' W								45.000	00.000	DNIA 4004D			(approx.)
	24	13	0.3	9 550	10 900	975	1 110	15 000	23 000	RNA4901R NK16/16R	22 22	0.3	0.0170
16 ^{+0.027} _{+0.016}	24 24	16 20	0.3	12 200 14 600	14 900 18 800	1 240 1 490	1 520	15 000 15 000	23 000 23 000	NK16/10R NK16/20R	22	0.3	0.0220 0.0280
+0.016	24	22	0.3	15 400	20 000	1 570	1 920 2 040	15 000	23 000	RNA6901R	22	0.3	0.0280
	28	16	0.3	12 600	13 900	1 290	1 410	15 000	23 000	NKS16	19	0.3	0.0310
				12 100	15 000			15 000	22 000	NK17/16R	23	0.3	0.024
17 ^{+0.027} _{+0.016}	25 25	16 20	0.3	15 400	20 400	1 240 1 570	1 530 2 080	15 000	22 000	NK17/10R NK17/20R	23	0.3	0.024
4 a +0 027	26	16	0.3	12 700	16 200	1 300	1 650	14 000	21 000	NK18/16R	24	0.3	0.025
18 ^{+0.027} _{+0.016}	26	20	0.3	16 100	22 000	1 640	2 250	14 000	21 000	NK18/20RCT	24	0.3	0.031
	30	16	0.3	11 600	12 800	1 180	1 300	14 000	21 000	NKS18	21	0.3	0.038
19 ^{+0.033} _{+0.020}	27	16	0.3	13 300	17 400	1 350	1 780	14 000	21 000	NK19/16R	25	0.3	0.026
+0.020	27	20	0.3	16 000	22 200	1 630	2 260	14 000	21 000	NK19/20R	25	0.3	0.032
	28	13	0.3	10 300	12 800	1 050	1 310	13 000	20 000	RNA4902R	26	0.3	0.022
	28	16	0.3	13 200	17 500	1 340	1 790	13 000	20 000	NK20/16RCT	26	0.3	0.027
20 ^{+0.033} _{+0.020}	28	18	0.3	14 100	19 100	1 440	1 950	13 000	20 000	RNA5902CT	26	0.3	0.033
+0.020	28	20	0.3	16 700	23 800	1 700	2 420	13 000	20 000	NK20/20R	26	0.3	0.034
	28	23	0.3	17 600	25 300	1 790	2 580	13 000	20 000	RNA6902R	26	0.3	0.040
	32	20	0.3	17 800	22 800	1 810	2 330	13 000	20 000	NKS20	23	0.3	0.049
21 ^{+0.033} _{+0.020}	29	16	0.3	13 700	18 700	1 400	1 910	13 000	19 000	NK21/16R	27	0.3	0.028
+0.020	29	20	0.3	17 400	25 400	1 770	2 590	13 000	19 000	NK21/20R	27	0.3	0.035
	30	16	0.3	14 200	19 900	1 450	2 030	12 000	18 000	NK22/16R	28	0.3	0.034
	30	20	0.3	18 000	27 000	1 840	2 760	12 000	18 000	NK22/20R	28	0.3	0.037
22 ^{+0.033} _{+0.020}	30	13	0.3	11 200	14 600	1 140	1 490	12 000	18 000	RNA4903R	28	0.3	0.022
+0.020	30	18	0.3	15 200	21 700	1 550	2 210	12 000	18 000	RNA5903	28	0.3	0.035
	30	23	0.3	18 200	27 200	1 850	2 770	12 000	18 000	RNA6903R	28	0.3	0.042
	35	20	0.6	17 700	23 300	1 810	2 380	12 000	18 000	NKS22	25	0.6	0.062
	32	16	0.3	15 200	22 300	1 550	2 280	11 000	170 00	NK24/16R	30	0.3	0.032
24 ^{+0.033} _{+0.020}	32	20	0.3	18 600	28 800	1 890	2 930	11 000	17 000	NK24/20R	30	0.3	0.040
	37	20	0.6	18 400	25 200	1 880	2 570	11 000	17 000	NKS24	27	0.6	0.066


Note 1) Allowable minimum chamfer dimension $\mathcal V$. 2) Max. allowable dimension of radius $\mathcal V$ a for corner roundness on shaft/housing.

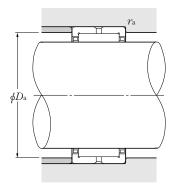

Without Inner Ring

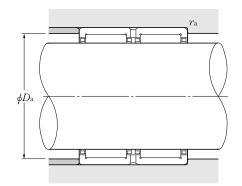
Type RNA49 Type RNA59 **Type RNA69** Type NK Type NKS

 $(\phi F_{W} > 43mm)$

Type RNA49 \cdot R, Type RNA59 Type RNA69 \cdot R (ϕ Fw \geq 35mm) Type NK \cdot R

Type RNA69 ·· R $(\phi F_{\text{W}} \ge 40 \text{mm})$

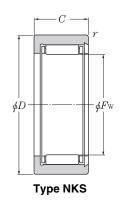


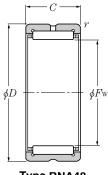

Fw 25~32mm

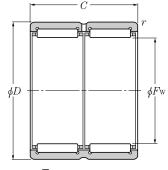
Bound	Boundary dimensions			Basic load	Ŭ		Limiting	speeds	Bearing	Abuti		Mass	
	mr	m		dynamic	static N	dynamic k	static gf	mi	in ⁻¹	numbers	dimen mr		kg
	_	~	1)	~				grease	oil		D_{a}	γ as	
$F_{ m w}$	D	C	<i>r</i> s min 1)	$C_{\rm r}$	Cor	C_{r}	Cor				max	max	(approx.)
	33	16	0.3	15 100	22 400	1 540	2 280	11 000	16 000	NK25/16R	31	0.3	0.033
	33	20	0.3	19 200	30 500	1 960	3 100	11 000	16 000	NK25/20RCT	31	0.3	0.042
25 +0.033 +0.020	37	17	0.3	21 300	25 500	2 170	2 600	11 000	16 000	RNA4904RCT	35	0.3	0.052
+0.020	37	23	0.3	28 400	37 000	2 900	3 750	11 000	16 000	RNA5904	35	0.3	0.084
	37	30	0.3	36 500	50 500	3 700	5 150	11 000	16 000	RNA6904R	35	0.3	0.100
	38	20	0.6	18 300	25 300	1 870	2 580	11 000	16 000	NKS25	28	0.6	0.068
26 ^{+0.033} _{+0.020}	34	16	0.3	15 600	23 600	1 590	2 410	10 000	15 000	NK26/16R	32	0.3	0.034
26 _{+0.020}	34	20	0.3	19 100	30 500	1 940	3 100	10 000	15 000	NK26/20R	32	0.3	0.042
	37	20	0.3	22 300	34 000	2 280	3 450	9 500	14 000	NK28/20R	35	0.3	0.052
	37	30	0.3	26 700	48 000	2 720	4 900	9 500	14 000	NK28/30RCT	35	0.3	0.082
28 ^{+0.033} _{+0.020}	39	17	0.3	23 200	29 300	2 360	2 990	9 500	14 000	RNA49/22R	37	0.3	0.050
+0.020	39	23	0.3	26 400	37 500	2 690	3 850	9 500	14 000	RNA59/22	37	0.3	0.092
	39	30	0.3	40 000	58 500	4 050	6 000	9 500	14 000	RNA69/22R	37	0.3	0.100
	42	20	0.6	18 100	25 800	1 850	2 630	9 500	14 000	NKS28	31	0.6	0.084
29 ^{+0.033} _{+0.020}	38	20	0.3	22 200	34 000	2 270	3 450	9 500	14 000	NK29/20R	36	0.3	0.054
29 _{+0.020}	38	30	0.3	27 500	50 500	2 810	5 150	9 500	14 000	NK29/30R	36	0.3	0.084
	40	20	0.3	22 100	34 000	2 260	3 500	8 500	13 000	NK30/20R	38	0.3	0.065
	40	30	0.3	33 000	57 000	3 350	5 800	8 500	13 000	NK30/30R	38	0.3	0.098
30 ^{+0.033} _{+0.020}	42	17	0.3	24 000	31 500	2 450	3 200	8 500	13 000	RNA4905R	40	0.3	0.061
+0.020	42	23	0.3	30 500	43 000	3 150	4 350	8 500	13 000	RNA5905	40	0.3	0.101
	42	30	0.3	41 500	63 000	4 200	6 400	8 500	13 000	RNA6905R	40	0.3	0.112
	45	22	0.6	23 300	33 000	2 370	3 350	8 500	13 000	NKS30	33.5	0.6	0.104
	42	20	0.3	23 500	37 500	2 400	3 850	8 500	13 000	NK32/20R	40	0.3	0.068
	42	30	0.3	34 000	60 500	3 450	6 150	8 500	13 000	NK32/30R	40	0.3	0.102
32 ^{+0.041} _{+0.025}	45	17	0.3	24 800	33 500	2 530	3 400	8 500	13 000	RNA49/28RCT	43	0.3	0.073
+0.025	45	23	0.3	32 000	45 500	3 250	4 650	8 500	13 000	RNA59/28	43	0.3	0.108
	45	30	0.3	43 000	67 000	4 350	6 850	8 500	13 000	RNA69/28R	43	0.3	0.135
	47	22	0.6	24 000	35 000	2 450	3 550	8 500	13 000	NKS32	35.5	0.6	0.11
				l				l					I

Note 1) Allowable minimum chamfer dimension \mathcal{V} .

²⁾ Max. allowable dimension of radius \mathcal{V}_a for corner roundness on shaft/housing.


F_w 35∼45mm


Bound	Boundary dimensions			Basic load	•		Limiting	speeds	Bearing	Abutr		Mass	
	mı	m		dynamic	static N	dynamic	static gf	mi	n ⁻¹	numbers	dimen:		kg
			4)					grease	oil		$D_{\rm a}$	$\gamma_{ m as}$	
$F_{ m w}$	D	C	∕r _{s min} 1)	$C_{ m r}$	Cor	C_{r}	Cor				max	max	(approx.)
	45	20	0.3	24 800	41 500	2 520	4 250	7 500	11 000	NK35/20RCT	43	0.3	0.074
	45	30	0.3	36 000	66 500	3 650	6 800	7 500	11 000	NK35/30R	43	0.3	0.112
35 ^{+0.041} _{+0.025}	47	17	0.3	25 500	35 500	2 600	3 600	7 500	11 000	RNA4906R	45	0.3	0.069
+0.025	47	23	0.3	32 500	48 500	3 350	4 950	7 500	11 000	RNA5906	45	0.3	0.108
	47	30	0.3	42 500	67 500	4 300	6 900	7 500	11 000	RNA6906R	45	0.3	0.126
	50	22	0.6	24 700	37 000	2 510	3 750	7 500	11 000	NKS35	38.5	0.6	0.118
	47	20	0.3	25 300	43 500	2 580	4 400	7 500	11 000	NK37/20R	45	0.3	0.077
37 ^{+0.041} _{+0.025}	47	30	0.3	36 500	69 500	3 750	7 100	7 500	11 000	NK37/30R	45	0.3	0.107
	52	22	0.6	26 300	41 000	2 680	4 150	7 500	11 000	NKS37	40.5	0.6	0.123
	48	20	0.3	25 900	45 000	2 640	4 600	7 500	11 000	NK38/20R	46	0.3	0.079
38 ^{+0.041} _{+0.025}	48	30	0.3	37 500	73 000	3 850	7 400	7 500	11 000	NK38/30R	46	0.3	0.107
	50	20	0.3	26 400	47 000	2 700	4 800	6 500	10 000	NK40/20R	48	0.3	0.083
	50	30	0.3	38 500	76 000	3 900	7 750	6 500	10 000	NK40/30R	48	0.3	0.125
40 ^{+0.041} _{+0.025}	52	20	0.6	31 500	47 500	3 200	4 850	6 500	10 000	RNA49/32R	48	0.6	0.089
40 +0.025	52	27	0.6	38 000	61 000	3 850	6 250	6 500	10 000	RNA59/32	48	0.6	0.149
	52	36	0.6	47 500	82 000	4 850	8 350	6 500	10 000	RNA69/32R	48	0.6	0.162
	55	22	0.6	27 700	45 000	2 820	4 550	6 500	10000	NKS40	43.5	0.6	0.129
	52	20	0.3	26 900	49 000	2 750	5 000	6 500	9 500	NK42/20R	50	0.3	0.086
	52	30	0.3	39 000	79 000	4 000	8 050	6 500	9 500	NK42/30R	50	0.3	0.130
42 ^{+0.041} _{+0.025}	55	20	0.6	32 000	50 000	3 300	5 100	6 500	9 500	RNA4907R	51	0.6	0.107
	55	27	0.6	39 000	64 500	3 950	6 550	6 500	9 500	RNA5907	51	0.6	0.176
	55	36	0.6	49 000	86 500	5 000	8 800	6 500	9 500	RNA6907R	51	0.6	0.193
	53	20	0.3	27 500	51 000	2 810	5 200	6 500	9 500	NK43/20R	51	0.3	0.086
43 ^{+0.041} _{+0.025}	53	30	0.3	40 000	82 000	4 100	8 400	6 500	9 500	NK43/30R	51	0.3	0.133
	58	22	0.6	29 100	49 000	2 960	5 000	6 500	9 500	NKS43	46.5	0.6	0.14
	55	20	0.3	28 000	52 500	2 860	5 400	6 000	9 000	NK45/20R	53	0.3	0.092
45 ^{+0.041} _{+0.025}	55	30	0.3	41 000	85 500	4 150	8 700	6 000	9 000	NK45/30RCT	53	0.3	0.139
	60	22	0.6	29 700	51 000	3 000	5 200	6 000	9 000	NKS45	48.5	0.6	0.16

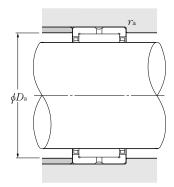

Note 1) Allowable minimum chamfer dimension $\mathcal V$. 2) Max. allowable dimension of radius $\mathcal V$ a for corner roundness on shaft/housing.

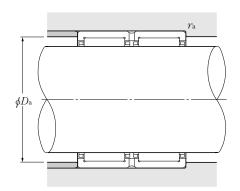
Without Inner Ring

Type RNA49 Type RNA59 **Type RNA69** Type NK Type NKS

Type RNA48 Type RNA49··R Type RNA59 Type NK··R

Type RNA69 · · R

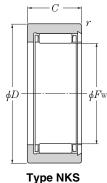


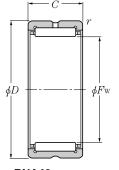

Fw 47∼68mm

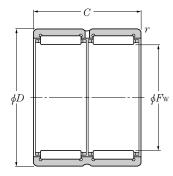
Bound	ary di	mensi	ons	aluma mai a	Basic load		atatia	Limiting	speeds	Bearing	Abutr		Mass
	mr	n		dynamic	static N	dynamic	static kgf	mir	1 ⁻¹	numbers	mr		kg
T.	D	C	1)	C	C	C	C	grease	oil		$D_{\rm a}$	$\gamma_{ m as}$	
$F_{ m w}$	D	C	∕rs min 1)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	Cor				max	max	(approx.)
47 ^{+0.041} _{+0.025}	57	20	0.3	28 800	55 500	2 940	5 650	5 500	8 500	NK47/20RCT	55	0.3	0.095
	57	30	0.3	42 500	91 500	4 350	9 350	5 500	8 500	NK47/30R	55	0.3	0.142
.0.041	62	22	0.6	43 500	66 500	4 450	6 800	5 500	8 500	RNA4908R	58	0.6	0.140
48 ^{+0.041} _{+0.025}	62	30	0.6	53 000	92 500	5 450	9 450	5 500	8 500	RNA5908	58	0.6	0.225
	62	40	0.6	67 000	116 000	6 850	11 800	5 500	8 500	RNA6908R	58	0.6	0.256
	62	25	0.6	38 500	74 500	3 950	7 550	5 500	8 000	NK50/25RCT	58	0.6	0.158
50 ^{+0.041} _{+0.025}	62	35	0.6	51 000	106 000	5 200	10 800	5 500	8 000	NK50/35R	58	0.6	0.221
	65	22	1	31 500	57 000	3 200	5 800	5 500	8 000	NKS50	53.5	1	0.157
	68	22	0.6	46 000	73 000	4 700	7 450	5 000	7 500	RNA4909R	64	0.6	0.182
52 ^{+0.049} _{+0.030}	68	30	0.6	56 000	101 000	5 700	10 300	5 000	7 500	RNA5909	64	0.6	0.232
	68	40	0.6	70 500	127 000	7 200	13 000	5 000	7 500	RNA6909R	64	0.6	0.273
	68	25	0.6	41 000	82 000	4 150	8 400	5 000	7 500	NK55/25R	64	0.6	0.193
55 ^{+0.049} _{+0.030}	68	35	0.6	54 000	118 000	5 500	12 000	5 000	7 500	NK55/35R	64	0.6	0.26
10.000	72	22	1	33 500	63 000	3 400	6 450	5 000	7 500	NKS55	58.5	1	0.221
	72	22	0.6	48 000	80 000	4 900	8 150	4 700	7 000	RNA4910R	68	0.6	0.163
58 ^{+0.049} _{+0.030}	72	30	0.6	58 000	110 000	5 950	11 200	4 700	7 000	RNA5910	68	0.6	0.289
	72	40	0.6	74 000	139 000	7 500	14 200	4 700	7 000	RNA6910R	68	0.6	0.320
	72	25	0.6	41 000	85 000	4 200	8 700	4 300	6 500	NK60/25R	68	0.6	0.185
60 ^{+0.049} _{+0.030}	72	35	0.6	57 000	130 000	5 800	13 200	4 300	6 500	NK60/35R	68	0.6	0.258
	80	28	1.1	44 500	85 000	4 500	8 700	4 300	6 500	NKS60	64	1.1	0.335
	80	25	1	58 500	99 500	6 000	10 100	4 300	6 500	RNA4911R	75	1	0.255
63 ^{+0.049} _{+0.030}	80	34	1	76 500	140 000	7 800	14 300	4 300	6 500	RNA5911	75	1	0.367
. 0.000	80	45	1	94 000	183 000	9 600	18 600	4 300	6 500	RNA6911R	75	1	0.470
	78	25	0.6	45 000	98 000	4 550	10 000	4 000	6 000	NK65/25R	74	0.6	0.221
65 ^{+0.049} _{+0.030}	78	35	0.6	60 000	142 000	6 100	14 400	4 000	6 000	NK65/35R	74	0.6	0.310
. 3.300	85	28	1.1	47 000	94 000	4 800	9 600	4 000	6 000	NKS65	69	1.1	0.356
	82	25	1	44 500	89 000	4 500	9 050	4 000	6 000	NK68/25R	77	0.6	0.241
68 ^{+0.049} _{+0.030}	82	35	0.6	63 000	139 000	6 400	14 200	4 000	6 000	NK68/35R	78	0.6	0.338
10.000	85	25	1	61 500	108 000	6 250	11 000	4 000	6 000	RNA4912R	80	1	0.275

Note 1) Allowable minimum chamfer dimension \mathcal{V} .

²⁾ Max. allowable dimension of radius \mathcal{V}_a for corner roundness on shaft/housing.


Fw 68∼90mm


Bound	lary di	mensi	ons		Basic load	•		Limiting	speeds	Bearing .		ment	Mass
	mr	m		dynamic	static N	dynamic	static kgf	mir	1 ⁻¹	numbers	aimen	isions m	kg
			1)	_				grease	oil		D_{a}	$r_{ m as}$	
$F_{ m w}$	D	C	∕r _{s min} 1)	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$				max	max	(approx.)
68 ^{+0.049} _{+0.030}	85	34	1	80 500	153 000	8 200	15 600	4 000	6 000	RNA5912	80	1	0.408
+0.030	85	45	1	95 500	191 000	9 750	19 400	4 000	6 000	RNA6912R	80	1	0.488
	85	25	0.6	45 000	91 500	4 600	9 350	3 700	5 500	NK70/25R	81	0.6	0.275
70 ^{+0.049} _{+0.030}	85	35	0.6	64 000	144 000	6 550	14 700	3 700	5 500	NK70/35R	81	0.6	0.386
	90	28	1.1	49 500	103 000	5 050	10 500	3 700	5 500	NKS70	74	1.1	0.38
	90	25	1	62 500	112 000	6 350	11 400	3 700	5 500	RNA4913R	85	1	0.312
72 ^{+0.049} _{+0.030}	90	34	1	84 000	165 000	8 600	16 800	3 700	5 500	RNA5913	85	1	0.462
	90	45	1	97 000	198 000	9 900	20 200	3 700	5 500	RNA6913R	85	1	0.520
70 ±0 049	90	25	0.6	54 000	100 000	5 500	10 200	3 700	5 500	NK73/25R	86	0.6	0.302
73 ^{+0.049} _{+0.030}	90	35	0.6	76 500	156 000	7 800	16 000	3 700	5 500	NK73/35R	86	0.6	0.428
	92	25	0.6	55 000	104 000	5 600	10 600	3 700	5 500	NK75/25R	88	0.6	0.315
75 ^{+0.049} _{+0.030}	92	35	0.6	78 000	162 000	7 950	16 500	3 700	5 500	NK75/35R	88	0.6	0.492
	95	28	1.1	50 500	109 000	5 150	11 100	3 700	5 500	NKS75	79	1.1	0.402
	95	25	1	57 000	119 000	5 800	12 200	3 300	5 000	NK80/25R	90	1	0.301
	95	35	1	79 500	184 000	8 150	18 700	3 300	5 000	NK80/35R	90	1	0.425
80 ^{+0.049} _{+0.030}	100	28	1.1	53 000	118 000	5 400	12 100	3 300	5 000	NKS80	84	1.1	0.413
+0.030	100	30	1	85 500	156 000	8 750	15 900	3 300	5 000	RNA4914R	95	1	0.460
	100	40	1	103 000	187 000	10 500	19 100	3 300	5 000	RNA5914	95	1	0.706
	100	54	1	130 000	267 000	13 300	27 200	3 300	5 000	RNA6914R	95	1	0.857
	105	25	1	70 500	123 000	7 200	12 600	3 100	4 700	NK85/25R	100	1	0.404
	105	30	1	87 000	162 000	8 900	16 500	3 100	4 700	RNA4915R	100	1	0.489
85 ^{+0.058} _{+0.036}	105	32	1.1	64 000	153 000	6 500	15 600	3 100	4 700	NKS85	89	1.1	0.475
+0.036	105	35	1	100 000	193 000	10 200	19 700	3 100	4 700	NK85/35R	100	1	0.517
	105	40	1	109 000	205 000	11 100	20 900	3 100	4 700	RNA5915	100	1	0.745
	105	54	1	132 000	277 000	13 500	28 300	3 100	4 700	RNA6915R	100	1	0.935
	110	25	1	71 500	128 000	7 300	13 100	2 900	4 400	NK90/25R	105	1	0.426
90 ^{+0.058} _{+0.036}	110	30	1	90 500	174 000	9 250	17 700	2 900	4 400	RNA4916R	105	1	0.516
+0.036	110	32	1.1	64 000	157 000	6 550	16 000	2 900	4 400	NKS90	94	1.1	0.714
	110	35	1	104 000	208 000	10 600	21 200	2 900	4 400	NK90/35R	105	1	0.604


Note 1) Allowable minimum chamfer dimension $\mathcal V$. 2) Max. allowable dimension of radius $\mathcal V$ a for corner roundness on shaft/housing.

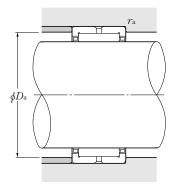
Without Inner Ring

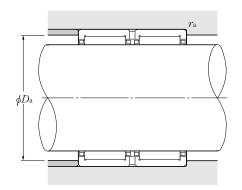
Type RNA49 Type RNA59 **Type RNA69** Type NK Type NKS

Type NKS (*φ F*w**≦110mm**)

Type RNA48 Type RNA49 \cdot R, Type RNA49 Type RNA59 Type NK \cdot R, Type NK Type NKS ($\phi Fw \geq 115 \text{mm}$)

Type RNA69 · · R

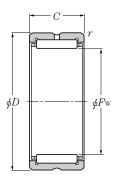



Fw 90∼125mm

Bound	Boundary dimensions			dynamic	Basic load	I ratings dynamic	static	Limiting	speeds	Bearing numbers	Abutr		Mass
	mr	n		dynamic	N	•	kgf	mir	n ⁻¹	numbers	mr		kg
	D	a	1)	a	a	a	a	grease	oil		$D_{\rm a}$	$r_{ m as}$	(
$F_{ m w}$	D	C	∕r _{s min} 1)	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$				max	max	(approx.)
90 ^{+0.058} _{+0.036}	110	40	1	115 000	223 000	11 700	22 700	2 900	4 400	RNA5916	105	1	0.787
+0.030	110	54	1	138 000	298 000	14 000	30 500	2 900	4 400	RNA6916R	105	1	0.987
	115	26	1	74 500	137 000	7 600	14 000	2 800	4 200	NK95/26R	110	1	0.364
95 ^{+0.058} _{+0.036}	115	32	1.1	65 500	165 000	6 700	16 800	2 800	4 200	NKS95	99	1.1	0.765
	115	36	1	108 000	223 000	11 100	22 700	2 800	4 200	NK95/36R	110	1	0.652
	120	26	1	73 500	137 000	7 500	14 000	2 700	4 000	NK100/26R	115	1	0.487
	120	32	1.1	61 000	153 000	6 250	15 600	2 700	4 000	NKS100	104	1.1	0.67
100 ^{+0.058} _{+0.036}	120	35	1.1	112 000	237 000	11 500	24 200	2 700	4 000	RNA4917R	113.5	1	0.657
+0.036	120	36	1	107 000	223 000	11 000	22 800	2 700	4 000	NK100/36R	115	1	0.679
	120	46	1.1	137 000	290 000	14 000	29 600	2 700	4 000	RNA5917	113.5	1	1.00
	120	63	1.1	169 000	400 000	17 300	41 000	2 700	4 000	RNA6917R	113.5	1	1.20
	125	26	1	76 500	147 000	7 800	14 900	2 500	3 800	NK105/26R	120	1	0.506
	125	32	1.1	67 500	176 000	6 850	18 000	2 500	3 800	NKS105	109	1.1	0.68
105 +0.058	125	35	1.1	116 000	252 000	11 900	25 700	2 500	3 800	RNA4918R	118.5	1	0.697
105 +0.036	125	36	1	111 000	238 000	11 400	24 300	2 500	3 800	NK105/36R	120	1	0.713
	125	46	1.1	143 000	310 000	14 600	32 000	2 500	3 800	RNA5918	118.5	1	1.04
	125	63	1.1	175 000	425 000	17 900	43 500	2 500	3 800	RNA6918R	118.5	1	1.33
	130	30	1.1	97 500	204 000	9 950	20 800	2 400	3 600	NK110/30R	123.5	1	0.612
	130	32	1.1	64 500	170 000	6 600	17 300	2 400	3 600	NKS110	114	1.1	0.695
110 ^{+0.058} _{+0.036}	130	35	1.1	118 000	260 000	12 000	26 500	2 400	3 600	RNA4919R	123.5	1	0.719
+0.036	130	40	1.1	129 000	292 000	13 100	29 700	2 400	3 600	NK110/40R	123.5	1	0.830
	130	46	1.1	149 000	335 000	15 200	34 000	2 400	3 600	RNA5919	123.5	1	1.13
	130	63	1.1	177 000	440 000	18 100	45 000	2 400	3 600	RNA6919R	123.5	1	1.46
	135	32	1.1	90 500	199 000	9 250	20 300	2 300	3 500	NKS115	128.5	1.1	0.7
115 ^{+0.058} _{+0.036}	140	40	1.1	127 000	260 000	12 900	26 500	2 300	3 500	RNA4920	133.5	1	1.15
	140	54	1.1	182 000	395 000	18 600	40 500	2 300	3 500	RNA5920	133.5	1	1.76
100 +0.058	140	30	1	93 500	210 000	9 550	21 400	2 200	3 300	RNA4822	135	1	0.670
120 ^{+0.058} _{+0.036}	140	40	1.1	113 000	268 000	11 500	27 300	2 200	3 300	NK120/40	133.5	1	0.910
125 +0.068 +0.043	150	40	1.1	131 000	279 000	13 300	28 400	2 100	3 200	RNA4922	143.5	1	1.24

Note 1) Allowable minimum chamfer dimension \mathcal{V} .

²⁾ Max. allowable dimension of radius \mathcal{V}_a for corner roundness on shaft/housing.

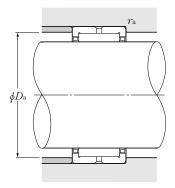

*F*_w 125∼190mm

Boun	Boundary dimensions			dynamia	Basic load		ototio	Limiting	speeds	Bearing	Abutr		Mass
	mr	m		dynamic	static N	dynamic	static kgf	mir	n ⁻¹	numbers	mr		kg
$F_{ m w}$	D	C	_{√s min} 1)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grease	oil		D _a	r _{as}	(approx.)
125 ^{+0.068} _{+0.043}		54	1.1	193 000	440 000	19 700	45 000	2 100	3 200	RNA5922	143.5	1	1.89
		30	1	99 500	233 000	10 100	23 800	2 100	3 100	RNA4824	145	1	0.730
130 ^{+0.068} _{+0.043}	3 150	40	1.1	116 000	283 000	11 800	28 800	2 100	3 100	NK130/40	143.5	1	0.730
	160	40	2	135 000	298 000	13 800	30 500	2 000	3 000	NKS135	151	2	1.32
135 +0.068		45	1.1	180 000	380 000	18 300	38 500	2 000	3 000	RNA4924	158.5	1	1.86
+0.043	165	60	1.1	246 000	530 000	25 100	54 000	2 000	3 000	RNA5924	158.5	1	2.67
	165	35	1.1	118 000	305 000	12 100	31 000	1 900	2 800	RNA4826	158.5	1	0.95
145 +0.068	3 170	32	1.5	111 000	238 000	11 300	24 300	1 900	2 800	NK145/32	162.5	1.5	1.12
	170	42	1.5	153 000	360 000	15 600	36 500	1 900	2 800	NK145/42	162.5	1.5	1.49
	180	50	1.5	202 000	455 000	20 600	46 500	1 800	2 700	RNA4926	172	1.5	2.21
150 ^{+0.068} _{+0.043}	3 180	52	2	202 000	455 000	20 600	46 500	1 800	2 700	NKS150	171	2	2.32
	180	67	1.5	296 000	690 000	30 000	70 500	1 800	2 700	RNA5926	172	1.5	3.21
	175	35	1.1	121 000	315 000	12 300	32 500	1 700	2 600	RNA4828	168.5	1	1.02
155 ^{+0.068} _{+0.043}	3 180	32	1.5	114 000	252 000	11 600	25 700	1 700	2 600	NK155/32	172	1.5	1.20
	180	42	1.5	156 000	380 000	16 000	38 500	1 700	2 600	NK155/42	172	1.5	1.59
	190	50	1.5	209 000	485 000	21 300	49 500	1 700	2 500	RNA4928	182	1.5	2.35
160 ^{+0.068} _{+0.043}	3 190	52	2	209 000	485 000	21 300	49 500	1 700	2 500	NKS160	181	2	2.45
	190	67	1.5	315 000	760 000	32 000	77 500	1 700	2 500	RNA5928	182	1.5	3.48
	190	32	1.5	117 000	265 000	11 900	27 000	1 600	2 400	NK165/32	182	1.5	1.42
165 +0.068	3 190	40	1.1	152 000	390 000	15 500	40 000	1 600	2 400	RNA4830	183.5	1	1.60
	190	42	1.5	160 000	400 000	16 300	40 500	1 600	2 400	NK165/42	182	1.5	1.66
170 ^{+0.068} _{+0.043}	3 200	52	2	215 000	515 000	21 900	52 500	1 600	2 400	NKS170	191	2	2.59
+0.043	3 210	60	2	261 000	610 000	26 600	62 500	1 600	2 400	RNA4930	201	2	2.98
175 ^{+0.068} _{+0.043}	3 200	40	1.1	160 000	425 000	16 300	43 500	1 500	2 300	RNA4832	193.5	1	1.70
180 ^{+0.068} _{+0.043}	3 220	60	2	270 000	650 000	27 600	66 500	1 500	2 200	RNA4932	211	2	3.10
185 ^{+0.079} _{+0.050}	215	45	1.1	185 000	495 000	18 800	50 500	1 500	2 200	RNA4834	208.5	1	2.54
190 ^{+0.079} _{+0.050}	230	60	2	279 000	690 000	28 500	70 500	1 400	2 100	RNA4934	221	2	3.22

Note 1) Allowable minimum chamfer dimension $\mathcal V$. 2) Max. allowable dimension of radius $\mathcal V$ a for corner roundness on shaft/housing.

Without Inner Ring

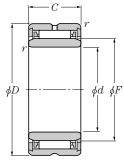
Type RNA48 Type RNA49



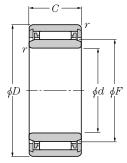
Fw 195~450mm

Boun	dary d	imensi	ons		Basic load	_		Limiting	speeds	Bearing	Abuti		Mass
	m	m		dynamic	static N	dynamic	static kgf	mir	n ⁻¹	numbers	dimen mr		kg
$F_{ m w}$	D	C	_{√s min} 1)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grease	oil		D _a	ras	
								1 400	0.100	DNA 4026	max	max	(approx.)
195 +0.079 +0.050		45	1.1	195 000	540 000	19 800	55 000	1 400	2 100	RNA4836	218.5	1	2.68
205 +0.079 +0.050		69	2	375 000	890 000	38 500	90 500	1 300	2 000	RNA4936	241	2	4.48
210 ^{+0.079} _{+0.050}		50	1.5	227 000	680 000	23 200	69 000	1 300	1 900	RNA4838	232	1.5	3.21
215 ^{+0.079} _{+0.050}	260	69	2	390 000	945 000	40 000	96 500	1 300	1 900	RNA4938	251	2	4.53
220 ^{+0.079} _{+0.050}	250	50	1.5	231 000	705 000	23 600	71 500	1 200	1 800	RNA4840	242	1.5	3.35
225 +0.079 +0.050	280	80	2.1	505 000	1 180 000	51 500	120 000	1 200	1 800	RNA4940	269	2	7.20
240 ^{+0.079} _{+0.050}	270	50	1.5	244 000	780 000	24 900	79 500	1 100	1 700	RNA4844	262	1.5	3.62
245 +0.079 +0.050	300	80	2.1	525 000	1 270 000	53 500	129 000	1 100	1 600	RNA4944	289	2	7.81
		60	2	360 000	1 080 000	37 000	110 000	1 000	1 500	RNA4848	291	2	5.40
265 ^{+0.088} _{+0.056}	320	80	2.1	540 000	1 350 000	55 000	138 000	1 000	1 500	RNA4948	309	2	8.40
285 ^{+0.088} _{+0.056}	320	60	2	375 000	1 160 000	38 000	119 000	950	1 400	RNA4852	311	2	5.80
290 ^{+0.088} _{+0.056}	360	100	2.1	805 000	1 900 000	82 000	193 000	950	1 400	RNA4952	349	2	15.90
305 +0.088	350	69	2	455 000	1 300 000	46 500	133 000	850	1 300	RNA4856	341	2	9.30
310 ^{+0.088} _{+0.056}	380	100	2.1	835 000	2 030 000	85 000	207 000	850	1 300	RNA4956	369	2	16.70
330 ^{+0.098} _{+0.062}	380	80	2.1	625 000	1 770 000	64 000	180 000	800	1 200	RNA4860	369	2	12.70
340 ^{+0.098} _{+0.062}	420	118	3	1 080 000	2 640 000	110 000	269 000	800	1 200	RNA4960	407	2.5	24.00
350 ^{+0.098} _{+0.062}	400	80	2.1	640 000	1 850 000	65 500	189 000	750	1 100	RNA4864	389	2	13.40
360 ^{+0.098} _{+0.062}	440	118	3	1 120 000	2 820 000	114 000	288 000	750	1 100	RNA4964	427	2.5	25.20
370 ^{+0.098} _{+0.062}	420	80	2.1	655 000	1 940 000	66 500	197 000	750	1 100	RNA4868	409	2	14.00
380 ^{+0.098} _{+0.062}	460	118	3	1 160 000	3 000 000	118 000	305 000	750	1 100	RNA4968	447	2.5	26.50
390 +0.098 +0.062	440	80	2.1	665 000	2 020 000	68 000	206 000	650	1 000	RNA4872	429	2	14.80
400 ^{+0.108} _{+0.068}	480	118	3	1 200 000	3 200 000	122 000	325 000	650	1 000	RNA4972	467	2.5	28.20
415 +0.108	480	100	2.1	1 000 000	2 840 000	102 000	289 000	650	950	RNA4876	469	2	26.00
430 ^{+0.108} _{+0.068}		140	4	1 400 000	3 750 000	143 000	385 000	650	950	RNA4976	504	3	38.60
450 ^{+0.108} _{+0.068}	540	140	4	1 450 000	4 000 000	148 000	410 000	600	900	RNA4980	524	3	40.10

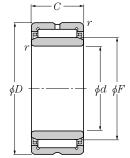
Note 1) Allowable minimum chamfer dimension $\mathcal V$. 2) Max. allowable dimension of radius $\mathcal V$ a for corner roundness on shaft/housing.



Fw 470~490mm

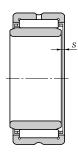

Bound	Boundary dimensions				Basic load			Limiting s	peeds	Bearing	Abuti		Mass
	mı	m		dynamic	static N	dynamic	static kgf	min ⁻	1	numbers	dimen mi		kg
						'	kgi	grease	oil		Da Da	$r_{ m as}$	kg
$F_{ m w}$	D		r _{s min} 1)	$C_{ m r}$	Cor	C_{r}	Cor				max	max	(approx.)
470 ^{+0.108} _{+0.068}			4	1 500 000	4 250 000	153 000	430 000	550	850	RNA4984	544	3	51.60
490 ^{+0.108} _{+0.068}	600	160	4	1 750 000	4 600 000	179 000	470 000	550	800	RNA4988	584	3	66.90

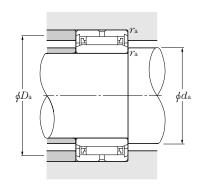
Note 1) Allowable minimum chamfer dimension $\mathcal V$. 2) Max. allowable dimension of radius $\mathcal V$ a for corner roundness on shaft/housing.

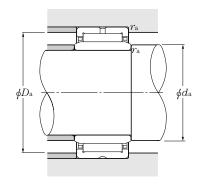

Type NA49 Type NA59 Type NA69 Type NK+IR Type NKS+IR

Type NA49($\phi d \leq 9$ mm)

Type NK+IR(ϕ d \leq 9mm) Type NKS+IR

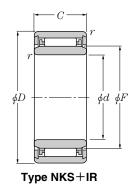

Type NA49 $\cdot\cdot$ R(ϕ d \geq 10mm)
Type NA59
Type NA69 $\cdot\cdot$ R
Type NK $\cdot\cdot$ R+IR(ϕ d \geq 10mm)

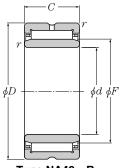

d 5~15mm


		Bou	ındar	v dimen:	sions			Basic loa	ad ratings		Limitin	g speeds	Bearing numbers
							dynamic		dynamic	static		,	g .
			1	mm				N	kg)f	mi grease	n ⁻¹ oil	
	d	D	C	r _{s min} 1)	F	_S 2)	$C_{ m r}$	$C_{ m or}$	$C_{\rm r}$	Cor	grease	Oii	
		13	10	0.15	7	_	2 670	2 350	272	239	23 000	34 000	NA495T2
	5	15	12	0.3	8	1.5	4 000	4 100	410	420	21 000	32 000	NK8/12T2+IR5 \times 8 \times 12
		15	16	0.3	8	2	4 850	5 200	495	535	21 000	32 000	NK8/16T2+IR5 \times 8 \times 16
		15	10	0.15	8	_	3 150	3 000	320	305	21 000	32 000	NA496T2T
	6	16	12	0.3	9	1.5	4 550	5 000	465	510	20 000	30 000	NK9/12T2+IR6 \times 9 \times 12
	0	16	16	0.3	9	2	5 500	6 400	560	650	20 000	30 000	NK9/16T2+IR6 \times 9 \times 16
		19	13	0.3	10	1.5	5 500	5 450	560	555	19 000	28 000	NKS10+IR6 \times 10 \times 13
		17	10	0.15	9	_	3 600	3 650	365	375	20 000	30 000	NA497
	7	17	12	0.3	10	1.5	4 550	5 100	460	520	19 000	28 000	NK10/12T2+IR7 \times 10 \times 12
	,	17	16	0.3	10	2	5 450	6 450	555	660	19 000	28 000	8E-NK10/16CT+IR7 \times 10 \times 16
		22	16	0.3	12	2	9 000	9 400	920	960	17 000	26 000	NKS12+IR7 \times 12 \times 16
	8	19	11	0.15	10	_	5 250	5 150	535	525	19 000	28 000	NA498CT
	0	25	16	0.3	14	2	8 950	9 650	915	985	16 000	24 000	NKS14+IR8 $ imes$ 14 $ imes$ 16
		19	12	0.3	12	1.5	5 000	6 100	510	620	17 000	26 000	NK12/12+IR9×12×12
	9	19	16	0.3	12	2	6 000	7 700	615	785	17 000	26 000	NK12/16+IR9 \times 12 \times 16
	9	20	11	0.3	12	_	4 850	4 900	495	500	17 000	26 000	NA499
		26	16	0.3	15	2	10 100	11 500	1 030	1 170	15 000	23 000	NKS15+IR9×15×16
		22	13	0.3	14	0.5	8 600	9 200	875	935	16 000	24 000	NA4900R
	10	22	16	0.3	14	0.5	10 300	11 500	1 050	1 170	16 000	24 000	NK14/16R+IR10 \times 14 \times 16
		22	20	0.3	14	0.5	13 000	15 600	1 330	1 590	16 000	24 000	NK14/20R+IR10 \times 14 \times 20
		28	16	0.3	16	1.5	12 600	13 900	1 290	1 410	15 000	23 000	NKS16+IR10×16×16
		24	13	0.3	16	0.5	9 550	10 900	975	1 110	15 000	23 000	NA4901R
		24	16	0.3	16	0.5	12 200	14 900	1 240	1 520	15 000	23 000	NK16/16R+IR12 \times 16 \times 16
	12	24	20	0.3	16	0.5	14 600	18 800	1 490	1 920	15 000	23 000	NK16/20R+IR12 \times 16 \times 20
		24	22	0.3	16	1	15 400	20 000	1 570	2 040	15 000	23 000	NA6901R
_		30	16	0.3	18	1.5	11 600	12 800	1 180	1 300	14 000	21 000	NKS18+IR12×18×16
		27	16	0.3	19	0.5	13 300	17 400	1 350	1 780	14 000	21 000	NK19/16R+IR15×19×16
	15	27	20	0.3	19	0.5	16 000	22 200	1 630	2 260	14 000	21 000	NK19/20R+IR15 \times 19 \times 20
		28	13	0.3	20	0.5	10 300	12 800	1 050	1 310	13 000	20 000	NA4902R
											1		

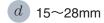
Note 1) Allowable minimum chamfer dimension r. 2) Allowable axial stroking value of inner ring against outer ring. 3) Max. allowable dimension of radius ra for corner roundness on shaft/housing.

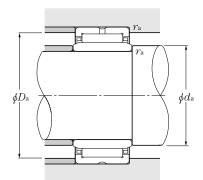
Remarks: Nominal code number of inner ring (IR) comprises the codes of IR bore diameter × outer diameter × width.



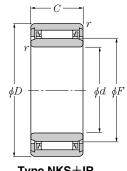


_	Abutment	•	Mass
$d_{ m a}$	mm Da	$r_{ m as}$ 3)	kg
min	max	max	(approx.)
6.2	8.5	0.15	0.007
7	9.5	0.3	0.012
7	9.5	0.3	0.016
8	9.5	0.15	0.009
8	10.5	0.3	0.013
8	10.5	0.3	0.017
8	12	0.3	0.02
9	10.5	0.15	0.010
9	11.5	0.3	0.014
9	11.5	0.3	0.018
9	14.5	0.3	0.035
10	12	0.15	0.016
10	16.5	0.3	0.048
11	13.5	0.3	0.018
11	13.5	0.3	0.022
11	14	0.3	0.017
11	17.5	0.3	0.042
12	20	0.3	0.024
12	20	0.3	0.030
12	20	0.3	0.038
12	19	0.3	0.054
14	22	0.3	0.026
14	22	0.3	0.033
14	22	0.3	0.042
14	22	0.3	0.046
14	21	0.3	0.056
17	25	0.3	0.039
17	25	0.3	0.045
17	26	0.3	0.036

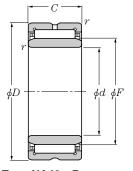

Type NA49 Type NA59 Type NA69 Type NK+IR Type NKS+IR

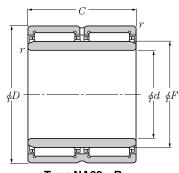


Type NA49 · · R Type NA59 Type NA69 ·· R Type NK··R+IR

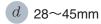

	Boundary dimensions							nd ratings		Limitin	g speeds	Bearing numbers
		r	mm			dynamic	static N	dynamic	static of	m	in ⁻¹	
								***	9.	grease	oil	
d	D	C	r _{s min} 1)	F	s ²⁾	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	Cor			
	28	18	0.3	20	0.5	14 100	19 100	1 440	1 950	13 000	20 000	NA5902CT
15	28	23	0.3	20	1	17 600	25 300	1 790	2 580	13 000	20 000	NA6902R
	35	20	0.6	22	1.5	17 700	23 300	1 810	2 380	12 000	18 000	NKS22+IR15 \times 22 \times 20
	29	16	0.3	21	0.5	13 700	18 700	1 400	1 910	13 000	19 000	NK21/16R+IR17×21×16
	29	20	0.3	21	0.5	17 400	25 400	1 770	2 590	13 000	19 000	NK21/20R+IR17 \times 21 \times 20
17	30	13	0.3	22	0.5	11 200	14 600	1 140	1 490	12 000	18 000	NA4903R
17	30	18	0.3	22	0.5	15 200	21 700	1 550	2 210	12 000	18 000	NA5903
	30	23	0.3	22	1	18 200	27 200	1 850	2 770	12 000	18 000	NA6903R
	37	20	0.6	24	1.5	18 400	25 200	1 880	2 570	11 000	17 000	NKS24+IR17×24×20
	32	16	0.3	24	0.5	15 200	22 300	1 550	2 280	11 000	17 000	NK24/16R+IR20×24×16
	32	20	0.3	24	0.5	18 600	28 800	1 890	2 930	11 000	17 000	$NK24/20R + IR20 \times 24 \times 20$
20	37	17	0.3	25	8.0	21 300	25 500	2 170	2 600	11 000	16 000	NA4904RCT
20	37	23	0.3	25	8.0	28 400	37 000	2 900	3 750	11 000	16 000	NA5904
	37	30	0.3	25	1	36 500	50 500	3 700	5 150	11 000	16 000	NA6904R
	42	20	0.6	28	2	18 100	25 800	1 850	2 630	9500	14000	NKS28+IR20 \times 28 \times 20
	34	16	0.3	26	0.5	15 600	23 600	1 590	2 410	10 000	15 000	NK26/16R+IR22×26×16
	34	20	0.3	26	0.5	19 100	30 500	1 940	3 100	10 000	15 000	NK26/20R $+$ IR22 \times 26 \times 20
22	39	17	0.3	28	8.0	23 200	29 300	2 360	2 990	9 500	14 000	NA49/22R
	39	23	0.3	28	8.0	26 400	37 500	2 690	3 850	9 500	14 000	NA59/22
	39	30	0.3	28	0.5	40 000	58 500	4 050	6 000	9 500	14 000	NA69/22R
	38	20	0.3	29	1	22 200	34 000	2 270	3 450	9 500	14 000	NK29/20R+IR25 \times 29 \times 20
	38	30	0.3	29	1.5	27 500	50 500	2 810	5 150	9 500	14 000	NK29/30R $+$ IR25 \times 29 \times 30
25	42	17	0.3	30	8.0	24 000	31 500	2 450	3 200	8 500	13 000	NA4905R
25	42	23	0.3	30	8.0	30 500	43 000	3 150	4 350	8 500	13 000	NA5905
	42	30	0.3	30	1	41 500	63 000	4 200	6 400	8 500	13 000	NA6905R
	47	22	0.6	32	2	24 000	35 000	2 450	3 550	8 500	13 000	NKS32+IR25×32×22
	42	20	0.3	32	1	23 500	37 500	2 400	3 850	8 500	13 000	NK32/20R+IR28×32×20
28	42	30	0.3	32	1.5	34 000	60 500	3 450	6 150	8 500	13 000	NK32/30R+IR28 \times 32 \times 30
20	45	17	0.3	32	8.0	24 800	33 500	2 530	3 400	8 500	13 000	NA49/28RCT
	45	23	0.3	32	8.0	32 000	45 500	3 250	4 650	8 500	13 000	NA59/28

Note 1) Allowable minimum chamfer dimension r. 2) Allowable axial stroking value of inner ring against outer ring. 3) Max. allowable dimension of radius r_a for corner roundness on shaft/housing. Remarks: Nominal code number of inner ring (IR) comprises the codes of IR bore diameter \times outer diameter \times width.

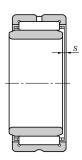


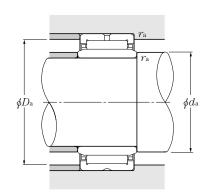

	Abutment imension		Mass
$d_{ m a}$	mm D_{a}	_{(ras} 3)	kg
min	max	max	(approx.)
17	26	0.3	0.052
17	26	0.3	0.064
19	25	0.6	0.094
19	27	0.3	0.042
19	27	0.3	0.053
19	28	0.3	0.037
19	28	0.3	0.056
19	28	0.3	0.069
21	27	0.6	0.1
22	30	0.3	0.049
22	30	0.3	0.061
22	35	0.3	0.074
22	35	0.3	0.115
22	35	0.3	0.141
24	31	0.6	0.129
24	32	0.3	0.046
24	32	0.3	0.064
24	37	0.3	0.080
24	37	0.3	0.134
24	37	0.3	0.154
27	36	0.3	0.079
27	36	0.3	0.123
27	40	0.3	0.088
27	40	0.3	0.139
27	40	0.3	0.162
29	35.5	0.6	0.162
30	40	0.3	0.096
30	40	0.3	0.146
30	43	0.3	0.098
30	43	0.3	0.142

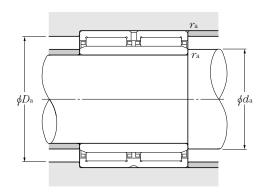
Type NA49 Type NA59 Type NA69 Type NK+IR Type NKS+IR



Type NA49 \cdot R Type NA59 Type NA69 \cdot R(ϕ d \leq 30mm) Type NK \cdot R+IR

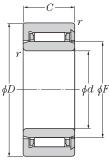

Type NA69 \cdot R (ϕ d \geq 32mm)

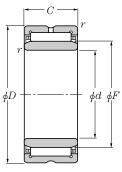


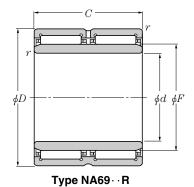

	Bou	ındar	y dimen	sions			Basic loa	ad ratings		Limitin	g speeds	Bearing numbers
						dynamic		dynamic			1	
			mm			N kgf				min ⁻¹ grease oil		
d	D	C	r _{s min} 1)	F	_S 2)	$C_{ m r}$	$C_{ m or}$	$C_{\rm r}$	Cor	9		
28	45	30	0.3	32	1	43 000	67 000	4 350	6 850	8 500	13 000	NA69/28R
	45	20	0.3	35	0.5	24 800	41 500	2 520	4 250	7 500	11 000	NK35/20RCT+IR30 \times 35 \times 20
	45	30	0.3	35	1	36 000	66 500	3 650	6 800	7 500	11 000	NK35/30R+IR30 $ imes$ 35 $ imes$ 30
30	47	17	0.3	35	0.8	25 500	35 500	2 600	3 600	7 500	11 000	NA4906R
30	47	23	0.3	35	0.8	32 500	48 500	3 350	4 950	7 500	11 000	NA5906
	47	30	0.3	35	1	42 500	67 500	4 300	6 900	7 500	11 000	NA6906R
	52	22	0.6	37	2	26 300	41 000	2 680	4 150	7 500	11 000	NKS37+IR30 \times 37 \times 22
	47	20	0.3	37	0.5	25 300	43 500	2 580	4 400	7 500	11 000	NK37/20R+IR32×37×20
	47	30	0.3	37	1	36 500	69 500	3 750	7 100	7 500	11 000	NK37/30R+IR32×37×30
32	52	20	0.6	40	0.8	31 500	47 500	3 200	4 850	6 500	10 000	NA49/32R
	52	27	0.6	40	0.8	38 000	61 000	3 850	6 250	6 500	10 000	NA59/32
	52	36	0.6	40	0.5	47 500	82 000	4 850	8 350	6 500	10 000	NA69/32R
	50	20	0.3	40	0.5	26 400	47 000	2 700	4 800	6 500	10 000	NK40/20R+IR35×40×20
	50	30	0.3	40	1	38 500	76 000	3 900	7 750	6 500	10 000	NK40/30R+IR35 $ imes$ 40 $ imes$ 30
35	55	20	0.6	42	8.0	32 000	50 000	3 300	5 100	6 500	9 500	NA4907R
33	55	27	0.6	42	8.0	39 000	64 500	3 950	6 550	6 500	9 500	NA5907
	55	36	0.6	42	0.5	49 000	86 500	5 000	8 800	6 500	9 500	NA6907R
	58	22	0.6	43	1.5	29 100	49 000	2 960	5 000	6 500	9 500	NKS43+IR35 \times 43 \times 22
38	53	20	0.3	43	0.5	27 500	51 000	2 810	5 200	6 500	9 500	NK43/20R+IR38 \times 43 \times 20
	53	30	0.3	43	1	40 000	82 000	4 100	8 400	6 500	9 500	NK43/30R+IR38×43×30
	55	20	0.3	45	0.5	28 000	52 500	2 860	5 400	6 000	9 000	NK45/20R+IR40×45×20
	55	30	0.3	45	1	41 000	85 500	4 150	8 700	6 000	9 000	NK45/30R+IR40 $ imes$ 45 $ imes$ 30
40	62	22	0.6	48	1	43 500	66 500	4 450	6 800	5 500	8 500	NA4908RCT
40	62	30	0.6	48	1	53 000	92 500	5 450	9 450	5 500	8 500	NA5908
	62	40	0.6	48	0.5	67 000	116 000	6 850	11 800	5 500	8 500	NA6908R
	65	22	1	50	1.5	31 500	57 000	3 200	5 800	5 500	8 000	NKS50+IR40 \times 50 \times 22
42	57	20	0.3	47	0.5	28 800	55 500	2 940	5 650	5 500	8 500	NK47/20RCT+IR42 \times 47 \times 20
42	57	30	0.3	47	1	42 500	91 500	4 350	9 350	5 500	8 500	NK47/30R+IR42×47×30
45	62	25	0.6	50	1.5	38 500	74 500	3 950	7 550	5 500	8 000	NK50/25RCT+IR45×50×25

Note 1) Allowable minimum chamfer dimension r. 2) Allowable axial stroking value of inner ring against outer ring. 3) Max. allowable dimension of radius ra for corner roundness on shaft/housing.

Remarks: Nominal code number of inner ring (IR) comprises the codes of IR bore diameter × outer diameter × width.

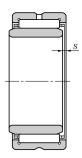


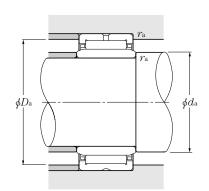


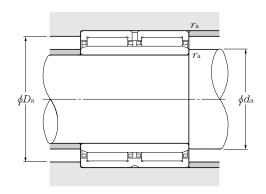


_	Abutment imension		Mass
$d_{ m a}$	mm Da	_{ras} 3)	kg
min	max	max	(approx.)
30	43	0.3	0.179
32	43	0.3	0.112
32	43	0.3	0.171
32	45	0.3	0.101
32	45	0.3	0.152
32	45	0.3	0.185
34	40.5	0.6	0.184
34	45	0.3	0.117
34	45	0.3	0.170
36	48	0.6	0.157
36	48	0.6	0.241
36	48	0.6	0.286
37	48	0.3	0.130
37	48	0.3	0.193
39	51	0.6	0.171
39	51	0.6	0.256
39	51	0.6	0.310
39	46.5	0.6	0.229
40	51	0.3	0.134
40	51	0.3	0.207
42	53	0.3	0.143
42	53	0.3	0.216
44	58	0.6	0.232
44	58	0.6	0.348
44	58	0.6	0.426
45	53.5	1	0.263
44	55	0.3	0.148
44	55	0.3	0.222
48	58	0.6	0.229

Type NA49 Type NA59 Type NA69 Type NK+IR Type NKS+IR

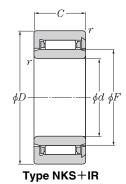

Type NKS+IR

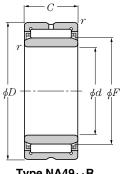

Type NA49 · · R Type NA59 Type NK··R+IR

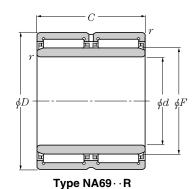

d 45∼70mm

	Bou	ındarı	y dimen	sions				ad ratings		Limiting	g speeds	Bearing numbers
		r	mm			dynamic	static N	dynamic	static gf	mir	n ⁻¹	
					-					grease	oil	
d	D	C	$r_{\rm s min}$ 1)	F	_S 2)	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$			
	62	35	0.6	50	2	51 000	106 000	5 200	10 800	5 500	8 000	NK50/35R+IR45 \times 50 \times 35
	68	22	0.6	52	1	46 000	73 000	4 700	7 450	5 000	7 500	NA4909R
45	68	30	0.6	52	1	56 000	101 000	5 700	10 300	5 000	7 500	NA5909
	68	40	0.6	52	0.5	70 500	127 000	7 200	13 000	5 000	7 500	NA6909R
	72	22	1	55	1.5	33 500	63 000	3 400	6 450	5 000	7 500	NKS55+IR45×55×22
	68	25	0.6	55	1.5	41 000	82 000	4 150	8 400	5 000	7 500	NK55/25R+IR50 \times 55 \times 25
	68	35	0.6	55	2	54 000	118 000	5 500	12 000	5 000	7 500	NK55/35R+IR50 \times 55 \times 35
50	72	22	0.6	58	1	48 000	80 000	4 900	8 150	4 700	7 000	NA4910R
50	72	30	0.6	58	1	58 000	110 000	5 950	11 200	4 700	7 000	NA5910
	72	40	0.6	58	0.5	74 000	139 000	7 500	14 200	4 700	7 000	NA6910R
	80	28	1.1	60	2.5	44 500	85 000	4 500	8 700	4 300	6 500	NKS60+IR50 \times 60 \times 28
	72	25	0.6	60	1.5	41 000	85 000	4 200	8 700	4 300	6 500	NK60/25R+IR55×60×25
	72	35	0.6	60	2	57 000	130 000	5 800	13 200	4 300	6 500	NK60/35R+IR55×60×35
	80	25	1	63	1.5	58 500	99 500	6 000	10 100	4 300	6 500	NA4911R
55	80	34	1	63	1.5	76 500	140 000	7 800	14 300	4 300	6 500	NA5911
	80	45	1	63	1.5	94 000	183 000	9 600	18 600	4 300	6 500	NA6911R
	85	28	1.1	65	2.5	47 000	94 000	4 800	9 600	4 000	6 000	$NKS65+IR55\times65\times28$
	82	25	1	68	1	44 500	89 000	4 500	9 050	4 000	6 000	NK68/25R+IR60×68×25
	82	35	0.6	68	1	63 000	139 000	6 400	14 200	4 000	6 000	NK68/35R+IR60×68×35
60	85	25	1	68	1.5	61 500	108 000	6 250	11 000	4 000	6 000	NA4912R
60	85	34	1	68	1.5	80 500	153 000	8 200	15 600	4 000	6 000	NA5912
	85	45	1	68	1.5	95 500	191 000	9 750	19 400	4 000	6 000	NA6912R
	90	28	1.1	70	2.5	49 500	103 000	5 050	10 500	3 700	5 500	NKS70+IR60 \times 70 \times 28
	90	25	0.6	73	1	54 000	100 000	5 500	10 200	3 700	5 500	NK73/25R+IR65×73×25
	90	25	1	72	1.5	62 500	112 000	6 350	11 400	3 700	5 500	NA4913R
e =	90	34	1	72	1.5	84 000	165 000	8 600	16 800	3 700	5 500	NA5913
65	90	35	0.6	73	1	76 500	156 000	7 800	16 000	3 700	5 500	NK73/35R+IR65 \times 73 \times 35
	90	45	1	72	1.5	97 000	198 000	9 900	20 200	3 700	5 500	NA6913R
	95	28	1.1	75	2.5	50 500	109 000	5 150	11 100	3 700	5 500	NKS75 $+$ IR65 \times 75 \times 28
70	95	25	1	80	0.8	57 000	119 000	5 800	12 200	3 300	5 000	NK80/25R+IR70×80×25

Note 1) Allowable minimum chamfer dimension r. 2) Allowable axial stroking value of inner ring against outer ring. 3) Max. allowable dimension of radius r_a for corner roundness on shaft/housing. Remarks: Nominal code number of inner ring (IR) comprises the codes of IR bore diameter \times outer diameter \times width.

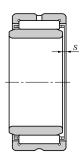


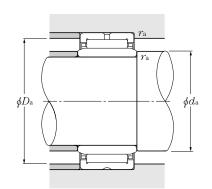


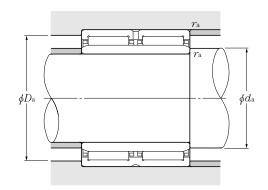


	Nbutmen mension		Mass
$d_{ m a}$	mm D a	_{ras} 3)	kg
min	max	max	(approx.)
48	58	0.6	0.322
49	64	0.6	0.270
49	64	0.6	0.396
49	64	0.6	0.437
50	58.5	1	0.351
53	64	0.6	0.271
53	64	0.6	0.379
54	68	0.6	0.276
54	68	0.6	0.498
54	68	0.6	0.529
56.5	64	1.1	0.518
58	68	0.6	0.271
58	68	0.6	0.379
60	75	1	0.396
60	75	1	0.559
60	75	1	0.726
61.5	69	1.1	0.562
65	77	0.6	0.393
64	78	0.6	0.551
65	80	1	0.427
65	80	1	0.614
65	80	1	0.758
66.5	74	1.1	0.591
69	86	0.6	0.466
70	85	1	0.454
70	85	1	0.655
69	86	0.6	0.660
70	85	1	0.779
71.5	79	1.1	0.642
75	90	1	0.525

Type NA48
Type NA49
Type NA59
Type NA69
Type NK+IR
Type NKS+IR

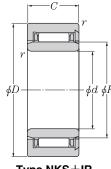

Type NA49··R Type NA59 Type NK··R+IR

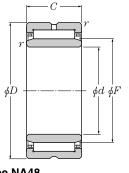

d 70~95mm

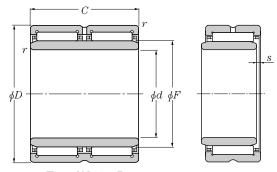

	Bou	ındar	y dimer	nsions				ad ratings		Limiting	speeds	Bearing numbers
		1	mm			dynamic	static N	dynamic k	dynamic static kgf		1 ⁻¹	
7	D) 77	2)		a			grease	oil	
d	D	C	$r_{ m smin}$ 1		_S 2)	$C_{\rm r}$	Cor	$C_{ m r}$	$C_{ m or}$			
	95	35	1	80	0.8	79 500	184 000		18 700	3 300	5 000	NK80/35R+IR70×80×35
	100	28	1.1	80	2.5	53 000	118 000		12 100	3 300	5 000	NKS80+IR70×80×28
70	100	30	1	80	1.5	85 500	156 000		15 900	3 300	5 000	NA4914R
	100	40	1	80	1.5	103 000	187 000	10 500		3 300	5 000	NA5914
	100	54	1	80	1	130 000	267 000	13 300	27 200	3 300	5 000	NA6914R
	105	25	1	85	1	70 500	123 000	7 200	12 600	3 100	4 700	NK85/25R+IR75 \times 85 \times 25
	105	30	1	85	1.5	87 000	162 000	8 900	16 500	3 100	4 700	NA4915R
75	105	35	1	85	1	100 000	193 000	10 200	19 700	3 100	4 700	NK85/35R+IR75 \times 85 \times 35
, 0	105	40	1	85	1.5	109 000	205 000	11 100	20 900	3 100	4 700	NA5915
	105	54	1	85	1	132 000	277 000	13 500	28 300	3 100	4 700	NA6915R
	110	32	1.1	90	1.5	64 000	157 000	6 550	16 000	2 900	4 400	NKS90+IR75 \times 90 \times 32
	110	25	1	90	1	71 500	128 000	7 300	13 100	2 900	4 400	NK90/25R+IR80 \times 90 \times 25
	110	30	1	90	1.5	90 500	174 000	9 250	17 700	2 900	4 400	NA4916R
00	110	35	1	90	1	104 000	208 000	10 600	21 200	2 900	4 400	NK90/35R+IR80 \times 90 \times 35
80	110	40	1	90	1.5	115 000	223 000	11 700	22 700	2 900	4 400	NA5916
	110	54	1	90	1.5	138 000	298 000	14 000	30 500	2 900	4 400	NA6916R
	115	32	1.1	95	2.5	65 500	165 000	6 700	16 800	2 800	4 200	NKS95+IR80 \times 95 \times 32
	115	26	1	95	1.5	74 500	137 000	7 600	14 000	2 800	4 200	NK95/26R+IR85 \times 95 \times 26
	115	36	1	95	1.5	108 000	223 000	11 100	22 700	2 800	4 200	NK95/36R+IR85 \times 95 \times 36
85	120	32	1.1	100	3	61 000	153 000	6 250	15 600	2 700	4 000	NKS100+IR85×100×32
00	120	35	1.1	100	1	112 000	237 000	11 500	24 200	2 700	4 000	NA4917R
	120	46	1.1	100	1.5	137 000	290 000	14 000	29 600	2 700	4 000	NA5917
	120	63	1.1	100	1	169 000	400 000	17 300	41 000	2 700	4 000	NA6917R
	120	26	1	100	1.5	73 500	137 000	7 500	14 000	2 700	4 000	NK100/26R+IR90×100×26
	120	36	1	100	1.5	107 000	223 000	11 000	22 800	2 700	4 000	$NK100/36R+IR90\times100\times36$
90	125	32	1.1	105	2	67 500	176 000	6 850	18 000	2 500	3 800	NKS105+IR90×105×32
90	125	35	1.1	105	1	116 000	252 000	11 900	25 700	2 500	3 800	NA4918R
	125	46	1.1	105	1	143 000	310 000	14 600	32 000	2 500	3 800	NA5918
	125	63	1.1	105	1	175 000	425 000	17 900	43 500	2 500	3 800	NA6918R
95	125	26	1	105	1.5	76 500	147 000	7 800	14 900	2 500	3 800	NK105/26R+IR95×105×26

Note 1) Allowable minimum chamfer dimension r. 2) Allowable axial stroking value of inner ring against outer ring. 3) Max. allowable dimension of radius ra for corner roundness on shaft/housing.

Remarks: Nominal code number of inner ring (IR) comprises the codes of IR bore diameter × outer diameter × width.





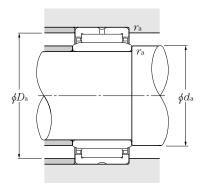


	Abutmen		Mass
$d_{ m a}$	mm Da	_{ras} 3)	kg
min	max	max	(approx.)
75	90	1	0.738
76.5	84	1.1	0.663
75	95	1	0.727
75	95	1	1.06
75	95	1	1.34
80	100	1	0.642
80	100	1	0.776
80	100	1	0.853
80	100	1	1.13
80	100	1	1.45
81.5	94	1.1	1.19
85	105	1	0.680
85	105	1	0.820
85	105	1	0.959
85	105	1	1.15
85	105	1	1.53
86.5	99	1.1	1.28
90	110	1	0.644
90	110	1	1.05
91.5	104	1.1	1.2
91.5	113.5	1	1.24
91.5	113.5	1	1.76
91.5	104	1.1	2.25
95	115	1	0.781
95	115	1	1.09
96.5	109	1.1	1.24
96.5	118.5	1	1.84
96.5	118.5	1	2.44
96.5	109	1.1	2.37
100	120	1	0.819

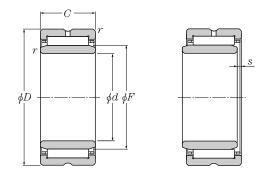
Type NA48 Type NA49 Type NA59 Type NA69 Type NK+IR Type NKS+IR

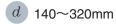
Type NKS+IR (ϕ d \leq 95mm)

Type NA48 Type NA49 ⋅⋅ R, Type NA49 Type NA59 Type NK·R+IR, Type NK+IR Type NKS+IR (ϕ $d \ge 100$ mm)

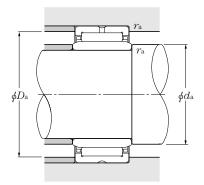

Type NA69 · · R

	Bou	ındary	/ dime	ensions				ad ratings		Limiting	g speeds	Bearing numbers
		r	nm			dynamic	static N	dynamic	static gf	mir	1 ⁻¹	
,	D	0		1)	_S 2)	$C_{ m r}$ $C_{ m or}$		C.	$C_{ m r}$ $C_{ m or}$		oil	
d	D	C	γ s min			$C_{ m r}$		$C_{ m r}$				
	125	36	1	105	1.5	111 000	238 000	11 400		2 500	3 800	NK105/36R+IR95×105×36
	130	32	1.1	110	3	64 500	170 000		17 300	2 400	3 600	NKS110+IR95×110×32
95	130	35	1.1	110	1	118 000	260 000	12 000		2 400	3 600	NA4919R
	130	46	1.1	110	1	149 000	335 000	15 200		2 400	3 600	NA5919
	130	63	1.1	110	1	177 000	440 000	18 100	45 000	2 400	3 600	NA6919R
	130	30	1.1	110	1.5	97 500	204 000	9 950	20 800	2 400	3 600	$NK110/30R + IR100 \times 110 \times 30$
	130	40	1.1	110	2	129 000	292 000	13 100	29 700	2 400	3 600	$NK110/40R + IR100 \times 110 \times 40$
100	135	32	1.1	115	1.5	90 500	199 000	9 250	20 300	2 300	3 500	NKS115+IR100×115×32
	140	40	1.1	115	2	127 000	260 000	12 900	26 500	2 300	3 500	NA4920
	140	54	1.1	115	2	182 000	395 000	18 600	40 500	2 300	3 500	NA5920
	140	30	1	120	8.0	93 500	210 000	9 550	21 400	2 200	3 300	NA4822
110	140	40	1.1	120	_	113 000	268 000	11 500	27 300	2 200	3 300	$NK120/40 + IR110 \times 120 \times 40$
110	150	40	1.1	125	2	131 000	279 000	13 300	28 400	2 100	3 200	NA4922
	150	54	1.1	125	2	193 000	440 000	19 700	45 000	2 100	3 200	NA5922
	150	30	1	130	0.8	99 500	233 000	10 100	23 800	2 100	3 100	NA4824
	150	40	1.1	130	_	116 000	283 000	11 800	28 800	2 100	3 100	NK130/40+IR120 \times 130 \times 40
120	160	40	2	135	2.5	135 000	298 000	13 800	30 500	2 000	3 000	NKS135+IR120 $ imes$ 135 $ imes$ 40
	165	45	1.1	135	2	180 000	380 000	18 300	38 500	2 000	3 000	NA4924
	165	60	1.1	135	2	246 000	530 000	25 100	54 000	2 000	3 000	NA5924
	165	35	1.1	145	1	118 000	305 000	12 100	31 000	1 900	2 800	NA4826
	170	32	1.5	145	_	111 000	238 000	11 300	24 300	1 900	2 800	NK145/32+IR130 \times 145 \times 32
130	170	42	1.5	145	_	153 000	360 000	15 600	36 500	1 900	2 800	NK145/42+IR130 \times 145 \times 42
130	180	50	1.5	150	1.5	202 000	455 000	20 600	46 500	1 800	2 700	NA4926
	180	52	2	150	3	202 000	455 000	20 600	46 500	1 800	2 700	NKS150+IR130 \times 150 \times 52
	180	67	1.5	150	1.5	296 000	690 000	30 000	70 500	1 800	2 700	NA5926
	175	35	1.1	155	1	121 000	315 000	12 300	32 500	1 700	2 600	NA4828
	180	32	1.5	155	_	114 000	252 000	11 600	25 700	1 700	2 600	NK155/32+IR140 \times 155 \times 32
140	180	42	1.5	155	_	156 000	380 000	16 000	38 500	1 700	2 600	NK155/42+IR140 \times 155 \times 42
	190	50	1.5	160	1.5	209 000	485 000	21 300	49 500	1 700	2 500	NA4928
	190	52	2	160	3	209 000	485 000	21 300	49 500	1 700	2 500	NKS160+IR140 \times 160 \times 52

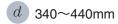

Note 1) Allowable minimum chamfer dimension r. 2) Allowable axial stroking value of inner ring against outer ring. 3) Max. allowable dimension of radius ra for corner roundness on shaft/housing.


Remarks: Nominal code number of inner ring (IR) comprises the codes of IR bore diameter × outer diameter × width.

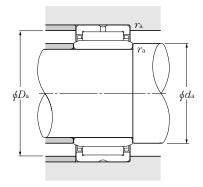
	Abutment		Mass
$d_{ m a}$	mm D_{a}	r _{as} 3)	kg
min	max	max	(approx.)
100	120	1	1.15
101.5	114	1.1	1.29
101.5	123.5	1	1.36
101.5	123.5	1	1.98
101.5	123.5	1	2.63
106.5	123.5	1	0.990
106.5	123.5	1	1.34
106.5	128.5	1.1	1.32
106.5	133.5	1	1.93
106.5	133.5	1	2.85
115	135	1	1.11
116.5	133.5	1	1.49
116.5	143.5	1	2.08
116.5	143.5	1	2.98
125	145	1	1.17
126.5	143.5	1	1.57
129	151	2	2.2
126.5	158.5	1	2.84
126.5	158.5	1	3.92
136.5	158.5	1	1.60
138	162.5	1.5	1.90
138	162.5	1.5	2.54
138	172	1.5	3.90
139	171	2	4.07
138	172	1.5	5.60
146.5	168.5	1	1.82
148	172	1.5	2.04
148	172	1.5	2.69
148	182	1.5	4.05
149	181	2	4.23

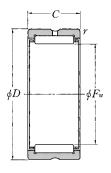

Type NA48 Type NA49 Type NA59 Type NK+IR Type NKS+IR

	Во	undar	v dime	ension	s		Basic lo	ad ratings		Limiting	g speeds	Bearing numbers
						dynamic	static	dynamic			•	3
		1	mm				N		kgf		n ⁻¹ oil	
d	D	C	γ s min	1) F	_S 2)	$C_{ m r}$	$C_{ m or}$	$C_{\rm r}$	Cor	grease	011	
140	190	67	1.5	160	1.5	315 000	760 000	32 000	77 500	1 700	2 500	NA5928
	190	32	1.5	165	_	117 000	265 000	11 900	27 000	1 600	2 400	NK165/32+IR150×165×32
	190	40	1.1	165	1.5	152 000	390 000	15 500	40 000	1 600	2 400	NA4830
150	190	42	1.5	165	—	160 000	400 000	16 300	40 500	1 600	2 400	$NK165/42 + IR150 \times 165 \times 42$
	200	52	2	170	3	215 000	515 000	21 900	52 500	1 600	2 400	NKS170+IR150 \times 170 \times 52
	210	60	2	170	1.5	261 000	610 000	26 600	62 500	1 600	2 400	NA4930
400	200	40	1.1	175	1.5	160 000	425 000	16 300	43 500	1 500	2 300	NA4832
160	220	60	2	180	1.5	270 000	650 000	27 600	66 500	1 500	2 200	NA4932
	215	45	1.1	185	1.5	185 000	495 000	18 800	50 500	1 500	2 200	NA4834
170	230	60	2	190	1.5	279 000	690 000	28 500	70 500	1 400	2 100	NA4934
	225	45	1.1	195	1.5	195 000	540 000	19 800	55 000	1 400	2 100	NA4836
180	250	69	2	205	1.5	375 000	890 000	38 500	90 500	1 300	2 000	NA4936
	240	50	1.5	210	1.5	227 000	680 000	23 200	69 000	1 300	1 900	NA4838
190	260	69	2	215	1.5	390 000	945 000	40 000	96 500	1 300	1 900	NA4938
	250	50	1.5	220	1.5	231 000	705 000	23 600	71 500	1 200	1 800	NA4840
200	280	80	2.1	225	1.5	505 000	1 180 000	51 500	120 000	1 200	1 800	NA4940
	270	50	1.5	240	1.5	244 000	780 000	24 900	79 500	1 100	1 700	NA4844
220	300	80	2.1	245	1.5	525 000	1 270 000	53 500	129 000	1 100	1 600	NA4944
	300	60	2	265	2	360 000	1 080 000	37 000	110 000	1 000	1 500	NA4848
240	320	80	2.1	265	2	540 000	1 350 000	55 000	138 000	1 000	1 500	NA4948
000	320	60	2	285	2	375 000	1 160 000	38 000	119 000	950	1 400	NA4852
260	360	100	2.1	290	2	805 000	1 900 000	82 000	193 000	950	1 400	NA4952
000	350	69	2	305	2.5	455 000	1 300 000	46 500	133 000	850	1 300	NA4856
280	380	100	2.1	310	2.5	835 000	2 030 000	85 000	207 000	850	1 300	NA4956
000	380	80	2.1	330	2	625 000	1 770 000	64 000	180 000	800	1 200	NA4860
300	420	118	3	340	2	1 080 000	2 640 000	110 000	269 000	800	1 200	NA4960
000	400	80	2.1	350	2	640 000	1 850 000	65 500	189 000	750	1 100	NA4864
320	440	118	3	360	2	1 120 000	2 820 000	114 000	288 000	750	1 100	NA4964
						ion $x = 2$ Allo						


Note 1) Allowable minimum chamfer dimension \mathcal{T} . 2) Allowable axial stroking value of inner ring against outer ring. 3) Max. allowable dimension of radius \mathcal{T}_a for corner roundness on shaft/housing. Remarks: Nominal code number of inner ring (IR) comprises the codes of IR bore diameter \times outer diameter \times width.

<i>J</i> di	Mass		
$d_{ m a}$	mm Da	_{17as} 3)	kg
min	max	max	(approx.)
148	182	1.5	6.18
158	182	1.5	2.32
156.5	183.5	1	2.72
158	182	1.5	2.84
159	191	2	4.59
159	201	2	5.33
166.5	193.5	1	2.90
169	211	2	5.60
176.5	208.5	1	3.99
179	221	2	5.87
186.5	218.5	1	4.19
189	241	2	8.58
198	232	1.5	5.62
199	251	2	8.68
208	242	1.5	5.84
211	269	2	12.2
228	262	1.5	6.37
231	289	2	13.5
249	291	2	10.0
251	309	2	14.7
269	311	2	10.8
271	349	2	25.9
289	341	2	15.5
291	369	2	27.5
311	369	2	22.0
313	407	2.5	42.5
331	389	2	23.2
333	427	2.5	45.2

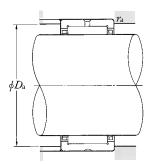

Type NA48 Type NA49


	Во	undary	y dime	nsions		dynamic	Basic load	d ratings dynamic	static	Limiting	speeds	Bearing numbers
		r	nm			N kgf			mi			
d	D	C	rs min 1) F	_S 2)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	Cor	grease	oil	
340	420	80	2.1	370	2	655 000	1 940 000	66 500	197 000	750	1 100	NA4868
340	460	118	3	380	2	1 160 000	3 000 000	118 000	305 000	750	1 100	NA4968
360	440	80	2.1	390	2		2 020 000			650	1 000	NA4872
	480	118	3	400	2	1 200 000	3 200 000	122 000	325 000	650	1 000	NA4972
380		100	2.1	415	2	1 000 000				650	950	NA4876
	520	140	4	430	2	1 400 000	3 750 000	143 000	385 000	650	950	NA4976
400	540	140	4	450	2.5	1 450 000	4 000 000	148 000	410 000	600	900	NA4980
420	560	140	4	470	2.5	1 500 000	4 250 000	153 000	430 000	550	850	NA4984
440	600	160	4	490	2.5	1 750 000	4 600 000	179 000	470 000	550	800	NA4988

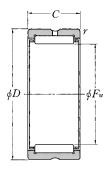
Note 1) Allowable minimum chamfer dimension \mathcal{T} . 2) Allowable axial stroking value of inner ring against outer ring. 3) Max. allowable dimension of radius \mathcal{T} a for corner roundness on shaft/housing.

	Abutmen limensior		Mass
$d_{ m a}$	$egin{array}{c} {\sf mm} \ D_{ m a} \end{array}$	_{ras} 3)	kg
min	max	max	(approx.)
351	409	2	24.1
353	447	2.5	47.3
371	429	2	25.7
373	467	2.5	49.0
391	469	2	44.5
396	504	3	73.6
416	524	3	76.6
436	544	3	89.8
456	584	3	123

Type MR



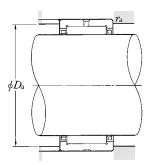
Fw 15.875~63.500mm


	Bour	ndary dimensions	s		dynamic	static	d ratings dynamic	static	Limiting	g speeds
		mm (½ _{5.4} mm)			1	V	kg	ıf	r/r grease	min oil
$F_{ m w}$		D	C	$r_{ m s min}$ 1)	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$		orox.)
15.875(%)	+0.027	28.575(1 1/8)	19.05(¾)	0.6	16 700	16 700	1 700	1 700	17 000	25 000
13.673(/8)	+0.016	28.575(1 1/8)	25.40(1)	0.6	21 500	23 000	2 190	2 350	17 000	25 000
19.050(¾)	+0.033	31.750(1 1/4)	19.05(3/4)	1	19 500	21 100	1 980	2 150	14 000	21 000
19.030(/4)	+0.020	31.750(1 1/4)	25.40(1)	1	25 000	29 100	2 550	2 970	14 000	21 000
22.225(%)	+0.033	34.925(1 3/8)	19.05(3/4)	1	21 900	25 600	2 240	2 610	12 000	18 000
22.225(/8)	+0.020	34.925(1 ¾)	25.40(1)	1	28 200	35 500	2 870	3 600	12 000	18 000
25.400(1)	+0.033	38.100(1½)	19.05(3/4)	1	23 000	28 100	2 340	2 870	11 000	16 000
23.400(1)	+0.020	38.100(1½)	25.40(1)	1	29 500	38 500	3 000	3 950	11 000	16 000
28.575(1 1/8)	+0.033	41.275(1 %)	25.40(1)	1	32 500	45 000	3 300	4 600	9 500	14 000
20.070(178)	+0.020	41.275(1 5/8)	31.75(1 1/4)	1	40 500	60 000	4 100	6 100	9 500	14 000
31.750(1 ½)	+0.041	44.450(1 3/4)	25.40(1)	1	35 000	51 000	3 550	5 200	8 500	13 000
01.700(174)	+0.025	44.450(1 ¾)	31.75(1 1/4)	1	43 500	68 000	4 450	6 950	8 500	13 000
34.925(1 ¾)	+0.041	47.625(1 1/8)	25.40(1)	1	37 000	57 500	3 800	5 850	7 500	11 000
04.323(178)	+0.025	47.625(1 ¾)	31.75(1 1/4)	1	46 500	76 500	4 750	7 800	7 500	11 000
38.100(1 ½)	+0.041	52.388(2 1/6)	25.40(1)	1.5	41 000	61 000	4 150	6 250	7 500	11 000
00:100(172)	+0.025	52.388(2 1/6)	31.75(1 1/4)	1.5	51 000	81 500	5 200	8 300	7 500	11 000
41.275(1 %)	+0.041	55.562(2 ³ / ₁₆)	25.40(1)	1.5	43 500	68 000	4 450	6 950	6 500	9 500
411270(178)	+0.025	55.562(2 ³ / ₁₆)	31.75(1 1/4)	1.5	54 500	90 500	5 550	9 250	6 500	9 500
44.450(1 ³ ⁄ ₄)	+0.041	58.738(2 ⁵ / ₁₆)	25.40(1)	1.5	44 500	72 000	4 550	7 350	6 000	9 000
TT:T30(174)	+0.025	58.738(2 1/16)	31.75(1 1/4)	1.5	55 500	95 500	5 700	9 750	6 000	9 000
47.625(1 ¾)	+0.041 +0.025	61.912(2 1/16)	31.75(1 1/4)	1.5	59 000	105 000	6 000	10 700	5 500	8 500
50.800(2)	+0.049	65.088(2 16)	25.40(1)	1.5	49 500	86 000	5 050	8 800	5 500	8 000
30.000(2)	+0.030	65.088(2 1/6)	31.75(1 1/4)	1.5	62 000	114 000	6 300	11 700	5 500	8 000
57.150(2 ¹ ⁄ ₄)	+0.049	76.200(3)	38.10(1 ½)	1.5	83 500	142 000	8 500	14 500	4 700	7 000
J7.130(2 /4)	+0.030	76.200(3)	44.45(1 ¾)	1.5	97 000	173 000	9 850	17 600	4 700	7 000
63.500(2 ½)	+0.049 +0.030	82.550(3 1/4)	38.10(1 ½)	2	88 000	158 000	8 950	16 100	4 300	6 500

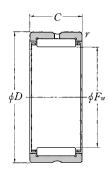
Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius ra for corner roundness on shaft/housing.

Bearing numbers	Abut dimen	ment isions	Mass
	$D_{ m a}$	m _{(ras} 2)	kg
	max	max	(approx.)
MR101812	24.5	0.6	0.050
MR101816	24.5	0.6	0.068
MR122012	26.5	1	0.055
MR122016	26.5	1	0.073
MR142212	30	1	0.059
MR142216	30	1	0.082
MR162412	33	1	0.068
MR162416	33	1	0.091
MR182616	36.5	1	0.100
MR182620	36.5	1	0.127
MR202816	39.5	1	0.109
MR202820	39.5	1	0.136
MR223016	42.5	1	0.118
MR223020	42.5	1	0.150
MR243316	46	1.5	0.143
MR243320	46	1.5	0.180
MR263516	49	1.5	0.153
MR263520	49	1.5	0.191
MR283716	52	1.5	0.163
MR283720	52	1.5	0.204
MR303920	55.5	1.5	0.216
MR324116	58.5	1.5	0.183
MR324120	58.5	1.5	0.227
MR364824	69.5	1.5	0.422
MR364828	69.5	1.5	0.493
MR405224	74.5	2	0.472

Type MR



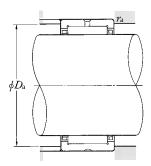
Fw 63.500~184.150mm


	Bou	ndary dimensions	8		dynamic	Basic loa	nd ratings dynamic	static	Limiting	speeds
		mm				N	k		r/m	nin
$F_{ m w}$		D	C	γ _{s min} 1)	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$	grease (app	oil rox.)
63.500(2½)	+0.049 +0.030	82.550(3 1/4)	44.45(1 ¾)	2	102 000	191 000	10 400	19 500	4 300	6 500
		88.900(3½)	25.40(1)	2	66 000	112 000	6 700	11 400	3 700	5 500
69.850(2 ³ / ₄)	+0.049 +0.030	88.900(3½)	38.10(1 ½)	2	92 000	173 000	9 400	17 600	3 700	5 500
		88.900(3½)	44.45(1 ¾)	2	107 000	209 000	10 900	21 300	3 700	5 500
	+0.049	95.250(3¾)	38.10(1½)	2	96 000	188 000	9 800	19 100	3 300	5 000
76.200(3)	+0.030	95.250(3¾)	44.45(1 ¾)	2	112 000	227 000	11 400	23 200	3 300	5 000
00 550/0 10	+0.058	107.950(4 1/4)	44.45(1 3/4)	2	134 000	240 000	13 600	24 500	3 300	5 000
82.550(3 1/4)	+0.036	107.950(4 1/4)	50.80(2)	2	146 000	268 000	14 900	27 400	3 300	5 000
00.000/0.10	+0.058	114.300(4½)	44.45(1 ¾)	2	141 000	264 000	14 400	26 900	3 000	4 500
88.900(3½)	+0.036	114.300(4½)	50.80(2)	2	154 000	295 000	15 700	30 000	3 000	4 500
95.250(3 ¾)	+0.058 +0.036	120.650(4 3/4)	50.80(2)	2.5	162 000	320 000	16 500	32 500	2 800	4 200
101.600(4)	+0.058 +0.036	127.000(5)	50.80(2)	2.5	169 000	345 000	17 200	35 500	2 600	3 900
107.950(4 1/4)	+0.058 +0.036	133.350(5 1/4)	50.80(2)	2.5	172 000	360 000	17 500	37 000	2 500	3 700
444.000/4.10	+0.058	152.400(6)	57.15(2 1/4)	2.5	238 000	435 000	24 300	44 500	2 300	3 500
114.300(4½)	+0.036	152.400(6)	63.50(2 ½)	2.5	260 000	485 000	26 500	49 500	2 300	3 500
		165.100(6½)	50.80(2)	2.5	227 000	425 000	23 200	43 000	2 100	3 100
127.000(5)	+0.068 +0.043	165.100(6½)	57.15(2 1/4)	2.5	250 000	480 000	25 500	49 000	2 100	3 100
		165.100(6½)	63.50(2½)	2.5	273 000	535 000	27 800	54 500	2 100	3 100
139.700(5 ½)	+0.068	177.800(7)	63.50(2 ½)	2.5	285 000	585 000	29 100	59 500	1 900	2 900
139.700(3 /2)	+0.043	177.800(7)	76.20(3)	2.5	345 000	740 000	35 000	75 500	1 900	2 900
146.050(5 ¾)	+0.068 +0.043	184.150(7 1/4)	76.20(3)	3	360 000	775 000	36 500	79 000	1 800	2 700
150 400(6)	+0.068	190.500(7½)	63.50(2 ½)	3	310 000	630 000	31 500	64 000	1 700	2 600
152.400(6)	+0.068 +0.043	190.500(7½)	76.20(3)	3	375 000	800 000	38 000	81 500	1 700	2 600
165.100(6 ½)	+0.068	203.200(8)	63.50(2 ½)	3	325 000	680 000	33 000	69 500	1 600	2 400
105.100(6 /2)	+0.043	203.200(8)	76.20(3)	3	390 000	870 000	39 500	88 500	1 600	2 400
184.150(7 1/4)	+0.079 +0.050	231.775(9 1/8)	76.20(3)	3	435 000	915 000	44 500	93 000	1 500	2 200

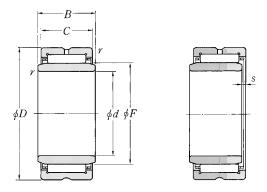
Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius ra for corner roundness on shaft/housing.

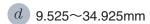
Bearing numbers	Abuti dimen		Mass
numbers	mı Da		kg
	max	max	(approx.)
MR405228	74.5	2	0.533
MR445616	81	2	0.343
MR445624	81	2	0.504
MR445628	81	2	0.580
MR486024	87	2	0.558
MR486028	87	2	0.651
MR526828	100	2	1.02
MR526832	100	2	1.17
MR567228	106.5	2	1.08
MR567232	106.5	2	1.27
MR607632	111.5	2.5	1.28
MR648032	118	2.5	1.29
MR688432	124.5	2.5	1.36
MR729636	143.5	2.5	2.62
MR729640	143.5	2.5	2.91
MR8010432	156	2.5	2.53
MR8010436	156	2.5	2.87
MR8010440	156	2.5	3.19
MR8811240	169	2.5	3.46
MR8811248	169	2.5	4.16
MR9211648	172	3	4.30
MR9612040	177.5	3	3.74
MR9612048	177.5	3	4.49
MR10412840	190	3	4.02
MR10412848	190	3	4.82
MR11614648	219	3	7.36

Type MR

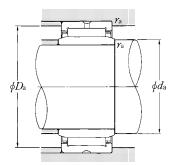


Fw 196 850~234 950mm


$F_{ m W}$	96.850~234.95	50mm								
	Bou	ındary dimensions	;				ad ratings		Limiting	speeds
		mm			dynamic	static N	dynamic	static gf	r/m	nin
		111111				IN	K	yı	grease	oil
	$F_{ m w}$	D	C	$\gamma_{\rm s min}$ 1)	$C_{ m r}$	Cor	C_{r}	Cor	(арр	
196	5.850(7 ³ ⁄ ₄) ^{+0.079} _{+0.050}	244.475(9 %)	76.20(3)	3	455 000	990 000	46 500	101 000	1 300	2 000
209	0.550(8 ½) +0.079 +0.050	257.175(10 1/8)	76.20(3)	3	475 000	1 060 000	48 500	109 000	1 300	1 900
222	2. 250(8 ³ ⁄ ₄) ^{+0.079} _{+0.050}	269.875(10 %)	76.20(3)	4	495 000	1 140 000	50 500	116 000	1 200	1 800
234	1.950(9 ¹ / ₄) ^{+0.079} _{+0.050}	282.575(11 1/8)	76.20(3)	4	510 000	1 210 000	52 000	124 000	1 100	1 700
									1	


Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius ra for corner roundness on shaft/housing.

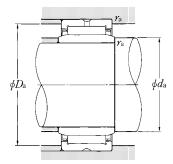
Bearing numbers	Abutı dimen		Mass
Humbers	mı	m	kg
	$D_{ m a}$ max	r _{as} 2) max	(approx.)
MR12415448	231.5	3	7.80
MR13216248	244	3	8.36
MR14017048	254	4	8.81
MR14817848	266.5	4	9.27


Type MR + MI

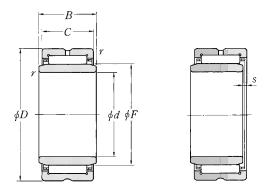
	I		Basic load	_	-4-4:-					
		mm (½	_{25.4} mm)				dynamic	static	dynamic kgf	static
7	70		· · · /	1)	П	_S 2)	<i>a</i>	C	· ·	
d	D	В	C	r _{s min} 1)	F		$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
9.525(3/8)	28.575(1 1/8)	19.30	19.05(3/4)	0.6	15.875	2	16 700	16 700	1 700	1 700
	28.575(1 1/8)	25.65	25.40(1)	0.6	15.875	3	21 500	23 000	2 190	2 350
12.700(½)	31.750(1 1/4)	19.30	19.05(¾)	1	19.050	4	19 500	21 100	1 980	2 150
	31.750(1 1/4)	25.65	25.40(1)	1	19.050	2	25 000	29 100	2 550	2 970
15.875(%)	34.925(1 ¾)	19.30	19.05(¾)	1	22.225	1	21 900	25 600	2 240	2 610
13.073(/8)	34.925(1 ¾)	25.65	25.40(1)	1	22.225	2	28 200	35 500	2 870	3 600
17.462(¹¹ / ₁₆)	34.925(1 ¾)	19.30	19.05(3/4)	1	22.225	1.5	21 900	25 600	2 240	2 610
40.0E0/3/\	38.100(1½)	19.30	19.05(¾)	1	25.400	1	23 000	28 100	2 340	2 870
19.050(¾)	38.100(1 ½)	25.65	25.40(1)	1	25.400	1.5	29 500	38 500	3 000	3 950
20.638(13/16)	38.100(1½)	25.65	25.40(1)	1	25.400	2	29 500	38 500	3 000	3 950
00.005/74	41.275(1 %)	25.65	25.40(1)	1	28.575	1.5	32 500	45 000	3 300	4 600
22.225(%)	41.275(1 %)	32.00	31.75(1 1/4)	1	28.575	2	40 500	60 000	4 100	6 10
00.040/15/3	41.275(1 %)	25.65	25.40(1)	1	28.575	2	32 500	45 000	3 300	4 600
23.812(15/16)	41.275(1 %)	32.00	31.75(1 1/4)	1	28.575	2	40 500	60 000	4 100	6 10
25.400(1)	44.450(1 3/4)	25.65	25.40(1)	1	31.750	1.5	35 000	51 000	3 550	5 200
25.400(1)	44.450(1 ¾)	32.00	31.75(1 1/4)	1	31.750	2	43 500	68 000	4 450	6 950
00 575/4 10	47.625(1 %)	25.65	25.40(1)	1	34.925	3	37 000	57 500	3 800	5 850
28.575(1 1/8)	47.625(1 %)	32.00	31.75(1 1/4)	1	34.925	2	46 500	76 500	4 750	7 800
30.162(1 ³ / ₁₆)	52.388(2 1/16)	32.00	31.75(1 1/4)	1	38.100	2	51 000	81 500	5 200	8 30
04 750/4 10	52.388(2 1/6)	25.65	25.40(1)	1.5	38.100	0.5	41 000	61 000	4 150	6 25
31.750(1 1/4)	52.388(2 1/6)	32.00	31.75(1 1/4)	1.5	38.100	1	51 000	81 500	5 200	8 30
33.338 (1 ½)	55.562(2 3/16)	25.65	25.40(1)	1.5	41.275	0.5	43 500	68 000	4 450	6 950
აა.აა ಠ (I <i>7</i> 16)	55.562(2 3/16)	32.00	31.75(1 1/4)	1.5	41.275	1	54 500	90 500	5 550	9 25
	55.562(2 ³ / ₁₆)	32.00	31.75(1 1/4)	1.5	41.275	0.5	54 500	90 500	5 550	9 25
34.925(1 ³ / ₈)	58.738(2 1/16)	25.65	25.40(1)	1.5	44.450	0.5	44 500	72 000	4 550	7 350
	58.738(2 1/16)	32.00	31.75(1 1/4)	1.5	44.450	1	55 500	95 500	5 700	9 75

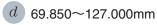
Note 1) Allowable minimum chamfer dimension \mathcal{T} . 2) Allowable axial stroking value of inner ring against outer ring. 2) Max. allowable dimension of radius \mathcal{T} a for corner roundness on shaft/housing.

Limiting	speeds	Bearing numbers	Abutn	nent dimer	nsions	Mass
mi grease	n ⁻¹ oil		$d_{ ext{a}}$ min	mm D_{a} max	$r_{ m as}$ 3)	kg (approx.)
17 000	25 000	MR101812+MI-061012	13.5	24.5	0.6	0.069
17 000	25 000	MR101816+MI-061016	13.5	24.5	0.6	0.093
14 000	21 000	MR122012+MI-081212	17.5	26.5	1	0.079
14 000	21 000	MR122016 + MI-081216	17.5	26.5	1	0.105
12 000	18 000	MR142212+MI-101412	21	30	1	0.086
12 000	18 000	MR142216+MI-101416	21	30	1	0.118
12 000	18 000	MR142212+MI-111412	21	30	1	0.079
11 000	16 000	MR162412+MI-121612	24	33	1	0.102
11 000	16 000	MR162416+MI-121616	24	33	1	0.136
11 000	16 000	MR162416+MI-131616	24	33	1	0.125
9 500	14 000	MR182616+MI-141816	27	36.5	1	0.152
9 500	14 000	MR182620+MI-141820	27	36.5	1	0.193
9 500	14 000	MR182616+MI-151816	27	36.5	1	0.139
9 500	14 000	MR182620+MI-151820	27	36.5	1	0.176
8 500	13 000	MR202816+MI-162016	30.5	39.5	1	0.161
8 500	13 000	MR202820+MI-162020	30.5	39.5	1	0.201
7 500	11 000	MR223016+MI-182216	33.5	42.5	1	0.181
7 500	11 000	MR223020+MI-182220	33.5	42.5	1	0.229
7 500	11 000	MR243320+MI-192420	35	46	1.5	0.286
7 500	11 000	MR243316+MI-202416	37	46	1.5	0.230
7 500	11 000	MR243320+MI-202420	37	46	1.5	0.285
6 500	9 500	MR263516+MI-212616	40	49	1.5	0.257
6 500	9 500	MR263520 + MI-212620	40	49	1.5	0.325
6 500	9 500	MR263520+MI-222620	40	49	1.5	0.286
6 000	9 000	MR283716+MI-222816	41.5	52	1.5	0.294
6 000	9 000	MR283720 + MI-222820	41.5	52	1.5	0.364

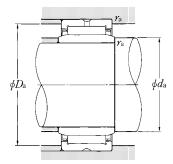

Type MR + MI

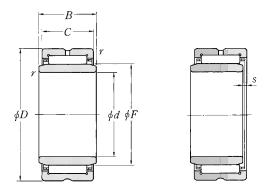
d 36.512~66.675mm

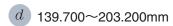

	ı			Basic load	_					
		mm (½	_{25.4} mm)				dynamic	static N	dynamic k	static gf
		· · · · · · · · · · · · · · · · · · ·	20.4/							9.
d	D	В	C	<i>γ</i> _{s min} 1)	F	_S 2)	$C_{\rm r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
36.512(1 1/16)	58.738(2 ⁵ / ₁₆)	25.65	25.40(1)	1.5	44.450	0.5	44 500	72 000	4 550	7 350
30.312(1/16)	58.738(2 ⁵ / ₁₆)	32.00	31.75(1 1/4)	1.5	44.450	0.5	55 500	95 500	5 700	9 750
	58.738(2 ½)	25.65	25.40(1)	1.5	44.450	0.5	44 500	72 000	4 550	7 350
38.100(1 ½)	58.738(2 ⁵ / ₁₆)	32.00	31.75(1 1/4)	1.5	44.450	0.5	55 500	95 500	5 700	9 75
	65.088(2 16)	32.00	31.75(1 1/4)	1.5	50.800	0.5	62 000	114 000	6 300	11 70
20 600/4 9/)	61.912(2 1/6)	32.00	31.75(1 1/4)	1.5	47.625	1	59 000	105 000	6 000	10 70
39.688(1 1/6)	65.088(2 ⁹ / ₁₆)	32.00	31.75(1 1/4)	1.5	50.800	0.5	62 000	114 000	6 300	11 70
44 075/4 5/	65.088(2 %)	25.65	25.40(1)	1.5	50.800	0.5	49 500	86 000	5 050	8 80
41.275(1 %)	65.088(2 ⁹ / ₁₆)	32.00	31.75(1 1/4)	1.5	50.800	1	62 000	114 000	6 300	11 70
40 000/4 11/3	65.088(2 1/6)	25.65	25.40(1)	1.5	50.800	0.5	49 500	86 000	5 050	8 80
42.682(1 11/16)	65.088(2 ⁹ / ₁₆)	32.00	31.75(1 1/4)	1.5	50.800	0.5	62 000	114 000	6 300	11 70
44 4EO(4 ³ / ₂)	76.200(3)	38.35	38.10(1½)	1.5	57.150	3.5	83 500	142 000	8 500	14 50
44.450(1 ¾)	76.200(3)	44.70	44.45(1 3/4)	1.5	57.150	3.5	97 000	173 000	9 850	17 60
40.040/4.15/.)	82.550(3 1/4)	38.35	38.10(1½)	2	63.500	1.5	88 000	158 000	8 950	16 10
49.212(1 15/16)	82.550(3 1/4)	44.70	44.45(1 3/4)	2	63.500	2	102 000	191 000	10 400	19 50
E0 900/0\	82.550(3 1/4)	38.35	25.40(1)	2	63.500	2.5	88 000	158 000	8 950	16 10
50.800(2)	82.550(3 1/4)	44.70	44.45(1 3/4)	2	63.500	3	102 000	191 000	10 400	19 50
55.562(2 ³ / ₁₆)	88.900(3½)	44.70	44.45(1 ¾)	2	69.850	1.5	107 000	209 000	10 900	21 30
	88.900(3 ½)	25.65	25.40(1)	2	69.850	0.5	66 000	112 000	6 700	11 40
57.150(2 1/4)	88.900(3 ½)	38.35	38.10(1½)	2	69.850	2.5	92 000	173 000	9 400	17 60
	88.900(3 ½)	44.70	44.45(1 3/4)	2	69.850	3	107 000	209 000	10 900	21 30
60.325(2 3/8)	95.250(3 ¾)	44.70	44.45(1 3/4)	2	76.200	1.5	112 000	227 000	11 400	23 20
00 =00/10	95.250(3 ¾)	38.35	38.10(1½)	2	76.200	2.5	96 000	188 000	9 800	19 10
63.500(½)	95.250(3¾)	44.70	44.45(1 ¾)	2	76.200	3	112 000	227 000	11 400	23 20
00.075/0.54	107.950(4 1/4)	44.70	44.45(1 ¾)	2	82.550	3	134 000	240 000	13 600	24 50
66.675(2 %)	107.950(4 1/4)	51.05	50.80(2)	2	82.550	5.5	146 000	268 000	14 900	27 40

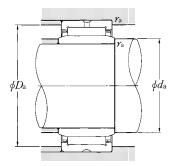

Note 1) Allowable minimum chamfer dimension \mathcal{T} . 2) Allowable axial stroking value of inner ring against outer ring. 2) Max. allowable dimension of radius \mathcal{T} a for corner roundness on shaft/housing.

Limiting	speeds	Bearing numbers	Abut	ment dimer	sions	Mass
min				mm	0)	kg
grease	oil		$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ 3) max	(approx.)
6 000	9 000	MR283716+MI-232816	43	52	1.5	0.264
6 000	9 000	MR283720+MI-232820	43	52	1.5	0.330
6 000	9 000	MR283716+MI-242816	43	52	1.5	0.246
6 000	9 000	MR283720 + MI-242820	43	52	1.5	0.307
5 500	8 000	MR324120 + MI-243220	44.5	58.5	1.5	0.448
5 500	8 500	MR303920+MI-253020	46.5	55.5	1.5	0.368
5 500	8 000	MR324120 + MI-253220	46	58.5	1.5	0.424
5 500	8 000	MR324116+MI-263216	48	58.5	1.5	0.317
5 500	8 000	MR324120 + MI-263220	48	58.5	1.5	0.402
5 500	8 000	MR324116+MI-273216	49.5	58.5	1.5	0.300
5 500	8 000	MR324120+MI-273220	49.5	58.5	1.5	0.373
4 700	7 000	MR364824+MI-283624	51	69.5	1.5	0.732
4 700	7 000	MR364828+MI-283628	51	69.5	1.5	0.853
4 300	6 500	MR405224+MI-314024	56	74.5	2	0.848
4 300	6 500	MR405228+MI-314028	56	74.5	2	0.975
4 300	6 500	MR405224+MI-324024	59	74.5	2	0.812
4 300	6 500	MR405228+MI-324028	59	74.5	2	0.923
3 700	5 500	MR445628+MI-354428	63.5	81	2	1.07
3 700	5 500	MR445616+MI-364416	65	81	2	0.594
3 700	5 500	MR445624+MI-364424	65	81	2	0.884
3 700	5 500	MR445628+MI-364428	65	81	2	1.02
3 300	5 000	MR486028+MI-384828	68	87	2	1.25
3 300	5 000	MR486024+MI-404824	71.5	87	2	0.978
3 300	5 000	MR486028+MI-404828	71.5	87	2	1.14
3 300	5 000	MR526828+MI-425228	74.5	100	2	1.67
3 300	5 000	MR526832+MI-425232	74.5	100	2	1.92

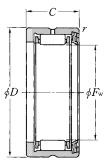

Type MR + MI


			Basic load		-4-4:-					
		mm (½	_{25.4} mm)				dynamic	static N	dynamic k	static gf
d	D	В	C	_{√rs min} 1)	F	_S 2)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
W	107.950(4 1/4)	44.70	44.45(1 3/4)	2	82.550	1.5	134 000	240 000	13 600	24 500
69.850(2 ³ / ₄)	107.950(4 1/4)	51.05	50.80(2)	2	82.550	3	146 000	268 000	14 900	27 400
74.612(2 ¹⁵ / ₁₆)	114.300(4½)	51.05	50.80(2)	2	88.900	3	154 000	295 000	15 700	30 000
	114.300(4 ½)	44.70	44.45(1 3/4)	2	88.900	3	141 000	264 000	14 400	26 900
76.200(3)	114.300(4½)	51.05	50.80(2)	2	88.900	5.5	154 000	295 000	15 700	30 000
79.375(3 1/8)	120.650(4 3/4)	51.05	50.80(2)	2.5	95.250	5.5	162 000	320 000	16 500	32 500
22 (2 1 2	120.650(4 3/4)	51.05	50.80(2)	2.5	95.250	2.5	162 000	320 000	16 500	32 500
82.550(3 1/4)	127.000(5)	51.05	50.80(2)	2.5	101.600	2.5	169 000	345 000	17 200	35 500
85.725(3 ³ / ₈)	127.000(5)	51.05	50.80(2)	2.5	101.600	4.5	169 000	345 000	17 200	35 500
00 000/0 1/	127.000(5)	51.05	50.80(2)	2.5	101.600	2.5	169 000	345 000	17 200	35 500
88.900(3 ½)	133.350(5 1/4)	51.05	50.80(2)	2.5	107.950	2.5	172 000	360 000	17 500	37 000
92.075(3 %)	133.350(5 1/4)	51.05	50.80(2)	2.5	107.950	4.5	172 000	360 000	17 500	37 000
	133.350(5 1/4)	51.05	50.80(2)	2.5	107.950	2.5	172 000	360 000	17 500	37 000
95.250(3 ³ ⁄ ₄)	152.400(6)	57.40	57.15(2 1/4)	2.5	114.300	3	238 000	435 000	24 300	44 500
	152.400(6)	63.88	63.50(2 ½)	2.5	114.300	4	260 000	485 000	26 500	49 50
98.425(3 %)	152.400(6)	57.40	57.15(2 1/4)	2.5	114.300	5.5	238 000	435 000	24 300	44 500
90.423(3 /8)	152.400(6)	63.88	63.50(2 ½)	2.5	114.300	7	260 000	485 000	26 500	49 500
	165.100(6 ½)	51.05	50.80(2)	2.5	127.000	2.5	227 000	425 000	23 200	43 000
101.600(4)	165.100(6 ½)	57.40	57.15(2 1/4)	2.5	127.000	5.5	250 000	480 000	25 500	49 000
	165.100(6½)	63.88	57.15(2 1/4)	2.5	127.000	7	273 000	535 000	27 800	54 50
107.950(4 1/4)	165.100(6½)	57.40	57.15(2 1/4)	2.5	127.000	3	250 000	480 000	25 500	49 00
114.300(4½)	177.800(7)	63.88	63.50(2 ½)	2.5	139.700	5.5	285 000	585 000	29 100	59 50
1 14.300(4 /2)	177.800(7)	76.58	76.20(3)	2.5	139.700	7	345 000	740 000	35 000	75 50
120.650(4 ¾)	184.150(7 1/4)	82.55	76.20(3)	3	146.050	3	360 000	775 000	36 500	79 00
127.000(5)	190.500(7½)	63.88	63.50(2½)	3	152.400	7	310 000	630 000	31 500	64 00
127.000(3)	190.500(7½)	76.58	76.20(3)	3	152.400	5.5	375 000	800 000	38 000	81 500

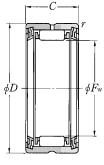

Note 1) Allowable minimum chamfer dimension \mathcal{T} . 2) Allowable axial stroking value of inner ring against outer ring. 2) Max. allowable dimension of radius \mathcal{T} a for corner roundness on shaft/housing.


Limiting	speeds	Bearing numbers	Abut	nsions	Mass	
mil grease	n ⁻¹ oil		$d_{ m a}$ min	mm $D_{ m a}$ max	$r_{ m as}$ 3)	kg (approx.)
3 300	5 000	MR526828 + MI-445228	78	100	2	1.55
3 300	5 000	MR526832 + MI-445232	78	100	2	1.77
3 000	4 500	MR567232 + MI-475632	83	106.5	2	2.00
3 000	4 500	MR567228 + MI-485628	84	106.5	2	1.65
3 000	4 500	MR567232 + MI-485632	84	106.5	2	1.92
2 800	4 200	MR607632 + MI-506032	88.5	111.5	2.5	2.15
2 800	4 200	MR607632 + MI-526032	91.5	111.5	2.5	1.99
2 600	3 900	MR648032 + MI-526432	91.5	118	2.5	2.39
2 600	3 900	MR648032 + MI-546432	94.5	118	2.5	2.22
2 600	3 900	MR648032 + MI-566432	98	118	2.5	2.05
2 500	3 700	MR688432 + MI-566832	98	124.5	2.5	2.53
2 500	3 700	MR688432 +MI-586832	101	124.5	2.5	2.36
2 500	3 700	MR688432 + MI-606832	104.5	124.5	2.5	2.17
2 300	3 500	MR729636 + MI-607236	104.5	143.5	2.5	4.02
2 300	3 500	MR729640 + MI-607240	104.5	143.5	2.5	4.47
2 300	3 500	MR729636 + MI-627236	107.5	143.5	2.5	3.77
2 300	3 500	MR729640 + MI-627240	107.5	143.5	2.5	4.19
2 100	3 100	MR8010432 + MI-648032	110.5	156	2.5	3.60
2 100 2 100	3 100 3 100	MR8010436 + MI-648036 MR8010440 + MI-648040	110.5 110.5	156 156	2.5 2.5	4.92 5.47
2 100	3 100	MR8010436 + MI-688036	117	156	2.5	4.44
1 900 1 900	2 900 2 900	MR8811240+MI-728840 MR8811248+MI-728848	123.5 123.5	169 169	2.5 2.5	6.04 7.26
1 800	2 700	MR9211648+MI-769248	132	172	3	7.48
1 700						
1 700	2 600 2 600	MR9612040 + MI-809640 MR9612048 + MI-809648	140 140	177.5 177.5	3 3	6.54 7.84
. 700	2 000		1.10	1,7.0	J	7.04

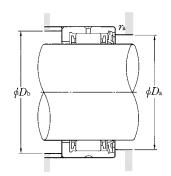
Type MR + MI



	E	Boundary		Basic load ratings dynamic static dynamic static						
		mm ()	_{25.4} mm)				dynamic	s static kgf		
d	D	В	C	$\gamma_{ m smin}$ 1)	F	_S 2)	$C_{ m r}$	Cor	C_{r}	Cor
139.700(5 ½)	203.200(8)	63.88	63.50(2 ½)	3	165.100	6	325 000	680 000	33 000	69 500
139.700(5 /2)	203.200(8)	76.58	76.20(3)	3	165.100	5.5	390 000	870 000	39 500	88 500
152.400(6)	231.775(9 1/8)	76.58	76.20(3)	3	184.150	8.5	435 000	915 000	44 500	93 000
165.100(6 ½)	244.475(9 %)	76.58	76.20(3)	3	196.850	8.5	455 000	990 000	46 500	101 000
177.800(7)	257.175(10 1/8)	76.58	76.20(3)	3	209.550	8.5	475 000	1 060 000	48 500	109 000
190.500(7½)	269.875(10 %)	76.58	76.20(3)	4	222.250	7	495 000	1 140 000	50 500	116 000
203.200(8)	282.575(11 1/8)	76.58	76.20(3)	4	234.950	7	510 000	1 210 000	52 000	124 000

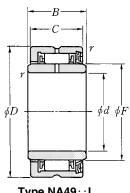


Limiting s	needs	Bearing numbers	Abutn	nent dimen	cione	Mass
		bearing numbers	Abutii		310113	
min ⁻¹ grease	oil		$d_{ m a}$	$egin{array}{c} m{m} m{m} \ D_{\mathrm{a}} \end{array}$	_{ras} 3)	kg
			min	max	max	(approx.)
	2 400	MR10412840 + MI-8810440	152.5	190	3	6.86
	2 400	MR10412848 + MI-8810448	152.5	190	3	8.22
	2 200	MR11614648 + MI-9611648	165.5	219	3	12.2
	2 000	MR12415448 + MI-10412448	178	231.5	3	13.1
	1 900	MR13216248 + MI-11213248	191	244	3	14.0
1 200	1 800	MR14017048+MI-12014048	206.5	254	4	15.0
1 100	1 700	MR14817848+MI-12814848	219	266.5	4	15.8

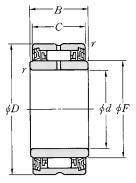

Type RNA49 · · L Type RNA49 · · LL

Type RNA49 · · L (With single seal)

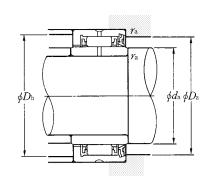
Type RNA49 · · LL (With double seal)


Fw 14~58mm

	Bounda			ons	dynamic	Basic load static	dynamic	static	Limiting speeds min ⁻¹	Bearing	numbers		butme nensio		Mass
		mm							grease	Туре	Туре	D_{a}	D_{b}	_{7 as} 2)	kg
	F _w	D	C	r _{s min} 1)	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$		RNA49··L	RNA49··LL	max		max	(approx.)
	4 +0.027 +0.016	22	13	0.3	7 200	8 500	735	865	10 000	RNA4900L/3AS	RNA4900LL/3AS	16	20	0.3	0.016
	16 ^{+0.027} _{+0.016}	24	13	0.3	7 750	9 700	795	990	10 000	RNA4901L/3AS	RNA4901LL/3AS	18	22	0.3	0.018
	20 ^{+0.033} _{+0.020}	28	13	0.3	8 300	11 200	845	1 150	10 000	RNA4902L/3AS	RNA4902LL/3AS	22	26	0.3	0.022
	22 ^{+0.033} +0.020	30	13	0.3	8 500	11 900	865	1 220	9 000	RNA4903L/3AS	RNA4903LL/3AS	24	28	0.3	0.022
	25 +0.033 +0.020	37	17	0.3	15 200	19 900	1 550	2 030	8 000	RNA4904L/3AS	RNA4904LL/3AS	28	35	0.3	0.055
3	80 ^{+0.033} _{+0.020}	42	17	0.3	16 000	22 600	1 640	2 300	6 500	RNA4905L/3AS	RNA4905LL/3AS	33	40	0.3	0.063
_3	35 +0.041 +0.025	47	17	0.3	18 000	27 400	1 830	2 800	5 500	RNA4906L/3AS	RNA4906LL/3AS	38	45	0.3	0.072
4	12 +0.041 +0.025	55	20	0.6	22 700	39 500	2 320	4 000	4 800	RNA4907L/3AS	RNA4907LL/3AS	45	51	0.6	0.113
4	18 ^{+0.041} _{+0.025}	62	22	0.6	27 800	53 500	2 830	5 450	4 200	RNA4908L/3AS	RNA4908LL/3AS	51	58	0.6	0.154
5	52 ^{+0.049} _{+0.030}	68	22	0.6	28 600	57 000	2 920	5 800	3 800	RNA4909L/3AS	RNA4909LL/3AS	55	64	0.6	0.157
5	58 +0.049 +0.030	72	22	0.6	30 500	64 000	3 100	6 500	3 400	RNA4910L/3AS	RNA4910LL/3AS	61	68	0.6	0.160

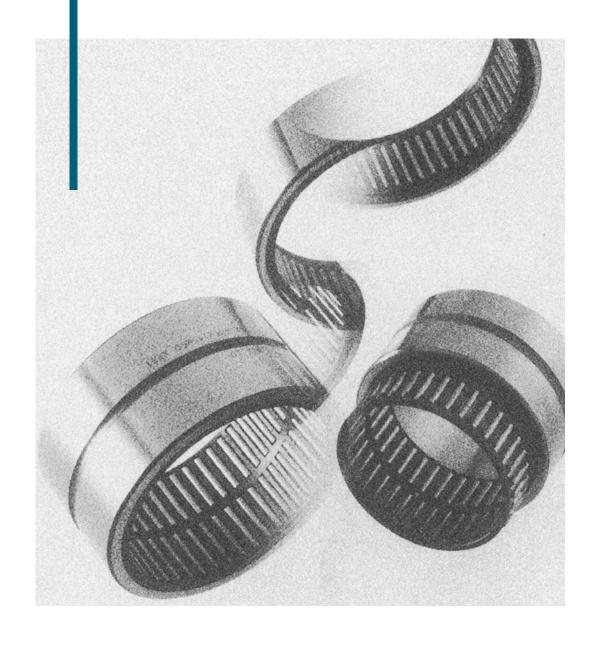

Note 1) Allowable minimum chamfer dimension $\, \it \Upsilon \,$.

²⁾ Max. allowable dimension of radius γ_a for corner roundness on shaft/housing.


Type NA49 · · L Type NA49 · · LL

Type NA49 · · L (With single seal)

Type NA49 · · LL (With double seal)

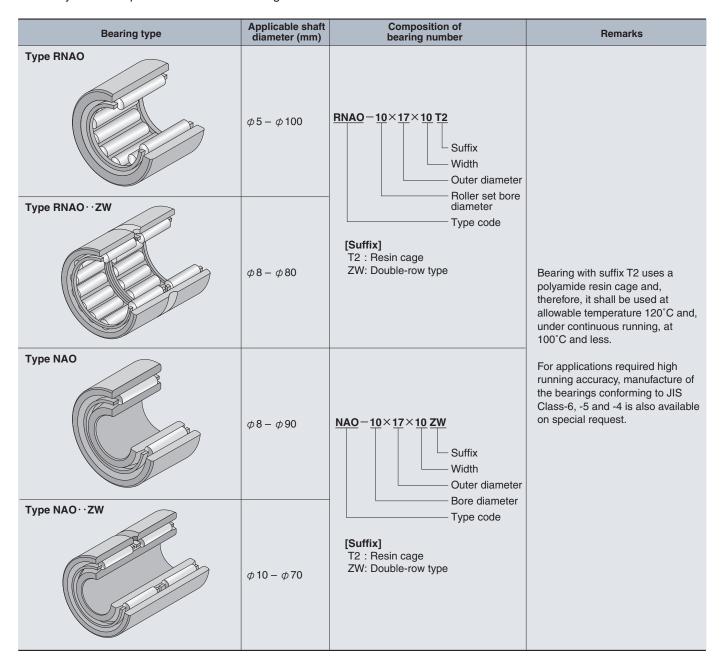

d 10∼50mm

	Bour		dime nm	nsions		dynamic	Basic loa static	dynami		Limiting speeds min ⁻¹		numbers			nsion Im	s	Mass kg
d	D	В	C	7s min 1)	F	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grease	Type NA49··L	Type RNA49··LL	$d_{ m a}$ min	D_{a} max		r _{as} 2)	
10	22	14	13	0.3	14	7 200	8 500	735	865	10 000	NA4900L/3AS	NA4900LL/3AS	12	16	20	0.3	0.025
12	24	14	13	0.3	16	7 750	9 700	795	990	10 000	NA4901L/3AS	NA4901LL/3AS	14	18	22	0.3	0.028
15	28	14	13	0.3	20	8 300	11 200	845	1 150	10 000	NA4902L/3AS	NA4902LL/3AS	17	22	26	0.3	0.036
17	30	14	13	0.3	22	8 500	11 900	865	1 220	9 000	NA4903L/3AS	NA4903LL/3AS	19	24	28	0.3	0.039
20	37	18	17	0.3	25	15 200	19 900	1 550	2 030	8 000	NA4904L/3AS	NA4904LL/3AS	22	28	35	0.3	0.080
25	42	18	17	0.3	30	16 000	22 600	1 640	2 300	6 500	NA4905L/3AS	NA4905LL/3AS	27	33	40	0.3	0.093
30	47	18	17	0.3	35	18 000	27 400	1 830	2 800	5 500	NA4906L/3AS	NA4906LL/3AS	32	38	45	0.3	0.107
35	55	21	20	0.6	42	22 700	39 500	2 320	4 000	4 800	NA4907L/3AS	NA4907LL/3AS	39	45	51	0.6	0.175
40	62	23	22	0.6	48	27 800	53 500	2 830	5 450	4 200	NA4908L/3AS	NA4908LL/3AS	44	51	58	0.6	0.252
45	68	23	22	0.6	52	28 600	57 000	2 920	5 800	3 800	NA4909L/3AS	NA4909LL/3AS	49	55	64	0.6	0.290
50	72	23	22	0.6	58	30 500	64 000	3 100	6 500	3 400	NA4910L/3AS	NA4910LL/3AS	54	61	68	0.6	0.295

Note 1) Allowable minimum chamfer dimension $\,\mathcal{T}\,.$

²⁾ Max. allowable dimension of radius r_a for corner roundness on shaft/housing.

Machined Ring Needle Roller Bearings, Separable Type


Machined Ring Needle Roller Bearings, Separable Type

The machined ring of this bearing type has no rib or side plate and, hence, the outer ring and the needle roller and cage assembly are separable from each other.

The outer ring can't regulate axial displacement of the needle roller and cage assembly and, therefore, the bearing construction must be designed so that the needle roller and cage assembly can be guided by a shaft or a housing. Furthermore, the needle roller and cage assembly can be separated from the outer ring so that the

cage and roller assembly, and the outer and the inner ring can be mounted on a shaft or a housing independent. This could facilitate the bearing mounting work.

This bearing type is suitable for an application requiring high running accuracy because the radial clearance can be selected to a narrow range by combining appropriate inner ring, outer ring and needle roller and cage assembly.

Accuracy of bearing

The dimensional accuracy, profile accuracy and running accuracy of machined ring needle roller bearing, separate type (with inner ring) are specified in JIS B 1514 (Accuracy of Rolling Bearings). (Refer to **Table 4.3** of Section 4. "**Bearing Tolerances**" on page A-26.) Although the accuracy of **NTN** standard bearings conforms to JIS Class-0, **NTN** can also supply bearings conforming to JIS Class-6, -5 and -4. Feel free to contact **NTN** for the further detail of these bearings.

The dimensional tolerances for the roller inscribed circle diameters ($F_{\rm w}$) of the bearing type without inner ring conform to ISO Tolerance Range Class-F6. The outer ring and the needle roller and cage assembly are supplied in set and, therefore, the bearing must be installed with the combination of these two in set remained unchanged.

For applications that need particularly high running accuracy, certain bearing users install the inner ring onto the shaft and then grind the raceway surface to targeted accuracy. To fulfill this type of request, **NTN** will supply a special inner ring whose raceway surface includes a grinding allowance. For details, contact **NTN** Engineering.

Radial internal clearance and bearing fits

For information about radial internal clearance of NTN machined ring needle roller bearings, separable type (with inner ring), refer to **Table 5.1** in Sec. **5.1** "**Bearing radial internal clearance**" (page A-30). Because of the narrow non-interchangeable clearance range, the bearings shipped after adjusted to a specific non-interchangeable clearance must be installed with the clearance remained unchanged.

The dimensional tolerances (fits) of a shaft and housing bore to which the bearing with inner ring is installed should be in accordance with type and magnitude of load, and dimensions of the shaft and housing bore. For information about the dimensional tolerances of a shaft and housing bore, refer to Sec. **6.4** "Recommended internal fits" (page A-33). For the profile accuracy and surface roughness of the shaft and housing bore corresponding to the recommended internal fits in Table 8.3 in Sec. **8.3** "Shaft and housing accuracy" (page A-40).

A bearing not having an inner ring directly uses the shaft as raceway surface, and the dimensional tolerances of the shaft diameter (raceway diameter) can vary depending on the operating internal clearance of the bearing as summarized in **Table 1** in page B-57. For this type of bearing usage, the dimensional tolerance class for the housing bore is K7, which is most commonly adopted tolerance class. When wishing to adopt a dimensional tolerance class other than K7 for the housing bore, contact **NTN** Engineering for technical assistance.

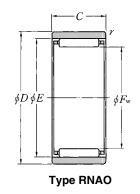
For the profile accuracy, surface roughness and surface hardness of the shaft that functions as raceway surface, refer to Sec. **8.4** "Raceway surface accuracy" (page A-40) and Sec. **8.5** "Material and hardness of raceway" (page A-40).

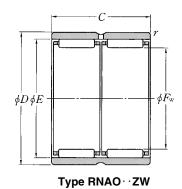
Oil hole dimension of the outer ring

The outer ring of bearing Type ZW is provided with an oil hole and an oil groove to facilitate oil lubrication to bearing.

Table 1 shows the oil hole dimension.

Table 1 Oil hole dimension

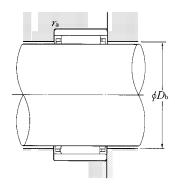

Outer ring o	uter diameter incl.	Oil hole dia. (mm)	Number of oil hole
_	20	2.0	1
20	40	2.5	1
40	80	3.0	1
80	200	3.5	1

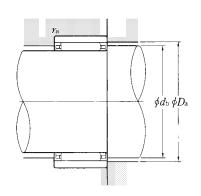

Mounting relations

The inner ring and outer ring of any machined ring needle roller bearing, separable type must be positioned in axial direction by shoulder or a snap ring.

The mounting relation dimensions about the shaft and housing bore for this case are found in the relevant dimension table. The cage must be guided by the shaft or the side face of the housing shoulder, but the guide surface must be finished by, at least, grinding for deburring.

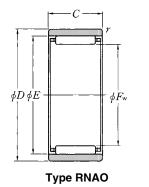
Type RNAO Type RNAO · · ZW

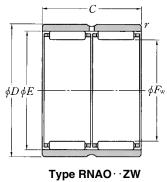




Fw 5~20mm

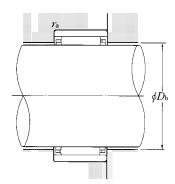
Bour	ndary	dimens	ions			Basic loa	d ratings		Limiting	g speeds	Bearing numbers
					dynamic N	static	dynamic		mai	in ⁻¹	
	п	nm			IN IN		Κį	gf	grease	ın · oil	
$F_{ m W}$	D	C	r _{s min} 1)) E	$C_{ m r}$	Cor	C_{r}	Cor	Ü		
5 +0.018 +0.010	10	8	0.15	8	2 640	2 190	269	224	27 000	40 000	RNAO- 5×10×8T2
6 ^{+0.018} _{+0.010}	13	8	0.3	9	2 660	2 280	272	233	25 000	37 000	RNAO- 6×13×8T2
7 ^{+0.022} _{+0.013}	14	8	0.3	10	2 670	2 350	272	239	23 000	34 000	RNAO- 7×14×8T2
8 ^{+0.022} _{+0.013}	15	10	0.3	11	4 000	4 100	410	420	21 000	32 000	RNAO -8×15×10T2
	16	20	0.3	12	7 950	8 350	810	850	21 000	32 000	RNAO- 8×16×20ZWT2
10 ^{+0.022} _{+0.013}	17	10	0.3	13	4 550	5 100	460	520	19 000	28 000	RNAO-10×17×10T2
	20	12	0.3	16	7 100	5 950	720	610	19 000	28 000	RNAO-10×20×12
12 ^{+0.027} _{+0.016}	19	13.5	0.3	15	6 000	7 700	615	785	17 000	26 000	RNAO-12×19×13.5
	22	12	0.3	18	8 650	8 000	880	815	17 000	26 000	RNAO-12×22×12
14 ^{+0.027} _{+0.016}	22	13	0.3	18	8 300	10 100	845	1 030	16 000	24 000	RNAO-14×22×13
	22	20	0.3	18	11 800	16 000	1 210	1 630	16 000	24 000	RNAO-14×22×20ZW
	26	12	0.3	20	9 350	9 150	955	930	16 000	24 000	RNAO-14×26×12
15 ^{+0.027} _{+0.016}	23	13	0.3	19	8 250	10 200	840	1 040	15 000	23 000	RNAO-15×23×13
	23	20	0.3	19	11 700	16 100	1 200	1 640	15 000	23 000	RNAO-15×23×20ZW
16 ^{+0.027} _{+0.016}	24	13	0.3	20	9 050	11 800	925	1 200	15 000	23 000	RNAO-16×24×13
	24	20	0.3	20	12 900	18 500	1 310	1 890	15 000	23 000	RNAO-16×24×20ZW
	28	12	0.3	22	11 700	12 500	1 190	1 280	15 000	23 000	RNAO-16×28×12
17 ^{+0.027} _{+0.016}	25	13	0.3	21	9 400	12 600	960	1 280	15 000	22 000	RNAO-17×25×13
	25	20	0.3	21	12 800	18 600	1 300	1 900	15 000	22 000	RNAO-17×25×20ZW
	25	26	0.3	21	16 100	25 200	1 640	2 570	15 000	22 000	RNAO-17×25×26ZW
18 ^{+0.027} _{+0.016}	26 26 30 30	13 20 12 24	0.3 0.3 0.3 0.3	22 22 24 24	8 900 12 700 12 300 21 100	11 900 18 800 13 800 27 700	910 1 290 1 250 2 150	1 210 1 910 1 410 2 820	14 000 14 000 14 000 14 000	21 000 21 000 21 000 21 000	$\begin{array}{c} \text{RNAO-18}{\times}26{\times}13 \\ \text{RNAO-18}{\times}26{\times}20\text{ZW} \\ \text{RNAO-18}{\times}30{\times}12 \\ \text{RNAO-18}{\times}30{\times}24\text{ZW} \end{array}$
20 +0.033 +0.020	28	13	0.3	24	10 000	14 300	1 020	1 460	13 000	20 000	RNAO-20×28×13
	28	26	0.3	24	17 100	28 600	1 750	2 910	13 000	20 000	RNAO-20×28×26ZW
	32	12	0.3	26	12 900	15 100	1 320	1 540	13 000	20 000	RNAO-20×32×12


Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius $r_{\rm a}$ for corner roundness on shaft/housing.



	Abutment dimensions mm											
db	Da	$D_{\rm b}$	_{ras} 2)	kg								
	max		max	(approx.)								
7.7	8.8	5.3	0.15	0.003								
8.7	11	6.3	0.3	0.006								
9.7	12	7.3	0.3	0.006								
10.7	13	8.3	0.3	0.008								
11.7	14	8.3	0.3	0.017								
12.7	15	10.3	0.3	0.010								
15.7	18	10.3	0.3	0.018								
14.7	17	12.3	0.3	0.015								
17.6	20	12.3	0.3	0.019								
17.6	20	14.4	0.3	0.018								
17.6	20	14.4	0.3	0.027								
19.6	24	14.4	0.3	0.029								
18.6	21	15.4	0.3	0.020								
18.6	21	15.4	0.3	0.031								
19.6	22	16.4	0.3	0.021								
19.6	22	16.4	0.3	0.032								
21.6	26	16.4	0.3	0.032								
20.6	23	17.4	0.3	0.022								
20.6	23	17.4	0.3	0.034								
20.6	23	17.4	0.3	0.044								
21.6	24	18.4	0.3	0.022								
21.6	24	18.4	0.3	0.033								
23.6	28	18.4	0.3	0.035								
23.6	28	18.4	0.3	0.069								
23.6	26	20.4	0.3	0.025								
23.6	26	20.4	0.3	0.050								
25.6	30	20.4	0.3	0.038								

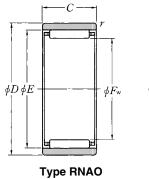
Type RNAO Type RNAO · · ZW

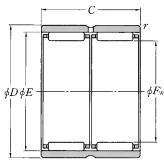




Fw 20~40mm

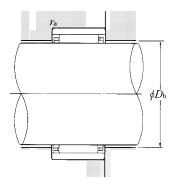
Bou	ndary	dimen	sions			Basic loa	•		Limiting	g speeds	Bearing numbers
	n	nm			dynamic N	static	dynamic	static gf	mi	in ⁻¹	
						•	K	gı	grease	oil	
$F_{ m W}$	D	C	$r_{ m s min}$ 1) E	$C_{\rm r}$	$C_{ m or}$	$C_{\rm r}$	Cor			
20 +0.033 +0.020	32	24	0.3	26	22 100	30 000	2 260	3 100	13 000	20 000	RNAO-20×32×24ZW
	30	13	0.3	26	10 200	15 200	1 040	1 550	12 000	18 000	RNAO-22×30×13
22 +0.033	30	26	0.3	26	17 500	30 500	1 790	3 100	12 000	18 000	RNAO-22 \times 30 \times 26ZW
+0.020	35	16	0.3	29	18 700	22 700	1 910	2 310	12 000	18 000	RNAO-22×35×16
	35	32	0.3	29	32 000	45 500	3 300	4 650	12 000	18 000	RNAO-22 \times 35 \times 32ZW
	35	17	0.3	29	14 200	24 000	1 450	2 450	11 000	16 000	RNAO-25×35×17
+0.033	35	26	0.3	29	18 400	33 500	1 880	3 450	11 000	16 000	RNAO-25 \times 35 \times 26ZW
25 +0.033 +0.020	37	16	0.3	32	19 500	24 700	1 990	2 520	11 000	16 000	RNAO-25×37×16
	37	32	0.3	32	33 500	49 500	3 400	5 050	11 000	16 000	RNAO-25 \times 37 \times 32ZW
26 +0.033 +0.020	39	13	0.3	30	11 800	19 200	1 200	1 960	10 000	15 000	RNAO-26×39×13
+0.033	40	16	0.3	35	21 200	28 400	2 160	2 900	9 500	14 000	RNAO-28×40×16
28 +0.033 +0.020	40	32	0.3	35	36 500	57 000	3 700	5 800	9 500	14 000	RNAO-28 \times 40 \times 32ZW
	40	17	0.3	35	19 400	32 500	1 970	3 350	9 000	13 000	RNAO-30×40×17
30 +0.033	40	26	0.3	35	25 200	46 000	2 570	4 650	9 000	13 000	RNAO-30 \times 40 \times 26ZW
30 _{+0.020}	42	16	0.3	37	21 900	30 500	2 230	3 100	9 000	13 000	RNAO-30×42×16
	42	32	0.3	37	37 500	60 500	3 850	6 200	9 000	13 000	RNAO-30 \times 42 \times 32ZW
32 ^{+0.041} _{+0.025}	42	13	0.3	37	14 500	23 000	1 480	2 350	8 500	13 000	RNAO-32×42×13
	45	13	0.3	40	15 200	25 100	1 550	2 560	7 500	11 000	RNAO-35×45×13
	45	17	0.3	40	20 000	36 000	2 040	3 650	7 500	11 000	RNAO-35×45×17
25 +0.041	45	26	0.3	40	26 100	50 000	2 660	5 100	7 500	11 000	RNAO-35 \times 45 \times 26ZW
35 +0.025	47	16	0.3	42	24 100	36 000	2 450	3 650	7 500	11 000	RNAO-35×47×16
	47	18	0.3	42	24 700	37 000	2 510	3 750	7 500	11 000	RNAO-35×47×18
	47	32	0.3	42	41 500	71 500	4 200	7 300	7 500	11 000	RNAO-35 \times 47 \times 32ZW
27 +0.041	47	13	0.3	42	15 900	27 100	1 620	2 770	7 000	11 000	RNAO-37×47×13
37 +0.041 +0.025	52	18	0.3	44	26 300	41 000	2 680	4 150	7 000	11 000	RNAO-37×52×18
	50	17	0.3	45	21 800	41 500	2 220	4 250	6 500	10 000	RNAO-40×50×17
40 ^{+0.041} _{+0.025}	50	34	0.3	45	37 500	83 000	3 800	8 500	6 500	10 000	RNAO-40×50×34ZW
	55	20	0.3	47	31 000	51 500	3 150	5 250	6 500	10 000	RNAO-40×55×20

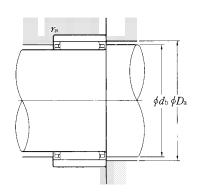

Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius $r_{\rm a}$ for corner roundness on shaft/housing.



db	$\begin{array}{ccc} \textbf{Abutment} & \\ \textbf{dimensions} & \\ & \textbf{mm} \\ d_{\text{b}} & D_{\text{a}} & D_{\text{b}} & r_{\text{as}}^{2)} \\ & \text{max} & \text{max} \end{array}$										
25.6	30	20.4	0.3	0.080							
25.6	28	22.4	0.3	0.027							
25.6	28	22.4	0.3	0.054							
28.4	33	22.4	0.3	0.059							
28.4	33	22.4	0.3	0.118							
28.4	33	25.6	0.3	0.053							
28.4	33	25.6	0.3	0.076							
31.4	35	25.6	0.3	0.060							
31.4	35	25.6	0.3	0.119							
29.4	37	26.6	0.3	0.060							
34.4	38	28.6	0.3	0.061							
34.4	38	28.6	0.3	0.122							
34.4	38	30.6	0.3	0.060							
34.4	38	30.6	0.3	0.094							
36.4	40	30.6	0.3	0.069							
36.4	40	30.6	0.3	0.137							
36.4	40	32.6	0.3	0.049							
39.4	43	35.6	0.3	0.053							
39.4	43	35.6	0.3	0.069							
39.4	43	35.6	0.3	0.091							
41.4	45	35.6	0.3	0.078							
41.4	45	35.6	0.3	0.089							
41.4	45	35.6	0.3	0.156							
41.4	45	37.6	0.3	0.056							
43.4	50	37.6	0.3	0.125							
44.4	48	40.6	0.3	0.074							
44.4	48	40.6	0.3	0.152							
46.2	53	40.6	0.3	0.145							

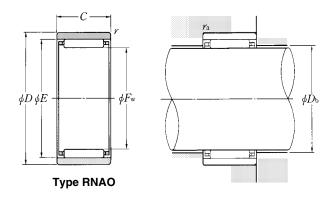
Type RNAO Type RNAO · · ZW


Type RNAO · · ZW



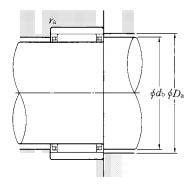
Fw 40∼85mm

	Bou	ndary	dimen	sions		Basic load ratings dynamic static dynamic static				Limiting speeds		Bearing numbers
		n	nm				N	k	gf		in ⁻¹	
	$F_{ m W}$	D	C	$r_{ m s min}$ 1)) E	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	Cor	grease	oil	
40	+0.041 +0.025	55	40	0.3	48	56 500	102 000	5 750	10 400	6 500	10 000	RNAO-40× 55×40ZW
		55	17	0.3	50	22 300	44 500	2 280	4 550	6 000	9 000	RNAO-45× 55×17
45	+0.041	55	34	0.3	50	38 500	89 500	3 900	9 100	6 000	9 000	RNAO-45× 55×34ZW
45	+0.025	62	20	0.3	53	36 000	59 000	3 650	6 000	6 000	9 000	RNAO-45× 62×20
		62	40	0.3	53	61 500	118 000	6 250	12 000	6 000	9 000	RNAO-45× 62×40ZW
		62	20	0.3	55	27 900	62 000	2 850	6 300	5 500	8 000	RNAO-50× 62×20
50	+0.041	62	40	0.3	55	48 000	124 000	4 900	12 600	5 500	8 000	RNAO-50× 62×40ZW
50	+0.025	65	20	0.3	58	38 500	67 500	3 950	6 850	5 500	8 000	RNAO-50× 65×20
		65	40	0.6	58	66 500	135 000	6 750	13 700	5 500	8 000	RNAO-50× 65×40ZW
		68	20	0.6	60	28 800	66 500	2 940	6 750	4 800	7 500	RNAO-55× 68×20
		68	25	0.6	63	50 500	97 500	5 150	9 950	4 800	7 500	RNAO-55× 68×25
55	+0.049 +0.030	68	40	0.6	60	49 500	133 000	5 050	13 500	4 800	7 500	RNAO-55× 68×40ZW
		72	20	0.6	63	39 000	70 000	3 950	7 100	4 800	7 500	RNAO-55× 72×20
		72	40	0.6	63	66 500	140 000	6 800	14 200	4 800	7 500	RNAO-55× 72×40ZW
		75	46	1	68	76 000	170 000	7 750	17 400	4 400	6 500	RNAO-60× 75×46ZW
60	+0.049 +0.030	78	20	1	68	40 000	75 000	4 100	7 650	4 400	6 500	RNAO-60× 78×20
		78	40	1	68	69 000	150 000	7 050	15 300	4 400	6 500	RNAO-60× 78×40ZW
0.5	+0.049	85	30	1	73	61 000	132 000	6 200	13 400	4 100	6 000	RNAO-65× 85×30
65	+0.030	85	60	1	73	104 000	263 000	10 600	26 800	4 100	6 000	RNAO-65× 85×60ZW
70	+0.049	90	30	1	78	65 500	149 000	6 700	15 200	3 800	5 500	RNAO-70× 90×30
70	+0.030	90	60	1	78	112 000	297 000	11 500	30 500	3 800	5 500	RNAO-70× 90×60ZW
75	+0.049	95	30	1	83	67 500	157 000	6 850	16 100	3 600	5 500	RNAO-75× 95×30
75	+0.030	95	60	1	83	115 000	315 000	11 800	32 000	3 600	5 500	RNAO-75× 95×60ZW
		95	30	1	86	57 000	159 000	5 800	16 200	3 300	5 000	RNAO-80× 95×30
80	+0.049	95	56	1	88	105 000	284 000	10 700	29 000	3 300	5 000	RNAO-80× 95×56ZW
50	+0.030	100	30	1	88	69 000	166 000	7 050	17 000	3 300	5 000	RNAO-80×100×30
		100	60	1	88	119 000	335 000	12 100	34 000	3 300	5 000	RNAO-80×100×60ZW
85	+0.058 +0.036	105	25	1	93	61 500	146 000	6 250	14 900	3 100	4 700	RNAO-85×105×25

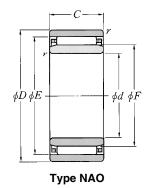

Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius $r_{\rm a}$ for corner roundness on shaft/housing.

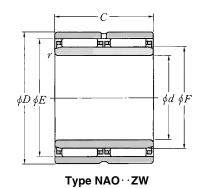
	Mass			
,		mm	2)	kg
db	$D_{ m a}$ max	Db	$r_{ m as}^{2)}$ max	(approx.)
47.2	53	40.6	0.3	0.275
49.2	53	45.6	0.3	0.083
49.2	53	45.6	0.3	0.165
52.2	60	45.6	0.3	0.175
52.2	60	45.6	0.3	0.377
54.2	60	50.6	0.3	0.140
54.2	60	50.6	0.3	0.295
57.2	63	50.6	0.3	0.168
57.2	61	50.6	0.6	0.355
59.4	64	55.8	0.6	0.166
62.4	64	55.8	0.6	0.200
59.4	64	55.8	0.6	0.310
62.4	68	55.8	0.6	0.216
62.4	68	55.8	0.6	0.425
67.2	70	60.8	1	0.461
67.2	73	60.8	1	0.255
67.2	73	60.8	1	0.500
72.2	80	66	1	0.464
72.2	80	66	1	0.951
77.2	85	71	1	0.499
77.2	85	71	1	1.00
82.2	90	76	1	0.520
82.2	90	76	1	1.04
85.2	90	81	1	0.405
87.2	90	81	1	0.755
87.2	95	81	1	0.580
87.2	95	81	1	1.10
92.2	100	86	1	0.459

Type RNAO



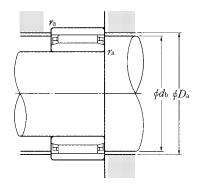
F_w 85∼100mm

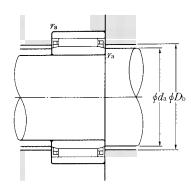

	Boundary dimensions mm					dynamic	Basic loa static	dynamic	static		g speeds in ⁻¹ oil	Bearing numbers
I	$T_{ m W}$	D	C	$\gamma_{ m s}$ min	1) E	$C_{ m r}$	Cor	$C_{\rm r}$	Cor	9		
85	+0.058 +0.036	105	30	1	93	71 000	175 000	7 200	17 900	3 100	4 700	RNAO- 85×105×30
90	+0.058 +0.036	105	26	1	98	64 000	157 000	6 550	16 000	3 000	4 400	RNAO- 90×105×26
		110	30	1	98	72 500	184 000	7 400	18 800	3 000	4 400	RNAO- 90×110×30
95	10.000	115	30	1	103	74 000	193 000	7 550	19 600	2 800	4 200	RNAO- 95×115×30
100	+0.058 +0.035	120	30	1	108	76 000	201 000	7 700	20 500	2 700	4 000	RNAO-100×120×30


Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius $r_{\rm a}$ for corner roundness on shaft/housing.

	Mass kg			
db	$D_{ m a}$ max	$D_{ m b}$	$r_{ m as}^{2)}$ max	(approx.)
92.2	100	86	1	0.585
97.2	100	91	1	0.373
97.2	105	91	1	0.610
102.2	110	96	1	0.640
107.2	115	101	1	0.694

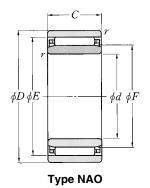
Type NAO Type NAO · · ZW

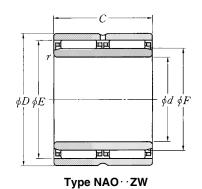


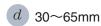


d 6∼30mm

d D C rs min 1) 6 17 10 0.3 7 20 12 0.3 9 22 12 0.3 22 13 0.3 10 22 20 0.3	F E 10 13 10 16 12 18 14 18 14 18 14 20 16 20 16 20	C _r 4 550 7 100 8 650 8 300 11 800 9 350 9 050	Cor 5 100 5 950 8 000 10 100 16 000 9 150	Cr 460 720 880 845 1 210 955	Cor 520 610 815 1 030 1 630	grease 19 000 19 000 17 000 16 000 16 000	28 000 28 000 26 000 24 000 24 000	NAO- $6 \times 17 \times 10T2$ NAO- $7 \times 20 \times 12$ NAO- $9 \times 22 \times 12$ NAO- $10 \times 22 \times 13$
6 17 10 0.3 7 20 12 0.3 9 22 12 0.3 22 13 0.3	10 16 12 18 14 18 14 18 14 20 16 20	7 100 8 650 8 300 11 800 9 350	5 950 8 000 10 100 16 000	720 880 845 1 210	610 815 1 030	19 000 17 000 16 000	28 000 26 000 24 000	NAO- 7×20×12 NAO- 9×22×12
9 22 12 0.3 22 13 0.3	12 18 14 18 14 18 14 20 16 20	8 650 8 300 11 800 9 350	8 000 10 100 16 000	880 845 1 210	815 1 030	17 000 16 000	26 000 24 000	NAO- 9×22×12
22 13 0.3	14 18 14 18 14 20 16 20	8 300 11 800 9 350	10 100 16 000	845 1 210	1 030	16 000	24 000	
	14 18 14 20 16 20	11 800 9 350	16 000	1 210				NAO-10×22×13
10 22 20 0.3	14 20 16 20	9 350			1 630	16 000	24 000	
	16 20		9 150	955			24 000	NAO-10×22×20ZW
26 12 0.3		9.050			930	16 000	24 000	NAO-10×26×12
24 13 0.3	16 20	0 000	11 800	925	1 200	15 000	23 000	NAO-12×24×13
12 24 20 0.3	10 20	12 900	18 500	1 310	1 890	15 000	23 000	NAO-12 \times 24 \times 20ZW
28 12 0.3	16 22	11 700	12 500	1 190	1 280	15 000	23 000	NAO-12×28×12
28 13 0.3	20 24	10 000	14 300	1 020	1 460	13 000	20 000	NAO-15×28×13
15 28 26 0.3	20 24	17 100	28 600	1 750	2 910	13 000	20 000	NAO-15 \times 28 \times 26ZW
32 12 0.3	20 26	12 900	15 100	1 320	1 540	13 000	20 000	NAO-15×32×12
30 13 0.3	22 26	10 200	15 200	1 040	1 550	12 000	18 000	NAO-17×30×13
30 26 0.3 17	22 26	17 500	30 500	1 790	3 100	12 000	18 000	NAO-17 \times 30 \times 26ZW
35 16 0.3	22 29	18 700	22 700	1 910	2 310	12 000	18 000	NAO-17 \times 35 \times 16
35 32 0.3	22 29	32 000	45 500	3 300	4 650	12 000	18 000	NAO-17 \times 35 \times 32ZW
35 17 0.3	25 29	14 200	24 000	1 450	2 450	11 000	16 000	NAO-20 \times 35 \times 17
3 5 26 0.3	25 29	18 400	33 500	1 880	3 450	11 000	16 000	NAO-20 \times 35 \times 26ZW
37 16 0.3	25 32	19 500	24 700	1 990	2 520	11 000	16 000	NAO-20×37×16
37 32 0.3	25 32	33 500	49 500	3 400	5 050	11 000	16 000	NAO-20 \times 37 \times 32ZW
40 17 0.3	30 35	19 400	32 500	1 970	3 350	9 000	13 000	NAO-25×40×17
40 26 0.3 25	30 35	25 200	46 000	2 570	4 650	9 000	13 000	NAO-25 \times 40 \times 26ZW
42 16 0.3	30 37	21 900	30 500	2 230	3 100	9 000	13 000	NAO-25×42×16
42 32 0.3	30 37	37 500	60 500	3 850	6 200	9 000	13 000	NAO-25 \times 42 \times 32ZW
29 42 13 0.3	32 37	14 500	23 000	1 480	2 350	8 500	13 000	NAO-29×42×13
45 13 0.3	35 40	15 200	25 100	1 550	2 560	7 500	11 000	NAO-30×45×13
30 45 17 0.3	35 40	20 000	36 000	2 040	3 650	7 500	11 000	NAO-30 \times 45 \times 17
45 26 0.3	35 40	26 100	50 000	2 660	5 100	7 500	11 000	NAO-30×45×26ZW

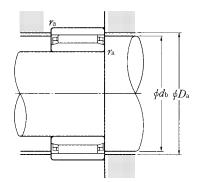

Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius $r_{\rm a}$ for corner roundness on shaft/housing.

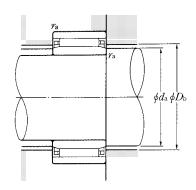




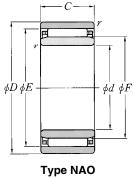
	Mass				
	d	ka			
$d_{ m a}$	db	$egin{array}{c} m{m} m{m} \ D_{ m a} \end{array}$	$D_{ m b}$	_{(ras} 2)	kg
min	000	max	20	max	(approx.)
8	12.7	15	10.3	0.3	0.014
9	15.7	18	10.3	0.3	0.022
11	17.6	20	12.3	0.3	0.024
12	17.6	20	14.4	0.3	0.026
12	17.6	20	14.4	0.3	0.039
12	19.6	24	14.4	0.3	0.036
14	19.6	22	16.4	0.3	0.030
14	19.6	22	16.4	0.3	0.044
14	21.6	26	16.4	0.3	0.040
17	23.6	26	20.4	0.3	0.029
17	23.6	26	20.4	0.3	0.075
17	25.6	30	20.4	0.3	0.050
19	25.6	28	22.4	0.3	0.042
19	25.6	28	22.4	0.3	0.081
19	28.4	33	22.4	0.3	0.078
19	28.4	33	22.4	0.3	0.148
22	28.4	33	25.6	0.3	0.076
22	28.4	33	25.6	0.3	0.112
22	31.4	35	25.6	0.3	0.082
22	31.4	35	25.6	0.3	0.155
27	34.4	38	30.6	0.3	0.088
27	34.4	38	30.6	0.3	0.130
27	36.4	40	30.6	0.3	0.086
27	36.4	40	30.6	0.3	0.190
31	36.4	40	32.6	0.3	0.062
32	39.4	43	35.6	0.3	0.077
32	39.4	43	35.6	0.3	0.102
32	39.4	43	35.6	0.3	0.157

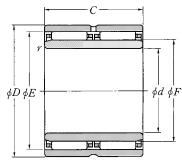
Type NAO Type NAO · · ZW

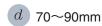




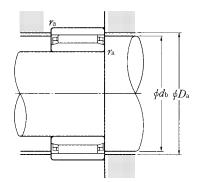
Boundary dimensions mm				Basic load ratings dynamic static dynamic static N kgf			Limitin g	speeds	Bearing numbers				
	d	D	C	r _{s min} 1)	F	E	$C_{\rm r}$	Cor	$C_{ m r}$	Cor	grease	oil	
		47	16	0.3	35	42	24 100	36 000	2 450	3 650	7 500	11 000	NAO-30×47×16
	00	47	18	0.3	35	42	24 700	37 000	2 510	3 750	7 500	11 000	NAO-30×47×18
	30	47	32	0.3	35	42	41 500	71 500	4 200	3 700	7 500	11 000	NAO-30 \times 47 \times 32ZW
		52	18	0.3	37	44	26 300	41 000	2 680	4 150	7 000	11 000	NAO-30×52×18
	33	47	13	0.3	37	42	15 900	27 100	1 620	2 770	7 000	11 000	NAO-33×47×13
		50	17	0.3	40	45	21 800	41 500	2 220	4 250	6 500	10 000	NAO-35×50×17
	35	50	34	0.3	40	45	37 500	83 000	3 800	8 500	6 500	10 000	NAO-35 \times 50 \times 34ZW
	33	55	20	0.3	40	47	31 000	51 500	3 150	5 250	6 500	10 000	NAO-35 \times 55 \times 20
		55	40	0.3	40	48	56 500	102 000	5 750	10 400	6 500	10 000	NAO-35 \times 55 \times 40ZW
		55	17	0.3	45	50	22 300	44 500	2 280	4 550	6 000	9 000	NAO-40×55×17
		55	34	0.3	45	50	38 500	89 500	3 900	9 100	6 000	9 000	NAO-40 \times 55 \times 34ZW
	40	62	20	0.3	45	53	36 000	59 000	3 650	6 000	6 000	9 000	NAO-40 \times 62 \times 20
		62	40	0.3	45	53	61 500	118 000	6 250	12 000	6 000	9 000	NAO-40 \times 62 \times 40ZW
		65	20	0.3	50	58	38 500	67 500	3 950	6 850	5 500	8 000	NAO-40×65×20
		62	20	0.3	50	55	27 900	62 000	2 850	6 300	5 500	8 000	NAO-45×62×20
	45	62	40	0.3	50	55	48 000	124 000	4 900	12 600	5 500	8 000	$NAO-45 \times 62 \times 40ZW$
	45	72	20	0.6	55	63	39 000	70 000	3 950	7 100	4 800	7 500	NAO-45×72×20
_		72	40	0.6	55	63	66 500	140 000	6 800	14 200	4 800	7 500	NAO-45×72×40ZW
		68	20	0.6	55	60	28 800	66 500	2 940	6 750	4 800	7 500	NAO-50×68×20
	50	68	40	0.6	55	60	49 500	133 000	5 050	13 500	4 800	7 500	NAO-50 \times 68 \times 40ZW
	50	78	20	1	60	68	40 000	75 000	4 100	7 650	4 400	6 500	NAO-50×78×20
		78	40	1	60	68	69 000	150 000	7 050	15 300	4 400	6 500	NAO-50×78×40ZW
	55	85	30	1	65	73	61 000	132 000	6 200	13 400	4 100	6 000	NAO-55 \times 85 \times 30
_		85	60	1	65	73	104 000	263 000	10 600	26 800	4 100	6 000	NAO-55 \times 85 \times 60ZW
	60	90	30	1	70	78	65 500	149 000	6 700	15 200	3 800	5 500	NAO-60×90×30
_	00	90	60	1	70	78	112 000	297 000	11 500	30 500	3 800	5 500	NAO-60×90×60ZW
	GE	95	30	1	75	83	67 500	157 000	6 850	16 100	3 600	5 500	NAO-65×95×30
	65	95	60	1	75	83	115 000	315 000	11 800	32 000	3 600	5 500	NAO-65 \times 95 \times 60ZW

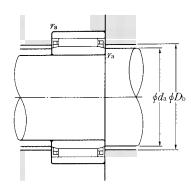

Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius $r_{\rm a}$ for corner roundness on shaft/housing.



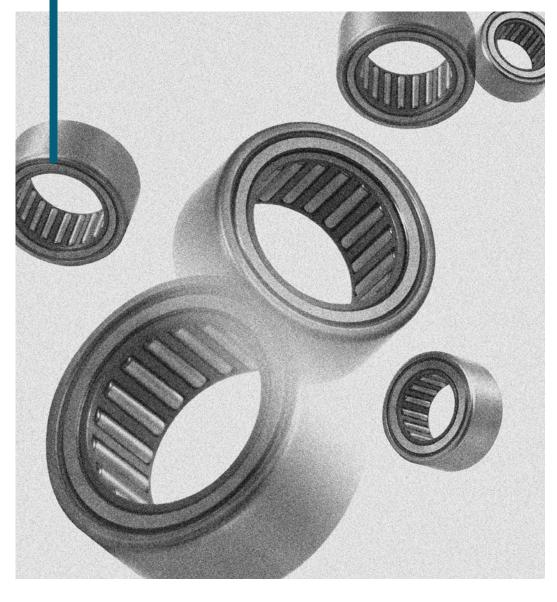

		Abutme imensic			Mass
$d_{ m a}$	db	kg			
min		max		max	(approx.)
32	41.4	45	35.6	0.3	0.109
32	41.4	45	35.6	0.3	0.119
32	41.4	45	35.6	0.3	0.205
32	43.4	50	37.6	0.3	0.177
35	41.4	45	37.6	0.3	0.085
37	44.4	48	40.6	0.3	0.113
37	44.4	48	40.6	0.3	0.225
37	46.2	53	40.6	0.3	0.190
37	47.2	53	40.6	0.3	0.360
42	49.2	53	45.6	0.3	0.127
42	49.2	53	45.6	0.3	0.250
42	52.2	60	45.6	0.3	0.230
42	52.2	60	45.6	0.3	0.385
42	57.2	63	50.6	0.3	0.279
47	54.2	60	50.6	0.3	0.192
47	54.2	60	50.6	0.3	0.385
49	62.4	68	55.8	0.6	0.335
49	62.4	68	55.8	0.6	0.660
54	59.4	64	55.8	0.6	0.230
54	59.4	64	55.8	0.6	0.440
55	67.2	73	60.8	1	0.410
55	67.2	73	60.8	1	0.755
60	72.2	80	66	1	0.680
60	72.2	80	66	1	1.35
65	77.2	85	71	1	0.720
65	77.2	85	71	1	1.45
70	82.2	90	76	1	0.770
70	82.2	90	76	1	1.54

Type NAO Type NAO · · ZW




Type NAO · · ZW

	Boundary dimensions mm						Basic Ioac static	dynamic	static	Limiting		Bearing numbers
d	D	C	$r_{ m s~min}$ 1	I) F	E	$C_{ m r}$	Cor	$C_{ m r}$	Cor	grease	oil	
70	95 95 100 100	30 56 30 60	1 1 1 1	80 80 80 80	86 88 88 88	57 000 105 000 69 000 119 000	159 000 284 000 166 000 335 000	5 800 10 700 7 050 12 100	16 200 29 000 17 000 34 000	3 300 3 300 3 300 3 300	5 000 5 000 5 000 5 000	NAO-70× 95×30 NAO-70× 95×56ZW NAO-70×100×30 NAO-70×100×60ZW
75	105 105	25 30	1 1	85 85	93 93	61 500 71 000	146 000 175 000	6 250 7 200	14 900 17 900	3 100 3 100	4 700 4 700	NAO-75×105×25 NAO-75×105×30
80	110	30	1	90	98	72 500	184 000	7 400	18 800	3 000	4 400	NAO-80×110×30
85	115	30	1	95	103	74 000	193 000	7 550	19 600	2 800	4 200	NAO-85×115×30
90	120	30	1	100	108	76 000	201 000	7 700	20 500	2 700	4 000	NAO-90×120×30


Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius $r_{\rm a}$ for corner roundness on shaft/housing.

	Mass kg				
$d_{ ext{a}}$ min	db	mm D_{a} max	D_{b}	$r_{ m as}^{2)}$ max	(approx.)
75	85.2	90	81	1	0.675
75	87.2	90	81	1	1.26
75	87.2	95	81	1	0.850
75	87.2	95	81	1	1.70
80	92.2	100	86	1	0.700
80	92.2	100	86	1	0.880
85	97.2	105	91	1	0.920
90	102.2	110	96	1	0.960
95	107.2	115	101	1	1.04

Self-Aligning Needle Roller Bearings

Self-Aligning Needle Roller Bearings

Self-aligning needle roller bearings each comprise an outer ring having spherical outside surface; a deep drawn steel collar around the outside surface of outer ring, and; a resin support ring situated between the outer ring and the collar so that the bearing can be automatically aligned; the inner ring alone can be separated from the bearing.

This bearing product has advantages that it can be used on a highly flexible shaft or in an area where alignment with the housing bore is difficult. Also, this bearing product is easy to handle: for example, it is axially positioned without using a snap ring by simply pressfitting into the housing bore in an appropriate fit mode.

Bearing type	Applicable shaft diameter (mm)	Composition of bearing number	Remarks
Type RPNA··R	φ15– φ45	RPNA 20 / 35 R Suffix Outer diameter Roller set bore diameter	Maximum permissible temperature is limited to 100°C because the bearing uses a resin-made support
Type PNA··R	φ12– φ40	Type code [Suffix] R: Ribbed type	ring.

Bearing accuracy

The dimensional accuracy and profile accuracy of any NTN self-aligning needle roller bearing shall be per JIS Class 0 specified in JIS B 1514 "Rolling bearings— Tolerances". This does not apply to the outside diameter and width of precision drawn collar.

The dimensional tolerances of roller set bore diameter $(F_{\rm w})$ of the type RPNA··R (w/o inner ring) shall fall in the range of ISO Tolerance Class F6.

Radial internal clearance and bearing fits

The NTN Type PNA·R self-aligning needle roller bearing (w/ inner ring) is manufactured to the tolerance range of radial internal clearance in Table 5.1 in Sec. 5.1 "Bearing radial internal clearance" (page A-30). As a self-aligning needle roller bearing is used after being press-fitted into a housing, the fits to the housing and shaft specified in Table 1 in this page need to be satisfied so that the bearing can function correctly. The bore of this housing needs to satisfy the accuracy specified in Table 2 in this page. For accuracy of a shaft that uses an inner ring, refer to Table 8.3 in Sec. 8.3 "Accuracy of shaft and housing" (page A-40); for accuracy of a shaft that is directly used as a raceway surface, refer to Table 8.4 in Sec. 8.4 "Accuracy of raceway surface" (page A-40).

For material and hardness of the shaft that functions as raceway surface, refer to Sec. **8.5** "Material and hardness of raceway" (page A-40).

Table 1 Fits with housing and shaft (recommended)

Hou	sing	Sh	aft
Iron	Light alloy	w/o inner ring	w/ inner ring
N6(N7)	R6(R7)	h5(h6)	k5(j6)

Table 2 Accuracy of housing bore (recommended)

Characteristic	Tolerance
Roundness (max.)	IT5/2
Cylindricity (max.)	IT5/2
Surface roughness (max.)	0.8a

Bearing mounting relation dimensions

Self-aligning needle roller bearing with an inner ring must be used within the permissible shift range (S). (state where the rollers remain in contact with the inner ring in an effective contact length range). The permissible shift (S) will be found in the relevant dimension table. When the axial shift of the intended bearing is large or a closing seal is used in close vicinity to this bearing, a wider inner ring needs to be adopted. Carefully use a closing seal as its sealing effect may be jeopardized when dimensional errors of fit and/or shaft deflection are large.

When installing a self-aligning needle roller bearing to a housing, place the jig on the marking side of the bearing, and then press-fit the bearing into the correct location in the housing bore.

When installing, NEVER directly hit the bearing with a hard tool such as a steel hammer. Instead, use the press-fit jig that is equipped with a mandrel fitted with an O-ring (see Fig. 1 in this page). The bearing will be easily press-fitted as it will not be misaligned to the housing or fall.

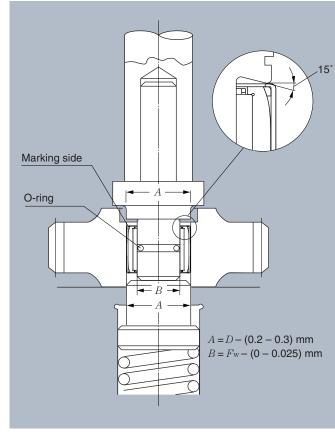
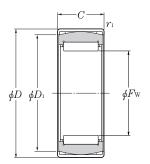
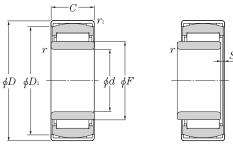



Fig. 1

Without inner ring

Type RPNA · · R

Type RPNA··R

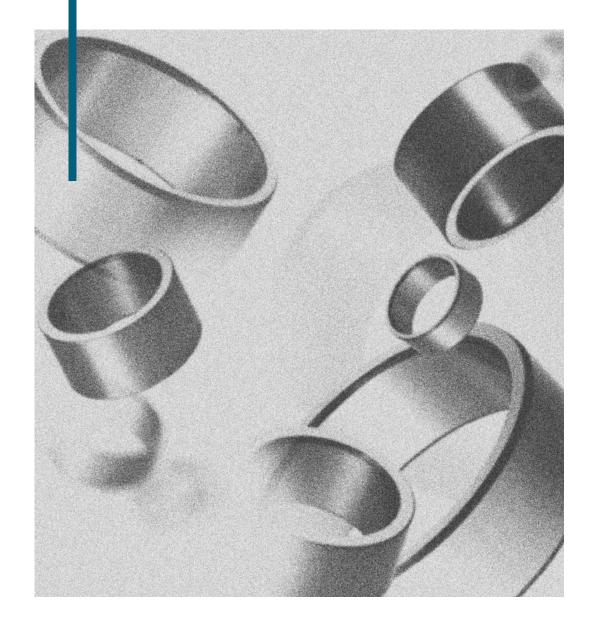

Fw 15~45mm

	Bou	ndary	dimens	ions		dynamic	Basic load		static	Limiting	g speeds	Bearing numbers	Mass
		n	nm			N			gf		in ⁻¹		kg
	$F_{ m W}$	D	D_1	$C \pm 0.5$	γ_1 min	$C_{\rm r}$	$C_{ m or}$	$C_{ m r}$	Cor	grease	oil		(approx.)
	15 ^{+0.027} _{+0.016}	28	24.5	12	0.8	7 050	7 850	715	800	14 000	24 000	RPNA 15/28R	0.032
	18 ^{+0.027} _{+0.016}	32	27	16	0.8	12 700	16 200	1 300	1 650	13 000	22 000	RPNA 18/32R	0.052
Ī	20 ^{+0.033} _{+0.020}	35	30.5	16	0.8	13 200	17 500	1 340	1 790	12 500	21 000	RPNA 20/35R	0.062
	25 ^{+0.033} _{+0.020}	42	36.5	20	0.8	19 200	30 500	1 960	3 100	10 500	18 000	RPNA 25/42R	0.109
	28 ^{+0.033} _{+0.020}	44	38.5	20	0.8	22 300	34 000	2 280	3 450	9 500	16 000	RPNA 28/44R	0.112
	30 ^{+0.033} _{+0.020}	47	42	20	0.8	22 900	36 000	2 340	3 650	9 000	15 000	RPNA 30/47R	0.125
	35 +0.041 +0.025	52	47.5	20	0.8	24 800	41 500	2 520	4 250	7 800	13 000	RPNA 35/52R	0.131
	40 ^{+0.041} _{+0.025}	55	50.5	20	0.8	26 400	47 000	2 700	4 800	6 600	11 000	RPNA 40/55R	0.141
	45 ^{+0.041} _{+0.025}	62	58	20	8.0	28 000	52 500	2 860	5 400	6 000	10 000	RPNA 45/62R	0.176

Remarks: Type RPNA products are imports from INA (German company in Schaeffler Group).

With inner ring

Type PNA · · R



Type PNA · · R

d 12~40mm

	E	Bounda	ry din	nensio	ons				Basic loa		a atatia	Limiting	speeds	Bearing numbers	Mass
			mm					dynamic			gf	mi			kg
d	D	D_1	$_{\pm 0.5}^{C}$	$r_{ m s min}$) F	γ_1 min	s ²⁾	$C_{\rm r}$	Cor	$C_{ m r}$	$C_{ m or}$	grease	oil		(approx.)
12	28	24.5	12	0.3	15	0.8	0.5	7 050	7 850	715	800	14 000	24 000	PNA 12/28R	0.037
15	32	27	16	0.3	18	0.8	0.5	12 700	16 200	1 300	1 650	13 000	22 000	PNA 15/32R	0.062
17	35	30.5	16	0.3	20	0.8	0.5	13 200	17 500	1 340	1 790	12 500	21 000	PNA 17/35R	0.073
20	42	36.5	20	0.3	25	0.8	0.5	19 200	30 500	1 960	3 100	10 500	18 000	PNA 20/42R	0.136
22	44	38.5	20	0.3	28	0.8	0.5	22 300	34 000	2 280	3 450	9 500	16 000	PNA 22/44R	0.145
25	47	42	20	0.3	30	0.8	0.5	22 900	36 000	2 340	3 650	9 000	15 000	PNA 25/47R	0.157
30	52	47.5	20	0.3	35	8.0	0.5	24 800	41 500	2 520	4 250	7 800	13 000	PNA 30/52R	0.181
35	55	50.5	20	0.3	40	8.0	0.5	26 400	47 000	2 700	4 800	6 600	11 000	PNA 35/55R	0.177
40	62	58	20	0.3	45	8.0	0.5	28 000	52 500	2 860	5 400	6 000	10 000	PNA 40/62R	0.227

Inner Rings

Inner Rings

Inner Rings

Many of the needle roller bearings use a shaft as the direct raceway surface without using inner ring. However, it is recommended to use any of the inner rings described hereunder, together with needle roller bearing, where applicable shaft can not be surface-hardened and surface-finished by grinding. Any inner rings are made of high carbon chrome bearing steel and finished by grinding after heat-treated.

It is desirable to use an inner ring of wide width, where the axial displacement of a shaft is great and also a seal is used at the outer side of bearing.

Types and Designs

NTN inner rings are available in both of IR type with boundary dimensions of metric system and MI type with boundary dimensions of inch system. Both edges of inner ring raceway are chamfered to form gentle tapers in order to facilitate fitting of the inner ring. In contrast, inner rings whose inner ring number is headed by an asterisk (*) are provided with slight-chamfering so that they will offer a greater axial travel. In addition to these inner rings, manufacture of special inner ring type (suffix D) with oil hole on its center is also available.

For applications that need particularly high running accuracy, certain bearing users install the inner ring onto the shaft and then grind the raceway surface to targeted accuracy. To fulfill this type of request, NTN will supply a special inner ring whose raceway surface includes a grinding allowance. For details, contact NTN Engineering.

Composition of inner ring number

Inner ring number consists of type code (**IR** or **MI**)), dimension code [bore dia. $(d) \times$ raceway dia. $(F) \times$ width (B)] and a suffix. Note that the dimensions of Type **MI** (inch series) inner rings measure in 1/16 increments.

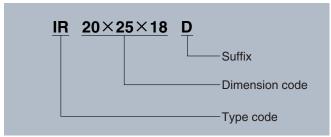
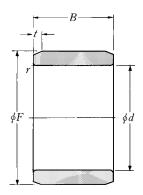
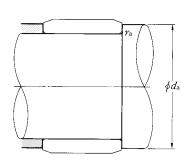


Fig. 1

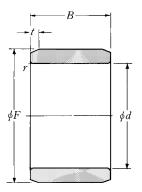

Dimensional accuracy for inner ring

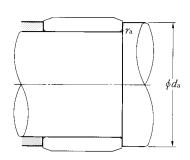

The dimensional accuracy (bore diameter "d", width "B" and chamfer dimension " r_s min"), profile accuracy and running accuracy of the inner rings are as shown in **Tables 4.3** and **4.5** of Section 4 "**Bearing accuracy**" (page A-26). And the standard accuracy class of these items conforms to JIS Class-0, but other inner rings conforming to JIS Class-5 and -4 are also offerable on request.

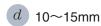
Each inner ring has been finished to the dimensional tolerance of its raceway diameter (*F*) in the relevant dimension table so that when the inner ring is combined with a needle roller bearing, the resultant radial internal clearance falls in a range of ordinary clearance (refer to **Table 5.1** in Sec. **5.2** "**Running clearance**".)

Inner rings

Type IR






	Ť	/ dimensior mm	ns		Bearing numbers	Abut dimer m	nsions m	Mass kg
d	F 1)	В	∕rs min 2)	t		$d_{ ext{a}}$ min	$r_{ m as}$ 3) max	(approx.)
	7	10	0.15	1	IR 5× 7×10	6.2	0.15	0.0014
5	8 _0.006	12	0.3	1	IR 5× 8×12	7	0.3	0.0028
	8	16	0.3	_	%IR 5× 8×16	7	0.3	0.0038
	8	10	0.15	1	IR 6× 8×10	7.2	0.15	0.0017
	9	12	0.3	1	IR 6× 9×12	8	0.3	0.0032
	9 0	16	0.3	1	IR 6× 9×16	8	0.3	0.0043
6	10 -0.006	10	0.3	1	IR 6×10×10	8	0.3	0.0037
	10	12	0.3	_	%IR 6×10×12D	8	0.3	0.0046
	10	13	0.3	1	IR 6×10×13	8	0.3	0.0050
	9	10	0.15	1	IR 7× 9×10	8.2	0.15	0.0019
	10 0	10.5	0.3	1	IR 7×10×10.5	9	0.3	0.0031
7	$10^{-0.006}$	12	0.3	1	IR 7×10×12	9	0.3	0.0036
	10	16	0.3	1	IR 7×10×16	9	0.3	0.0049
	$12 \begin{array}{c} -0 \\ -0.008 \end{array}$	16	0.3	1	IR 7×12×16	9	0.3	0.0093
	$10 \ _{-0.006}^{0}$	11	0.15	1	IR 8×10×11	9.2	0.15	0.0024
	12	10	0.3	1	IR 8×12×10	10	0.3	0.0048
8	12	10.5	0.3	1	IR 8×12×10.5	10	0.3	0.0050
0	$12 \begin{array}{c} 0 \\ -0.008 \end{array}$	12	0.3	_	%IR 8×12×12D	10	0.3	0.0057
	12	12.5	0.3	1	IR 8×12×12.5	10	0.3	0.0059
	14	16	0.3	1	IR 8×14×16	10	0.3	0.013
	12	11	0.3	1	IR 9×12×11	11	0.3	0.0041
9	12 0	12	0.3	1	IR 9×12×12	11	0.3	0.0045
3	$12^{-0.008}$	16	0.3	1	IR 9×12×16	11	0.3	0.0061
	15	16	0.3	1	IR 9×15×16	11	0.3	0.014
	13	12.5	0.3	1	IR10×13×12.5	12	0.3	0.0052
	14	12	0.3	1	IR10×14×12	12	0.3	0.0073
10	14 0	13	0.3	1	IR10×14×13	12	0.3	0.0074
10	$14^{-0.008}$	14	0.3	_	%IR10×14×14D	12	0.3	0.0080
	14	16	0.3	_	%IR10×14×16	12	0.3	0.0092
	14	20	0.3	1	IR10×14×20	12	0.3	0.012

Note 1) Dimensional tolerance to secure ordinary clearance when any of these inner rings is combined with needle roller bearing with no inner ring. 2) Allowable minimum chamfer dimension \hat{r} . 3) Max. allowable dimension of radius \hat{r} a for corner roundness on shaft/housing. Remarks: 1. Nominal number plus code " \mathbf{D} " represents inner ring with oil hole. 2. Nominal number plus %-mark represents inner ring with fine-chamfered outer surface.

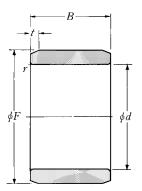
Type IR

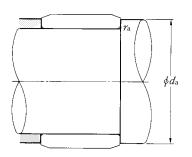
		y dimensio	ns		Bearing numbers	dime	tment nsions	Mass
		mm				$d_{ m a}$	nm _{(ras} 3)	kg
d	$F^{ extsf{1})}$	В	_{√s min} 2)	t		min	max	(approx.)
	15	15.5	0.3	1	IR10×15×15.5	12	0.3	0.012
10	15 $_{-0.008}^{0}$	20.5	0.3	1	IR10×15×20.5	12	0.3	0.015
	16	16	0.3	1	IR10×16×16	12	0.3	0.015
	15	12	0.3	1	IR12×15×12	14	0.3	0.0058
	15	12.5	0.3	1	IR12×15×12.5	14	0.3	0.0061
	15	16	0.3	1	IR12×15×16	14	0.3	0.0078
	15	16.5	0.3	_	%IR12×15×16.5	14	0.3	0.0080
	15	22.5	0.3	_	%IR12×15×22.5	14	0.3	0.011
	16	12	0.3	1.5	IR12×16×12	14	0.3	0.0079
40	16 ₀	13	0.3	1.5	IR12×16×13	14	0.3	0.0087
12	$16^{-0.008}$	14	0.3	_	%IR12×16×14D	14	0.3	0.0095
	16	16	0.3	1.5	IR12×16×16	14	0.3	0.011
	16 16	20	0.3	1.5	IR12×16×20	14	0.3	0.014
		22	0.3	1.5	IR12×16×22	14	0.3	0.015
	17	20.5	0.3	1.5	IR12×17×20.5	14	0.3	0.019
	17	25.5	0.3	1.5	IR12×17×25.5	14	0.3	0.024
	18	16	0.3	1.5	IR12×18×16	14	0.3	0.018
14	$17 \begin{array}{c} 0 \\ -0.008 \end{array}$	17	0.3	1.5	IR14×17×17	16	0.3	0.0095
	18	12.5	0.3	1.5	IR15×18×12.5	17	0.3	0.0072
	18	16	0.3	1.5	IR15×18×16	17	0.3	0.0093
	18 ₀	16.5	0.3	1.5	IR15×18×16.5	17	0.3	0.0096
	$18^{-0.008}$	17.5	0.3	1.5	IR15×18×17.5	17	0.3	0.010
	18	20.5	0.3	1.5	IR15×18×20.5	17	0.3	0.012
	18	25.5	0.3	1.5	IR15×18×25.5	17	0.3	0.015
15	19	16	0.3	1.5	IR15×19×16	17	0.3	0.013
	19	20	0.3	1.5	IR15×19×20	17	0.3	0.016
	20	12	0.3	1.5	IR15×20×12	17	0.3	0.012
	$20 \ _{-0.009}^{0}$	13	0.3	1.5	IR15×20×13	17	0.3	0.014
	20	14	0.3	_	%IR15×20×14D	17	0.3	0.015
	20	18	0.3	1.5	IR15×20×18	17	0.3	0.019
	20	20.5	0.3	1.5	IR15×20×20.5	17	0.3	0.021

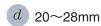
Note 1) Dimensional tolerance to secure ordinary clearance when any of these inner rings is combined with needle roller bearing with no inner ring.

2) Allowable minimum chamfer dimension r. 3) Max. allowable dimension of radius ra for corner roundness on shaft/housing.

Remarks: 1. Nominal number plus code "D" represents inner ring with oil hole.


2. Nominal number plus \divideontimes -mark represents inner ring with fine-chamfered outer surface.


d 15∼20mm


		/ dimensio	ns		Bearing numbers	dime	Abutment dimensions mm da ras ³⁾ min max 17 0.3 17 0.3 17 0.3 19 0.6 19 0.3			
		mm						kg		
d	$F^{1)}$	В	∕r _{s min} 2)	t				(approx.)		
	20	23	0.3	_	%IR15×20×23	17	0.3	0.024		
45	20 0	26	0.3	1.5	IR15×20×26	17	0.3	0.027		
15	$20^{-0.009}$	30.5	0.3	1.5	IR15×20×30.5	17	0.3	0.032		
	22	20	0.6	1.5	IR15×22×20	19	0.6	0.032		
	20	16	0.3	1.5	IR17×20×16	19	0.3	0.011		
	20	16.5	0.3	1.5	IR17×20×16.5	19	0.3	0.011		
	20	20	0.3	1.5	IR17×20×20	19	0.3	0.014		
	20	20.5	0.3	_	%IR17 ×20×20.5	19	0.3	0.014		
	20	30.5	0.3	_	%IR17 ×20×30.5	19	0.3	0.021		
	21	16	0.3	1.5	IR17×21×16	19	0.3	0.014		
	21 22 ₀ 22 ^{-0.009}	20	0.3	_	%IR17×21×20	19	0.3	0.018		
17		13	0.3	1.5	IR17×22×13	19	0.3	0.015		
17		14	0.3	_	%IR17×22×14D	19	0.3	0.016		
	22	16	0.3	_	%IR17×22×16	19	0.3	0.019		
	22	18	0.3	1.5	IR17×22×18	19	0.3	0.021		
	22	20.5	0.3	1.5	IR17×22×20.5	19	0.3	0.024		
	22	23	0.3	_	%IR17×22×23	19	0.3	0.027		
	22	26	0.3	1.5	IR17×22×26	19	0.3	0.030		
	22	32	0.3	1.5	IR17×22×32	19	0.3	0.036		
	24	20	0.6	1.5	IR17×24×20	21	0.6	0.034		
	24	16	0.3	1.8	IR20×24×16	22	0.3	0.017		
	24	20	0.3	_	%IR20×24×20	22	0.3	0.021		
	24	28.5	0.3	_	%IR20×24×28.5	22	0.3	0.030		
	25	12.5	0.3	1.8	IR20×25×12.5	22	0.3	0.016		
	25	16	0.3	_	%IR20 ×25×16	22	0.3	0.021		
20	$25 \begin{array}{c} 0 \\ -0.009 \end{array}$	16.5	0.3	1.8	IR20×25×16.5	22	0.3	0.022		
	25	17	0.3	1.8	IR20×25×17	22	0.3	0.022		
	25	18	0.3	_	%IR20×25×18D	22	0.3	0.024		
	25	20	0.3	_	%IR20×25×20	22	0.3	0.027		
	25	20.5	0.3	1.8	IR20×25×20.5	22	0.3	0.028		
	25	23	0.3	1.8	IR20×25×23	22	0.3	0.031		

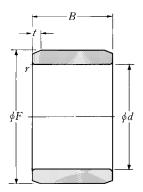
Note 1) Dimensional tolerance to secure ordinary clearance when any of these inner rings is combined with needle roller bearing with no inner ring. 2) Allowable minimum chamfer dimension \hat{r} . 3) Max. allowable dimension of radius \hat{r} a for corner roundness on shaft/housing. Remarks: 1. Nominal number plus code " \mathbf{D} " represents inner ring with oil hole. 2. Nominal number plus %-mark represents inner ring with fine-chamfered outer surface.

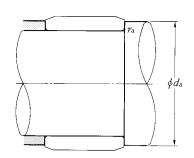
Type IR

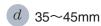
		/ dimensio	ns		Bearing numbers	dime	tment nsions	Mass
		mm				$d_{ m a}$	nm $_{r_{ m as}}$ 3)	kg
d	$F^{ extsf{1})}$	B	_{√s min} 2)	t		min	max	(approx.)
	25	26	0.3	1.8	IR20×25×26	22	0.3	0.034
	25	26.5	0.3	_	%IR20×25×26.5	22	0.3	0.036
20	25 ₀	30	0.3	1.8	IR20×25×30	22	0.3	0.041
20	$25^{-0.009}$	32	0.3	1.8	IR20×25×32	22	0.3	0.041
	25	38.5	0.3	_	%IR20×25×38.5	22	0.3	0.053
	28	20	0.6	1.8	IR20×28×20	24	0.6	0.045
	26	16	0.3	1.8	IR22×26×16	24	0.3	0.017
	26	20	0.3	_	%IR22×26×20	24	0.3	0.022
	28	17	0.3	1.8	IR22×28×17	24	0.3	0.030
22	$28 \ _{-0.009}^{0}$	20	0.3	1.8	IR22×28×20	24	0.3	0.035
	28	20.5	0.3	1.8	IR22×28×20.5	24	0.3	0.036
	28	23	0.3	1.8	IR22×28×23	24	0.3	0.042
	28	30	0.3	_	%IR22×28×30	24	0.3	0.054
	29	20	0.3	_	%IR25×29×20	27	0.3	0.026
	29	30	0.3	1.8	IR25×29×30	27	0.3	0.039
	30	12.5	0.3	1.8	IR25×30×12.5	27	0.3	0.020
	30	16	0.3	1	IR25×30×16	27	0.3	0.024
	30	16.5	0.3	1.8	IR25×30×16.5	27	0.3	0.026
	30	17	0.3	1.8	IR25×30×17	27	0.3	0.027
	30	18	0.3	_	%IR25×30×18	27	0.3	0.030
	$30_{-0.009}^{0}$	20	0.3	1.8	IR25×30×20	27	0.3	0.033
25	30	20.5	0.3	1.8	IR25×30×20.5	27	0.3	0.034
	30	23	0.3	1.8	IR25×30×23	27	0.3	0.038
	30	26	0.3	1.8	IR25×30×26	27	0.3	0.041
	30	26.5	0.3	_	%IR25×30×26.5	27	0.3	0.043
	30	30	0.3	1.8	IR25×30×30	27	0.3	0.050
	30	32	0.3	1	IR25×30×32	27	0.3	0.054
	3 <u>0</u>	38.5	0.3	_	%IR25 ×30×38.5	27	0.3	0.064
	32 + 0.008	22	0.6	1.8	IR25×32×22	29	0.6	0.052
	32 -0.002	30.5	0.6	1.8	IR25×32×30.5	29	0.6	0.072
28	$32 \begin{array}{l} -0.008 \\ -0.002 \end{array}$	17	0.3	1.8	IR28×32×17	30	0.3	0.025

Note 1) Dimensional tolerance to secure ordinary clearance when any of these inner rings is combined with needle roller bearing with no inner ring.

2) Allowable minimum chamfer dimension r. 3) Max. allowable dimension of radius ra for corner roundness on shaft/housing.


Remarks: 1. Nominal number plus %-mark represents inner ring with fine-chamfered outer surface.


d 28∼35mm


	Ĩ	/ dimensioi	1 S		Bearing numbers	Abut	Mass kg	
		mm				$d_{ m a}$	nm $_{r_{ m as}}$ 3)	кд
d	F 1)	В	$\gamma_{ m s min}$ 2)	t		min	max	(approx.
	32	20	0.3	1.8	IR28×32×20	30	0.3	0.028
28	$32 {}^{+0.008}_{-0.002}$	23	0.3	1.8	IR28×32×23	30	0.3	0.034
	32	30	0.3	_	%IR28 ×32×30	30	0.3	0.044
29	32 ^{+0.008} _{-0.002}	13	0.3	1.8	IR29×32×13	31	0.3	0.015
	35	12.5	0.3	1.8	IR30×35×12.5	32	0.3	0.024
	35	13	0.3	1.3	IR30×35×13	32	0.3	0.025
	35	16	0.3	_	%IR30×35×16	32	0.3	0.031
	35	16.5	0.3	1.8	IR30×35×16.5	32	0.3	0.032
	35	17	0.3	1.8	IR30×35×17	32	0.3	0.032
	35	18	0.3	_	%IR30×35×18D	32	0.3	0.035
	35	20	0.3	_	%IR30×35×20	32	0.3	0.038
30	$35 {}^{+0.008}_{-0.002}$	20.5	0.3	1.8	IR30×35×20.5	32	0.3	0.039
	35	23	0.3	1.8	IR30×35×23	32	0.3	0.044
	35	26	0.3	1.8	IR30×35×26	32	0.3	0.050
	35	30	0.3	_	%IR30×35×30	32	0.3	0.059
	35	32	0.3	1.8	IR30×35×32	32	0.3	0.063
	37	18	0.3	1.8	IR30×37×18	32	0.3	0.050
	37	22	0.6	1.8	IR30×37×22	34	0.6	0.061
	38	20	0.6	_	%IR30×38×20	34	0.6	0.065
	37	20	0.3	2	IR32×37×20	34	0.3	0.040
	37	30	0.3	_	%IR32×37×30	34	0.3	0.063
20	38 ₀	32	0.3	2	IR32×38×32	34	0.3	0.082
32	$40^{-0.011}$	20	0.6	2	IR32×40×20	36	0.6	0.068
	40	27	0.6	2	IR32×40×27	36	0.6	0.092
	40	36	0.6	2	IR32×40×36	36	0.6	0.124
33	$37 \begin{array}{c} 0 \\ -0.011 \end{array}$	13	0.3	2	IR33×37×13	35	0.3	0.022
	40	12.5	0.3	2	IR35×40×12.5	37	0.3	0.027
25	40 0	16.5	0.3	2	IR35×40×16.5	37	0.3	0.037
35	$40^{-0.011}$	17	0.3	2	IR35×40×17	37	0.3	0.038
	40	20	0.3	2	IR35×40×20	37	0.3	0.044

Note 1) Dimensional tolerance to secure ordinary clearance when any of these inner rings is combined with needle roller bearing with no inner ring. 2) Allowable minimum chamfer dimension \hat{r} . 3) Max. allowable dimension of radius \hat{r} a for corner roundness on shaft/housing. Remarks: 1. Nominal number plus code " \mathbf{D} " represents inner ring with oil hole. 2. Nominal number plus %-mark represents inner ring with fine-chamfered outer surface.

Type IR

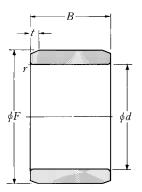
		/ dimensio	ns		Bearing numbers	dime	tment nsions	Mass
		mm					nm	kg
d	F 1)	В	γ _{s min} 2)	t		$d_{ m a}$ min	r _{as} 3) max	(approx.)
	40	20.5	0.3	2	IR35×40×20.5	37	0.3	0.046
	40	30	0.3	_	%IR35×40×30	37	0.3	0.048
	40	34	0.3	1.8	IR35×40×34	37	0.3	0.079
	40	40	0.3	2	IR35×40×40	37	0.3	0.091
	42 0	20	0.6	1.8	IR35×42×20	39	0.6	0.064
35	42 -0.011	21	0.6	_	%IR35×42×21	39	0.6	0.068
	42	23	0.6	_	%IR35×42×23D	39	0.6	0.074
	42	27	0.6	2	IR35×42×27	39	0.6	0.080
	42	36	0.6	2	IR35×42×36	39	0.6	0.117
	43	22	0.6	2	IR35×43×22	39	0.6	0.081
	43 0	20	0.3	1.8	IR38×43×20	40	0.3	0.048
38	$43^{-0.011}$	30	0.3	_	%IR38 ×43×30	40	0.3	0.074
	45 45 45	16.5	0.3	2	IR40×45×16.5	42	0.3	0.042
		17	0.3	2	IR40×45×17	42	0.3	0.043
		20	0.3	2	IR40×45×20	42	0.3	0.051
	45	20.5	0.3	2	IR40×45×20.5	42	0.3	0.053
	45	26.5	0.3	_	%IR40×45×26.5	42	0.3	0.068
	45	30	0.3	2	IR40×45×30	42	0.3	0.077
40	45 ₀	34	0.3	2	IR40×45×34	42	0.3	0.088
40	$45^{-0.011}$	40	0.3	2	IR40×45×40	42	0.3	0.106
	48	22	0.6	2	IR40×48×22	44	0.6	0.092
	48	23	0.6	_	%IR40×48×23	44	0.6	0.097
	48	30	0.6	2	IR40×48×30	44	0.6	0.123
	48	40	0.6	2	IR40×48×40	44	0.6	0.170
	50	20	0.3	8.0	IR40×50×20	44	0.3	0.106
	50	22	1	2	IR40×50×22	45	1	0.118
42	47 0	20	0.3	2	IR42×47×20	44	0.3	0.053
42	47 ^{-0.011}	30	0.3	2	IR42×47×30	44	0.3	0.080
45	50 ₀	20	0.3	2	IR45×50×20	47	0.3	0.057
45	50 ^{-0.011}	25	0.6	2	IR45×50×25	49	0.6	0.071

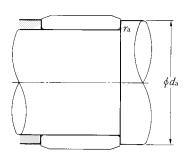
Note 1) Dimensional tolerance to secure ordinary clearance when any of these inner rings is combined with needle roller bearing with no inner ring.

2) Allowable minimum chamfer dimension r. 3) Max. allowable dimension of radius ra for corner roundness on shaft/housing.

Remarks: 1. Nominal number plus code "D" represents inner ring with oil hole.

2. Nominal number plus \divideontimes -mark represents inner ring with fine-chamfered outer surface.

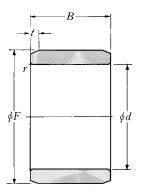

d 45∼55mm

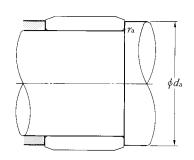

	·	/ dimensio	ns		Bearing numbers	Abuti dimen	sions	Mass
		mm				$d_{ m a}$	$r_{ m as}$ 3)	kg
d	F ¹⁾	В	_{√s min} 2)	t		min	max	(approx.)
	50	25.5	0.3	_	%IR45×50×25.5	47	0.3	0.074
	50 ₀	32	0.6	_	%IR45×50×32	49	0.6	0.092
	$50^{-0.011}$	35	0.6	2	IR45×50×35	49	0.6	0.101
	50	40	0.3	1.5	IR45×50×40	47	0.3	0.115
	52	22	0.6	2	IR45×52×22	49	0.6	0.088
45	52	23	0.6	_	%IR45×52×23D	49	0.6	0.093
	52	30	0.6	2	IR45×52×30	49	0.6	0.123
	$52 {}^{+0.008}_{-0.004}$	40	0.6	2	IR45×52×40	49	0.6	0.164
	55	20	0.6	2	IR45×55×20	49	0.6	0.116
	55	22	1	2	IR45×55×22	50	1	0.130
	55	40	0.6	2	IR45×55×40	49	0.6	0.173
	55	20	0.6	2	IR50×55×20	54	0.6	0.063
	55	25	0.6	2	IR50×55×25	54	0.6	0.078
	55	35	0.6	2	IR50×55×35	54	0.6	0.112
	55	40	0.6	2	IR50×55×40	54	0.6	0.128
	58	22	0.6	2	IR50×58×22	54	0.6	0.113
50	58 + 0.008	23	0.6	_	%IR50×58×23D	54	0.6	0.119
30	58 -0.004	30	0.6	2	IR50×58×30	54	0.6	0.159
	58	40	0.6	2	IR50×58×40	54	0.6	0.209
	60	20	1	2	IR50×60×20	55	1	0.129
	60	25	1	2	IR50×60×25	55	1	0.163
	60	28	1.1	2	IR50×60×28	56.5	1	0.183
	60	40	1	2	IR50×60×40	55	1	0.262
	60	25	0.6	2.2	IR55×60×25	59	0.6	0.086
	60	35	0.6	2	IR55×60×35	59	0.6	0.121
	63	25	1	2	IR55×63×25	60	1	0.141
E E	63 ₀	34	1	2.2	IR55 \times 63 \times 34	60	1	0.192
55	$63^{-0.013}$	45	1	2.2	IR55×63×45	60	1	0.256
	65	28	1.1	2.2	IR55×65×28	61.5	1	0.206
	65	30	1	2.2	IR55×65×30	60	1	0.220
	65	60	1	1.5	IR55×65×60	60	1	0.440

Note 1) Dimensional tolerance to secure ordinary clearance when any of these inner rings is combined with needle roller bearing with no inner ring. 2) Allowable minimum chamfer dimension \hat{r} . 3) Max. allowable dimension of radius \hat{r} a for corner roundness on shaft/housing. Remarks: 1. Nominal number plus code " \mathbf{D} " represents inner ring with oil hole.

2. Nominal number plus %-mark represents inner ring with fine-chamfered outer surface.

Type IR

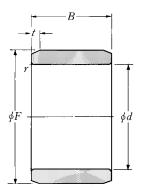

d 60~75mm

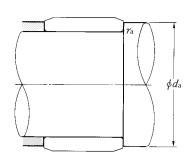

	Boundary	y dimensio	ons		Bearing numbers		tment nsions	Mass
		mm					nm _{ras} 3)	kg
d	$F^{1)}$	В	γ _{s min} 2)	t		$d_{ m a}$ min	max	(approx.)
	68	25	1	2.2	IR60×68×25	65	1	0.152
	68	34	1	2.2	IR60×68×34	65	1	0.206
	68	35	0.6	2.2	IR60×68×35	64	0.6	0.213
co	68 ₀	45	1	2.2	IR60×68×45	65	1	0.270
60	$70^{-0.013}$	25	1	2.2	IR60×70×25	65	1	0.195
	70	28	1.1	2.2	IR60×70×28	66.5	1	0.216
	70	30	1	2.2	IR60×70×30	65	1	0.232
	70	60	1	2.2	IR60×70×60	65	1	0.463
	72	25	1	2.2	IR65×72×25	70	1	0.142
	72	34	1	2.2	IR65×72×34	70	1	0.193
	72	45	1	2.2	IR65×72×45	70	1	0.259
CE	73 ₀	25	0.6	2.2	IR65×73×25	69	0.6	0.164
65	$73^{-0.013}$	35	0.6	2.2	IR65×73×35	69	0.6	0.232
	75	28	1.1	2.2	IR65×75×28	71.5	1	0.240
	75	30	1	2.2	IR65×75×30	70	1	0.256
	75	60	1	2.2	IR65×75×60	70	1	0.513
	80	25	1	2.2	IR70×80×25	75	1	0.224
	80	28	1.1	2.2	IR70×80×28	76.5	1	0.250
	80	30	1	2.2	IR70×80×30	75	1	0.267
70	80 0	35	1	2.2	IR70×80×35	75	1	0.313
70	80 -0.013	40	1	2.2	IR70×80×40	75	1	0.358
	80	54	1	2.2	IR70×80×54	75	1	0.483
	80	56	1	2.2	IR70×80×56	75	1	0.502
	80	60	1	2.2	IR70×80×60	75	1	0.540
	85	25	1	2.2	IR75×85×25	80	1	0.238
	85	30	1	2.2	IR75×85×30	80	1	0.287
75	85 ₀	35	1	2.2	IR75×85×35	80	1	0.336
75	85 ^{-0.015}	40	1	2.2	IR75×85×40	80	1	0.385
	85	54	1	2.2	IR75×85×54	80	1	0.515
	90	32	1.1	2.2	IR75×90×32	81.5	1	0.480

d 80∼100mm

	Boundary	dimensio	ons		Bearing numbers	Abuti dimen		Mass
		mm				mı ,	m $_{\gamma_{ m as}}$ 3)	kg
d	$F^{ extsf{1})}$	В	γ _{s min} 2)	t		$d_{ m a}$ min	max	(approx.)
	90	25	1	2.2	IR 80× 90×25	85	1	0.254
	90	30	1	2.2	IR 80× 90×30	85	1	0.304
	90 o	35	1	2.2	IR 80× 90×35	85	1	0.355
80	$90^{-0.015}$	40	1	2.2	IR 80× 90×40	85	1	0.408
	90	54	1	2.2	IR 80× 90×54	85	1	0.543
	95	32	1.1	2.2	IR 80× 95×32	86.5	1	0.510
	95	26	1	2.5	IR 85× 95×26	90	1	0.280
	95	30	1	2.5	IR 85× 95×30	90	1	0.323
	95	36	1	2.5	IR 85× 95×36	90	1	0.398
85	$100 \begin{array}{c} 0 \\ -0.015 \end{array}$	32	1.1	2.5	IR 85×100×32	91.5	1	0.530
	100	35	1.1	2.5	IR 85×100×35	91.5	1	0.580
	100	46	1.1	2.5	IR 85×100×46	91.5	1	0.760
	100	63	1.1	2.5	IR 85×100×63	91.5	1	1.05
	100	26	1	2.5	IR 90×100×26	95	1	0.294
	100	30	1	2.5	IR 90×100×30	95	1	0.340
	100	36	1	2.5	IR 90×100×36	95	1	0.406
90	$105 \begin{array}{c} 0 \\ -0.015 \end{array}$	32	1.1	2.5	IR 90×105×32	96.5	1	0.560
	105	35	1.1	2.5	IR 90×105×35	96.5	1	0.610
	105	46	1.1	2.5	IR 90×105×46	96.5	1	0.800
	105	63	1.1	2.5	IR 90×105×63	96.5	1	1.11
	105	26	1	2.5	IR 95×105×26	100	1	0.313
	105	36	1	2.5	IR 95×105×36	100	1	0.430
95	110 0	32	1.1	2.5	IR 95×110×32	101.5	1	0.590
33	110 $^{-0.015}$	35	1.1	2.5	IR 95×110×35	101.5	1	0.640
	110	46	1.1	2.5	IR 95×110×46	101.5	1	0.850
	110	63	1.1	2.5	IR 95×110×63	101.5	1	1.17
	110	30	1.1	2.5	IR100×110×30	106.5	1	0.375
100	110 0	40	1.1	2.5	IR100×110×40	106.5	1	0.505
100	$115 {}^{-0.015}$	32	1.1	2.5	IR100×115×32	106.5	1	0.620
	115	40	1.1	2.5	IR100×115×40	106.5	1	0.775

Type IR

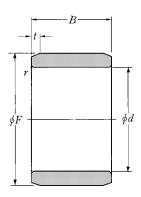

d 100~160mm

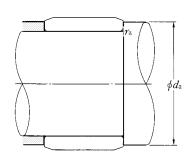

	Boundary		ons		Bearing numbers	dimen		Mass
	I	mm				$d_{ m a}$	m _{ras} 3)	kg
d	$F^{1)}$	В	√ s min 2)	t		min	max	(approx.)
100	$115 \begin{array}{c} 0 \\ -0.015 \end{array}$	54	1.1	2.5	IR100×115×54	106.5	1	1.09
	120 0	30	1	2.5	IR110×120×30	115	1	0.440
110	12 <u>0</u> -0.015	40	1.1	2.5	IR110×120×40	116.5	1	0.580
110	125 ₀	40	1.1	2.5	IR110×125×40	116.5	1	0.840
	125 ^{-0.018}	54	1.1	2.5	IR110×125×54	116.5	1	1.16
	130	30	1	2.2	IR120×130×30	125	1	0.440
	130	40	1.1	2.5	IR120×130×40	126.5	1	0.590
120	$135 \begin{array}{l} 0 \\ -0.018 \end{array}$	40	2	2.5	IR120×135×40	129	2	0.870
	135	45	1.1	2.5	IR120×135×45	126.5	1	0.980
	135	60	1.1	2.5	IR120×135×60	126.5	1	1.25
	145	32	1.5	3	IR130×145×32	138	1.5	0.780
	145	35	1.1	3	IR130×145×35	136.5	1	0.855
130	145 ₀	42	1.5	3	IR130×145×42	138	1.5	1.05
130	150 -0.018 150	50	1.5	3	IR130×150×50	138	1.5	1.69
		52	2	3	IR130×150×52	139	2	1.75
	150	67	1.5	3	IR130×150×67	138	1.5	2.25
	155	32	1.5	3	IR140×155×32	148	1.5	0.840
	155	35	1.1	3	IR140×155×35	146.5	1	0.917
140	155 ₀	42	1.5	3	IR140×155×42	148	1.5	1.10
140	$160^{-0.018}$	50	1.5	3	IR140×160×50	148	1.5	1.70
	160	52	2	3	IR140×160×52	149	2	1.78
	160	67	1.5	3	IR140×160×67	148	1.5	2.30
	165	32	1.5	3	IR150×165×32	158	1.5	0.900
	165	40	1.1	3	IR150×165×40	156.5	1	1.12
150	$165 \begin{array}{l} -0.017 \\ -0.035 \end{array}$	42	1.5	3	IR150×165×42	158	1.5	1.18
	170	52	2	3	IR150×170×52	159	2	2.00
	170	60	2	3	IR150×170×60	159	2	2.35
160	175 _{-0.017}	40	1.1	3	IR160×175×40	166.5	1	1.20
100	$180^{-0.035}$	60	2	3	IR160×180×60	169	2	2.50

d 170∼380mm

	Boundar	y dimensio	ons		Bearing numbers	Abuti dimen		Mass
		mm				$d_{ m a}$	m _{°ras} 3)	kg
d	$F^{ extsf{1})}$	B	∕r _{s min} 2)	t		min	max	(approx.)
170	185 _{-0.013}	45	1.1	3	IR170×185× 45	176.5	1	1.45
170	190 ^{-0.043}	60	2	3	IR170×190× 60	179	2	2.65
180	195 _{-0.013}	45	1.1	3	IR180×195× 45	186.5	1	1.51
	205 -0.043	69	2	3	IR180×205× 69	189	2	4.10
190	210 $_{-0.020}$	50	1.5	3.5	IR190×210× 50	198	1.5	2.41
	215 ^{-0.050}	69	2	3.5	IR190×215× 69	199	2	4.10
200	$220_{-0.020}$	50	1.5	3.5	IR200×220× 50	208	1.5	2.49
	225 -0.050	80	2.1	3.5	IR200×225× 80	211	2	5.10
220	$240_{-0.033}$	50	1.5	3.5	IR220×240× 50	228	1.5	2.75
	245 ^{-0.063}	80	2.1	3.5	IR220×245× 80	231	2	5.70
240	$265_{-0.037}$	60	2	3.5	IR240×265× 60	249	2	4.60
	265 -0.069	80	2.1	3.5	IR240×265× 80	251	2	6.30
260	$285_{-0.064}$	60	2	4	IR260×285× 60	269	2	4.98
	290 -0.092	100	2.1	4	IR260×290×100	271	2	10.0
280	$305_{-0.064}$	69	2	4	IR280×305× 69	289	2	6.20
	310 -0.092	100	2.1	4	IR280×310×100	291	2	10.8
300	330 $_{-0.062}$	80	2.1	4	IR300×330× 80	311	2	9.30
	340 -0.098	118	3	4	IR300×340×118	313	2.5	18.5
320	$350_{-0.062}$	80	2.1	5	IR320×350× 80	331	2	9.80
	360 -0.098	118	3	5	IR320×360×118	333	2.5	20.0
340	370 _{-0.062}	80	2.1	5	IR340×370× 80	351	2	10.1
	380 -0.098	118	3	5	IR340×380×118	353	2.5	22.0
360	$390_{-0.090}^{-0.136}$	80	2.1	5	IR360×390× 80	371	2	10.9
	400 -0.126	118	3	5	IR360×400×118	373	2.5	22.0
380	$415_{-0.080}$	100	2.1	5	IR380×415×100	391	2	18.5
	430 -0.120	140	4	5	IR380×430×140	396	3	35.0

Type IR

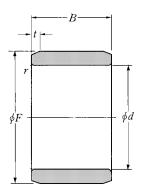

d 400~440mm

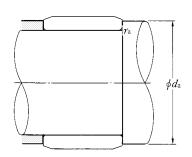

	Boundar	y dimension	ons		Bearing numbers	dimer	ment nsions m	Mass kg
d	F 1)	В	γ _{s min} 2)			$d_{ m a}$ min	$r_{\rm as}$ 3)	(approx.)
400	450 ^{-0.080} -0.120	140	4	5	IR400×450×140	416	max 3	36.5
420	470 -0.120 470 -0.105 -0.145	140	4	5	IR420×470×140	436	3	38.2
440	490 -0.145 490 -0.145	160	4	5	IR440×490×160	456	3	46.5
	-0.143		·					

Inner rings

Inch series

Type MI

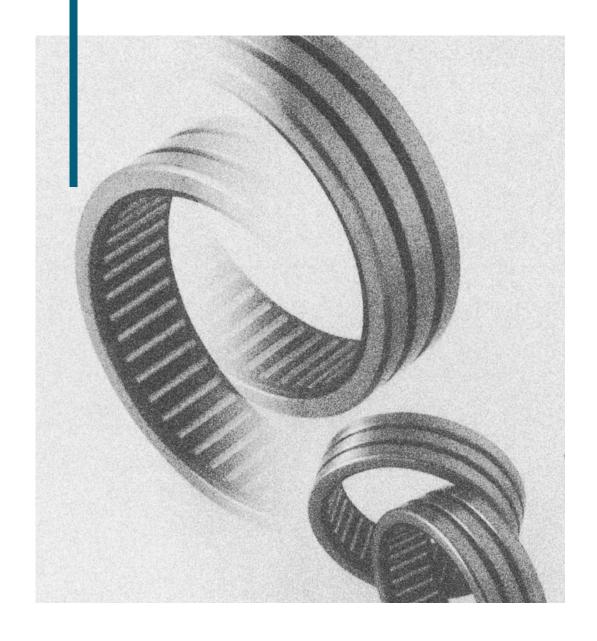

d 9.525~34.925mm


	Boundary dimensi	ons			Bearing numbers	Abut dimer	ment isions	Mass
	mm (½ _{5.4} mm)						m 3)	kg
d	F ¹⁾	В	γ _{s min} 2)	t		$d_{ m a}$ min	$r_{ m as}^{3)}$ max	(approx.)
	14.288(%)	12.95	0.6	_	※МІ-060908	13.5	0.6	0.013
9.525(¾)	15.875(½) 0 -0.008	19.30	0.6	1	MI-061012	13.5	0.6	0.019
	15.875(5/8)	25.65	0.6	1	MI-061016	13.5	0.6	0.025
	19.050(3/4)	16.13	1	_	※MI-081210	17.5	1	0.020
12.700(½)	$19.050(\frac{3}{4})$ $\begin{array}{c} 0 \\ -0.009 \end{array}$	19.30	1	_	※MI-081212	17.5	1	0.024
	19.050(3/4)	25.65	1	_	ЖМІ-081216	17.5	1	0.032
	22.225(%)	9.78	1	_	※МІ-101406	21	1	0.014
15.875(%)	22.225(%)	12.95	1	_	※MI-101408	21	1	0.018
15.675(/8)	22.225(%) -0.009	19.30	1	_	%MI-101412	21	1	0.027
	22.225(1/8)	25.65	1	_	ЖМІ-101416	21	1	0.036
10.050(3/)	25.400(1) ₀	19.30	1	_	ЖМІ-121612	24	1	0.034
19.050(¾)	25.400(1) -0.009	25.65	1	_	※МІ-121616	24	1	0.045
	28.575(1 1/8)	12.95	1	_	※МІ-141808	27	1	0.027
22.225(%)	28.575(1 ½) ₀	19.30	1	_	%MI-141812	27	1	0.040
22.225(/8)	28.575(1 ½) ^{-0.009}	25.65	1	_	%MI-141816	27	1	0.052
	28.575(1 1/8)	32.00	1	_	※МІ-141820	27	1	0.066
	31.750(1 1/4)	19.30	1	_	※МІ-162012	30.5	1	0.039
25.400(1)	$31.750(1\frac{1}{4})^{+0.008}_{-0.002}$	25.65	1	_	%MI-162016	30.5	1	0.052
	31.750(1 1/4)	32.00	1	_	ЖМІ-162020	30.5	1	0.065
	34.925(1 %)	12.95	1	_	%МІ-182208	33.5	1	0.032
28.575(1 1/8)	$34.925(1\%)^{+0.008}_{-0.002}$	25.65	1	_	%MI-182216	33.5	1	0.063
	34.925(1 ¾)	32.00	1	_	※МІ-182220	33.5	1	0.079
31.750(1 1/4)	38.100(1½) ₀	25.65	1.5	_	%MI-202416	37	1.5	0.075
31.730(1/4)	38.100(1½) ^{-0.011}	32.00	1.5	_	※МІ-202420	37	1.5	0.094
33.338(1 5/16)	41.275(1 ⁵ / ₈) ₀	25.65	1.5	2	MI-212616	40	1.5	0.093
	41.275(1 %) -0.011	32.00	1.5	2	MI-212620	40	1.5	0.116
34.925(1 ¾)	41.275(1 ⁵ ⁄8) ₀	16.13	1.5	2	MI-222610	40	1.5	0.073
J4.32J(I /8)	44.450(1¾) ^{-0.011}	25.65	1.5	2	MI-222816	41.5	1.5	0.117

Note 1) Dimensional tolerance to secure ordinary clearance when any of these inner rings is combined with needle roller bearing with no inner ring. 2) Allowable minimum chamfer dimension r. 3) Max. allowable dimension of radius ra for corner roundness on shaft/housing. Remarks: 1. Nominal number plus %-mark represents inner ring with fine-chamfered outer surface. r

Inch series

Type MI


d 34.925~98.425mm

	Boundary dimensi	ons			Bearing numbers	Abuti dimen		Mass
	mm (½5.4mm)					mı		kg
d	$F^{ extsf{1})}$	В	γ _{s min} 2)	t		$d_{ ext{a}}$ min	$r_{ m as}^{ m 3)}$ max	(approx.)
34.925(1 ¾)	44.450(1 ¾) 0 -0.011	32.00	1.5	2	MI-222820	41.5	1.5	0.146
38.100(1 ½)	44.450(1 ³ ⁄ ₄) ₀	19.30	1.5	2	MI-242812	43	1.5	0.062
30.100(172)	44.450(1¾) ^{-0.011}	25.65	1.5	2	MI-242816	43	1.5	0.083
39.688(1 %)	47.625(1 %) _0_0.011	32.00	1.5	2	MI-253020	46	1.5	0.136
41.275(1 %)	50.800(2) _{+0.008}	25.65	1.5	2	MI-263216	48	1.5	0.140
41.275(178)	50.800(2) -0.004	32.00	1.5	2	MI-263220	48	1.5	0.175
44.450(1 ¾)	57.150(2 ¹ ⁄ ₄) _{+0.008}	38.35	1.5	2	MI-283624	51	1.5	0.310
44.450(1 74)	57.150(2½) ^{-0.004}	44.70	1.5	2	MI-283628	51	1.5	0.360
E0 000(0)	63.500(2½) ₀	38.35	2	2	MI-324024	59	2	0.340
50.800(2)	63.500(2½) ^{-0.013}	44.70	2	2	MI-324028	59	2	0.420
	69.850(2 ¾)	25.65	2	2.2	MI-364416	65	2	0.257
57.150(2 1/4)	$69.850(2\%){}^0_{-0.013}$	38.35	2	2.2	MI-364424	65	2	0.384
	69.850(2 ¾)	44.70	2	2.2	MI-364428	65	2	0.447
63.500(2 ½)	76.200(3) ₀	38.35	2	2.2	MI-404824	71.5	2	0.417
03.300(2 /2)	76.200(3) -0.013	44.70	2	2.2	MI-404828	71.5	2	0.486
66.675(2 %)	82.550(3 1/4) 0	44.70	2	2.2	MI-425228	74.5	2	0.648
00.073(278)	82.550(3 1/4) -0.015	51.05	2	2.2	MI-425232	74.5	2	0.740
69.850(2¾)	82.550(3 ½) $^0_{-0.015}$	44.70	2	2.2	MI-445228	78	2	0.530
76.200(3)	88.900(3½) ₀	44.70	2	2.2	MI-485628	84	2	0.574
76.200(3)	88.900(3½) ^{-0.015}	51.05	2	2.2	MI-485632	84	2	0.655
79.375(3 ½)	95.250(3 ³ / ₄) ⁰ _{-0.015}	51.05	2.5	2.2	MI-506032	88.5	2.5	0.862
85.725(3 ¾)	101.600(4) $^0_{-0.015}$	51.05	2.5	2.5	MI-546432	94.5	2.5	0.930
92.075(3 %)	107.950(4 ½) $^0_{-0.015}$	51.05	2.5	2.5	MI-586832	101	2.5	1.00
95.250(3 ¾)	114.300(4½) _0015	57.40	2.5	2.5	MI-607236	104	2.5	1.40
00 405/0 7/	114.300(4½) 0	57.40	2.5	2.5	MI-627236	107.5	2.5	1.15
98.425(3 ¾)	114.300(4½) -0.015	63.88	2.5	2.5	MI-627240	107.5	2.5	1.28

d 101.600~203.200mm

	Boundary dimensi mm (½5.4mm)	ons			Bearing numbers	Abutn dimens mr	sions	Mass kg
d	$F^{1)}$	В	_{rs min} 2)	t		$d_{ extsf{a}}$ min	r _{as} o, max	(approx.)
101.600(4)	127.000(5) 127.000(5) $^0_{-0.018}$ 127.000(5)	51.05 57.40 63.88	2.5 2.5 2.5	2.5 2.5 2.5	MI-648032 MI-648036 MI-648040	110.5 110.5 110.5	2.5 2.5 2.5	1.82 2.05 2.28
114.300(4½)	139.700(5½) 0 139.700(5½) ^{-0.018}	63.88 76.58	2.5 2.5	2.5 2.5	MI-728840 MI-728848	123.5 123.5	2.5 2.5	2.58 3.10
120.650(4 3/4)	146.050(5 ³ / ₄) ⁰ _{-0.018}	76.58	3	3	MI-769248	132	3	3.18
127.000(5)	152.400(6) 0 152.400(6) -0.018	63.88 76.58	3 3	3 3	MI-809640 MI-809648	140 140	3 3	2.80 3.35
139.700(5 ½)	165.100(6½) _{-0.010} 165.100(6½) ^{-0.028}	63.88 76.58	3 3	3	MI-8810440 MI-8810448	152.5 152.5	3 3	2.84 3.40
152.400(6)	184.150(7 ¹ ⁄ ₄) ^{-0.013} _{-0.033}	76.58	3	3	MI-9611648	165.5	3	4.80
165.100(6 ½)	196.850(7 ¾) $^{-0.013}_{-0.043}$	76.58	3	3	MI-10412448	178	3	5.30
177.800(7)	209.550(8 1/4) -0.013	76.58	3	3	MI-11213248	191	3	5.60
190.500(7½)	. , 0.000	76.58	4	3	MI-12014048	206.5	4	6.10
203.200(8)	234.950(9 ¼) = 0.033	76.58	4	3.5	MI-12814848	219	4	6.50

Adjustable-Clearance Needle Roller Bearings

Clearance-Adjustable Needle Roller Bearings

This bearing type comprises a solid outer ring with a unique cross-sections shape and needle rollers and cage built in the outer ring. The outer ring, needle rollers and cage are inseparable from each other. The outer ring raceway diameter is reduced by clamping the outer ring axially, which then reduces the roller inscribed circle diameter $(F_{\rm w})$.

Axial clamping force on the bearing can be adjusted to alter the reduction on outer ring raceway diameter so that the radial clearance can be finely adjusted. The bearing is used on machine tools main spindle and other similar which require high speed rotational accuracy of JIS Class-4.

Bearing type	Applicable shaft diameter (mm)	Composition of bearing number	Remarks
Type RNA49··S	φ30~φ125	Type code Dimension series Roller set bore diameter code	The dimensional accuracy, profile accuracy and running accuracy conform to JIS Class-4 so as to be available for applications requiring
Type NA49··S	φ25~φ110	Suffix [Suffix] S: Clearance-adjustable type	high running accuracy. Another inner ring type with grinding allowance for its raceway surface can also be supplied upon request.

Bearing accuracy

Application of this bearing type is limited to the portions of a machine which require high running accuracy. Therefore, the dimensional accuracy, profile accuracy and running accuracy of this bearing type conform to JIS Class-4. For applications that need particularly high running accuracy, certain bearing users install the inner ring onto the shaft and then grind the raceway surface to targeted accuracy. To fulfill this type of request, NTN will supply a special inner ring whose raceway surface includes a grinding allowance.

Radial internal clearance and bearing fits

The radial internal clearance of Type $\mathbf{RNA49} \cdot \mathbf{S}$ with inner ring is smaller than ordinary clearance. While the tolerance of roller set bore diameter (F_w) of Type $\mathbf{NA49} \cdot \mathbf{S}$ without inner ring is listed in the relevant dimension table, the radial internal clearance of the bearing is determined once the applicable shaft diameter has been selected.

To be able to force the outer ring in the axial direction to shrink the raceway diameter, the fit of the outer ring to the housing bore needs to be "transition fit" or "interference fit" (interference of approximately $5 \mu m$).

Bearing fit on a shaft and in a housing shall be per **Table 1.**

Table 1 Bearing fit in shaft and housing (recommended)

Bearing type	Shaft	Housing
RNA49··S NA49··S	m5 k5	K4

Shaft and housing accuracy

This bearing type which is applied to the portions of a machine requiring high running accuracy is clamped with the outer ring inclination in installing restrained as less as possible. Therefore, the profile accuracy of the shaft and the housing must be made higher than that for general machined ring needle roller bearings. (**Table 2**)

Table 2 Shaft and housing accuracy (recommended)

Characteristics	Shaft	Housing
Roundness (max)	IT2	IT3
Cylindricality (max)	IT2	IT3
Tolerance of shoulder runout (max)	IT3	IT3

Method for adjusting radial internal clearance

The ratio of outer ring axial shrinkage to shrinkage of roller inscribed circle diameter ($F_{\rm w}$) is nearly 3:1. In other words, to be able to decrease the radial internal clearance of the bearing by 1 μ m, it is necessary to tighten the outer ring by 3 μ m in the axial direction.

When adjusting the radial internal clearance of a bearing, be careful to uniformly tighten its outer ring along the centerline of the shaft.

In the case of adjustment by the method illustrated in **Fig. 1**, the spacer is put between the housing and the lid. Changing the thickness of the spacer by wrapping the spacer width or replacing the spacer, a certain amount of axial clamping can be obtained.

In **Fig. 2**, the fixed ring is fitted in the housing and, thereafter, the threaded lid is screwed in until it comes in contact with the outer ring for zero setting. Then, the threaded lid is further screwed in by the required value, after the fixed ring was loosened, and thereafter the fixed ring is retightened. Further, it is recommended to use a saw-toothed tightening screw as illustrated in **Fig. 3** because accuracy-down can be minimized by use of such a screw.

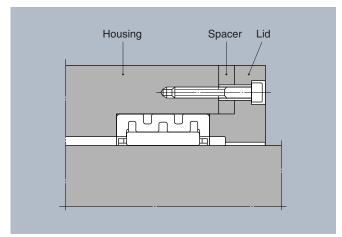


Fig. 1

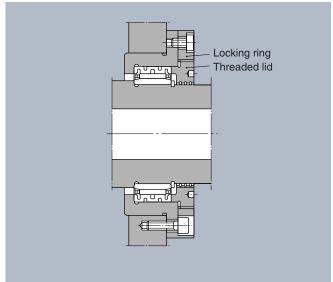
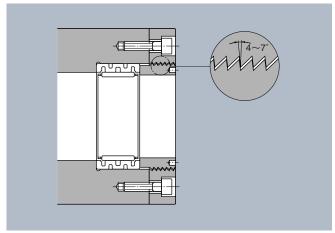
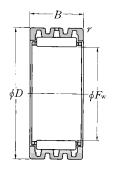
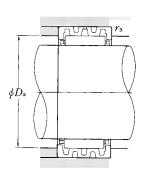
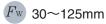


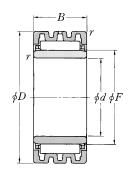
Fig. 2

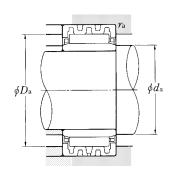





Fig. 3

Without inner ring

Type RNA49 ⋅⋅ S

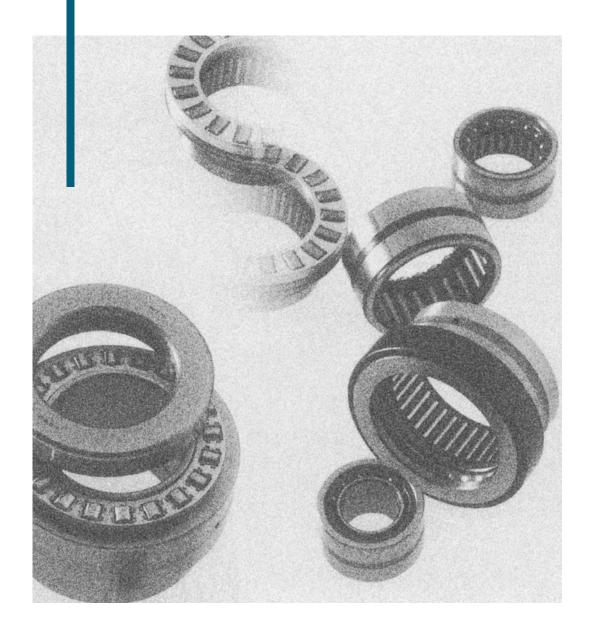



	Boundary dimensions			ıs	dynamic	Basic loa	d ratings dynamic	static	Limitin	g speeds	Bearing numbers		ment isions	Mass
		mm				N	k	gf		nin ⁻¹		$D_{\rm a}$	m $r_{\rm as}^{2)}$	kg
	$F_{ m W}$	D	В	r _{s min} 1)	C_{r}	Cor	C_{r}	Cor	grease	oil			max	(approx.)
30	+0.031 +0.022	42	17	0.3	12 300	16 000	1 260	1 630	8 700	13 000	RNA 4905S	36	0.3	0.070
35	+0.038 +0.028	47	17	0.3	14 900	21 600	1 520	2 200	7 300	11 000	RNA 4906S	41	0.3	0.086
40	+0.038 +0.028	52	20	0.6	17 600	27 800	1 790	2 830	6 700	10 000	RNA49/32S	46	0.6	0.088
42	+0.038 +0.028	55	20	0.6	18 300	29 800	1 870	3 050	6 300	9 500	RNA 4907S	48	0.6	0.099
48	+0.038 +0.028	62	22	0.6	22 500	40 500	2 300	4 150	5 700	8 500	RNA 4908S	54	0.6	0.134
52	+0.045 +0.035	68	22	0.6	23 100	43 500	2 360	4 400	5 000	7 500	RNA 4909S	58	0.6	0.168
58	+0.045 +0.035	72	22	0.6	24 700	49 000	2 520	5 000	4 700	7 000	RNA 4910S	64	0.6	0.189
63	+0.045 +0.035	80	25	1	33 000	65 500	3 350	6 650	4 300	6 500	RNA 4911S	70	1	0.212
68	+0.045 +0.035	85	25	1	34 000	69 000	3 450	7 050	4 000	6 000	RNA 4912S	75	1	0.257
72	+0.045 +0.035	90	25	1	34 000	70 500	3 450	7 200	3 700	5 500	RNA 4913S	79	1	0.286
80	+0.045 +0.035	100	30	1	44 500	94 000	4 550	9 600	3 300	5 000	RNA 4914S	88	1	0.422
85	+0.055 +0.040	105	30	1	45 500	99 000	4 650	10 100	3 100	4 700	RNA 4915S	93	1	0.451
90	+0.055 +0.040	110	30	1	46 500	104 000	4 750	10 600	2 900	4 400	RNA 4916S	98	1	0.468
100	+0.055 +0.040	120	35	1.1	57 000	140 000	5 800	14 300	2 700	4 000	RNA 4917S	108	1	0.594
105	+0.055 +0.040	125	35	1.1	58 500	146 000	5 950	14 900	2 500	3 800	RNA 4918S	113	1	0.617
110	+0.055 +0.040	130	35	1.1	59 500	152 000	6 050	15 500	2 400	3 600	RNA 4919S	118	1	0.735
115	+0.055 +0.040	140	40	1.1	72 000	168 000	7 350	17 100	2 300	3 500	RNA 4920S	125	1	0.980
125	+0.065 +0.050	150	40	1.1	75 500	184 000	7 700	18 800	2 100	3 200	RNA 4922S	135	1	1.04

Note 1) Allowable minimum chamfer dimension $\mathcal V$. 2) Max. allowable dimension of radius $\mathcal V$ a for corner roundness on shaft/housing.

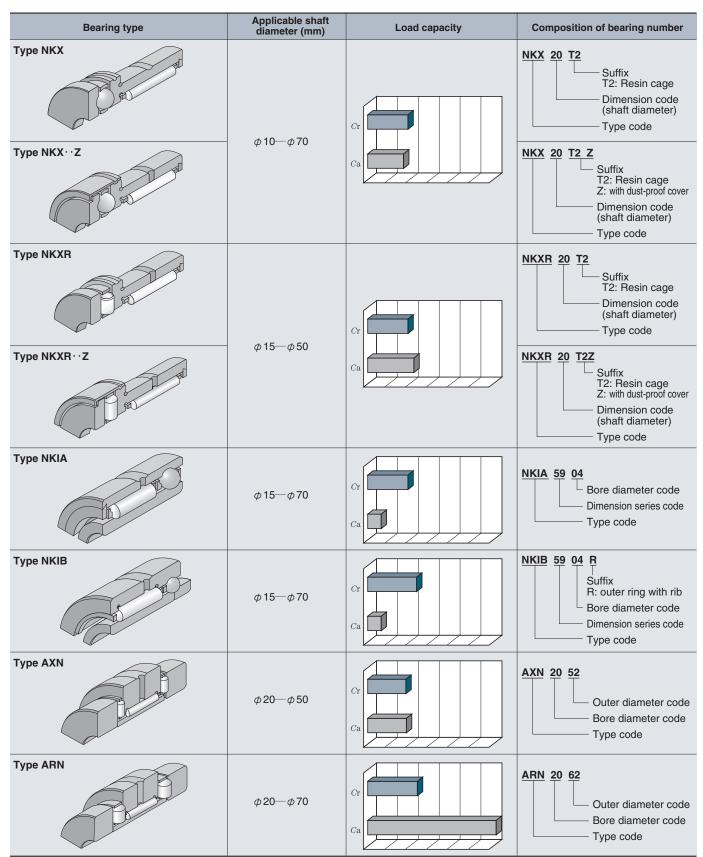
With inner ring

Type NA49 · · S



d 25~110mm

Boundary dimensions					Basic load ratings dynamic static dynamic static N kgf				Limiting speeds min ⁻¹		Bearing numbers	Bearing clearanc before	Abutment dimensions mm			Mass
		111111				IN	ĸy	I	grease	oil		installation	$d_{ m a}$	Da	_{ras} 2)	kg
d	D	В	γ_{s} min	1) F	C_{r}	Cor	$C_{\rm r}$	Cor				μm	min	max	max	(approx.)
25	42	17	0.3	30	12 300	16 000	1 260	1 630	8 700	13 000	NA 4905S	10~25	27	36	0.3	0.084
30	47	17	0.3	35	14 900	21 600	1 520	2 200	7 300	11 000	NA 4906S	12~25	32	41	0.3	0.099
32	52	20	0.6	40	17 600	27 800	1 790	2 830	6 700	10 000	NA49/32S	12~25	36	46	0.6	0.157
35	55	20	0.6	42	18 300	29 800	1 870	3 050	6 300	9 500	NA 4907S	15~30	39	48	0.6	0.164
40	62	22	0.6	48	22 500	40 500	2 300	4 150	5 700	8 500	NA 4908S	15~30	44	54	0.6	0.227
45	68	22	0.6	52	23 100	43 500	2 360	4 400	5 000	7 500	NA 4909S	15~35	49	58	0.6	0.257
50	72	22	0.6	58	24 700	49 000	2 520	5 000	4 700	7 000	NA 4910S	15~35	54	64	0.6	0.271
55	80	25	1	63	33 000	65 500	3 350	6 650	4 300	6 500	NA 4911S	15~35	60	70	1	0.382
60	85	25	1	68	34 000	69 000	3 450	7 050	4 000	6 000	NA 4912S	20~40	65	75	1	0.410
65	90	25	1	72	34 000	70 500	3 450	7 200	3 700	5 500	NA 4913S	20~40	70	79	1	0.427
70	100	30	1	80	44 500	94 000	4 550	9 600	3 300	5 000	NA 4914S	20~40	75	88	1	0.689
75	105	30	1	85	45 500	99 000	4 650	10 100	3 100	4 700	NA 4915S	25~45	80	93	1	0.740
80	110	30	1	90	46 500	104 000	4 750	10 600	2 900	4 400	NA 4916S	25~45	85	98	1	0.774
85	120	35	1.1	100	57 000	140 000	5 800	14 300	2 700	4 000	NA 4917S	25~45	91.5	108	1	1.18
90	125	35	1.1	105	58 500	146 000	5 950	14 900	2 500	3 800	NA 4918S	25~50	96.5	113	1	1.23
95	130	35	1.1	110	59 500	152 000	6 050	15 500	2 400	3 600	NA 4919S	25~50	101.5	118	1	1.40
100	140	40	1.1	115	72 000	168 000	7 350	17 100	2 300	3 500	NA 4920S	25~50	106.5	125	1	1.91
110	150	40	1.1	125	75 500	184 000	7 700	18 800	2 100	3 200	NA 4922S	30~60	116.5	135	1	2.12


Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius $r_{\rm a}$ for corner roundness on shaft/housing.

Complex Bearings

Complex Bearings

NTN complex bearing is comprised of a needle roller bearing of supporting radial load and a thrust bearing for supporting axial load which are assembled integrally. Comparing with individual use of a radial bearing and a thrust bearing for the same purpose, this complex bearing saves the required installation space and thereby can contribute to making the overall construction of an equipment more compact.

%Each listed load capacity is subject to reference bearing bore diameter of ϕ 20.

Bearing components	Handling characteristic	Features			
$\begin{array}{lll} \text{Inscribed circle diameter} \\ \text{(shaft dia.)} & : \phi 20 \\ \text{Radial bearing} & : \text{Needle roller type} \\ \text{Iron cage} \\ \text{Thrust bearing} & : \text{Ball type} \\ \text{Resin cage} \\ \text{Dust-proof cover} & : \text{without} \\ \text{Thrust plate} & : \text{Separable} \\ \end{array}$	Separable thrust plate Without dust-proof cover	Can be applied to high speed running under light axial load, due to use of ball type thrust bearing.			
$\begin{array}{cccc} \text{Inscribed circle diameter} \\ \text{(shaft dia.)} & : \phi 20 \\ \text{Radial bearing} & : \text{Needle roller type} \\ \text{Iron cage} \\ \text{Thrust bearing} & : \text{Ball type} \\ \text{Resin cage} \\ \text{Dust-proof cover} & : \text{with} \\ \text{Thrust plate} & : \text{Non-separable,} \\ \text{integral type} \\ \end{array}$	Integral thrust plate With dust-proof cover	This type is identical to Type NKX except in that the thrust bearing is protected with a dust cover. Furthermore, the handling characteristic is good because the dust cover makes the thrust plate non-separable integral.			
$\begin{array}{lll} \text{Inscribed circle diameter} \\ \text{(shaft dia.)} & : \phi 20 \\ \text{Radial bearing} & : \text{Needle roller type} \\ \text{Iron cage} \\ \text{Thrust bearing} & : \text{Cylindrical roller type} \\ \text{Resin cage} \\ \text{Dust-proof cover} & : \text{without} \\ \text{Thrust plate} & : \text{Separable} \\ \end{array}$	Separable thrust plate Without dust-proof cover	Due to the use of needle roller bearing as its thrust bearing, this type can support greater axial load than NKX.			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Integral thrust plate With dust-proof cover	This type is identical to NKXR, but its thrust bearing is provided with dust-proof cover to prevent grease scattering. Furthermore, the handling characteristic is good because the dust-proof cover makes the thrust plate non-separable and integral.			
Inscribed circle diameter (shaft dia.) : ϕ 20 Radial bearing : Needle roller type Thrust bearing : Angular type	Integral angular bearing Inner ring separable	This type is composed of needle roller bearing and angular bearing which were integrated into one unit. The angular bearing supports axial load. Hence, this type can support one-way axial load only. Best-suited to high speed and light load application.			
$\begin{array}{ll} \text{Inscribed circle diameter} \\ \text{(shaft dia.)} & : \phi 20 \\ \text{Radial bearing} & : \text{Needle roller type} \\ & \text{Outer ring with rib} \\ \text{Thrust bearing} & : \text{Three-point contact} \\ & \text{angular type} \\ \end{array}$	Double inner ring type Inner ring separable	This type is composed of needle roller bearing and three-point contact angular bearing which were integrated into one unit. Unlike KN1A, this type can support bi-directional axial load.			
Inscribed circle diameter (shaft dia.) : ϕ 20 Outer ring outer diameter : 52 Radial bearing : Needle roller type Thrust bearing : Needle roller type	△ Separable	This type is a special-purposed bearing to support a precision ball screw. This type uses the side face of the radial bearing as the raceway surface of thrust bearing. This can support axial load from both directions.			
Inscribed circle diameter (shaft dia.) : ϕ 20 Outer ring outer diameter : 62 Radial bearing : Needle roller type Thrust bearing : Cylindrical roller type	△ Separable	This type is a special-purposed bearing to support a precision ball screw. This can support bi-directional axial load. This type is identical to AXN, but its axial load capacity is greater.			

Bearing Accuracy

Regarding the dimensional tolerances for radial needle roller bearing, refer to **Table 4.3** of 4. "**Bearing Tolerances**" (page A-26) for others than the characteristics described in Dimensions Table and to **Table 4.4** (page A-26) for thrust bearing tolerances respectively. Manufacture of bearing **Type AXN** and **ARN** is limited to those of JIS accuracy class-5 and -4 only. (Allowable radial run-out values for Type AXN and ARN is as specified in **Table 1**.)

Table 1 Allowable radial run-out values for Type AXN and ARN
Unit: μn

					σιιια μιιι	
Nominal bearing nominal bearing (m	ig outer dia. D			Allowable radial run-out for outer ring		
Over	Incl.	Class 5	Class 4	Class 5	Class 4	
18	30	4	3	_		
30	50	5	4	_		
50	80	5	4	8	5	
80 120	120 150	_	_	10 11	6 7	

¹ To be determined based on "d".

Radial internal clearance

The radial internal clearance of **Type NKX+IR**, **NKXR+IR** and **NKIA** is in accordance with the interchangeable clearance information in **Table 5.1(1)** in Sec. **5.1** "**Bearing radial internal clearance**" (page A-30). The standard bearings are manufactured subject to the regular clearances.

The radial internal clearance of **Types AXN** and **ARN** is unique to this type, and the clearance value specific to an intended bearing is found in the relevant dimension table.

Bearing fits

Radial needle roller bearings shall be fitted on shaft/in housing in compliance with **Table 2**. The thrust bearing washers of **Type NKX** and **NKXR** shall be fitted in a housing with hole diameter larger by 0.5mm or over than the washer outer diameter D_1 or D_2 . For **Type NKIA** and **NKIB** it is not allowed to make the interference greater than k5/M6.

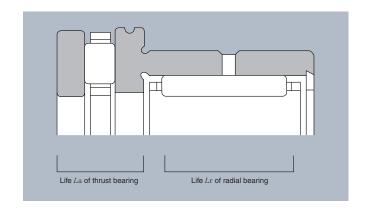
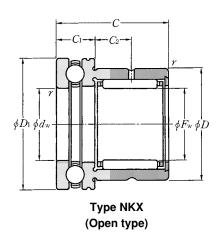

Table 2 Bearing fit on shaft and in housing (recommended)

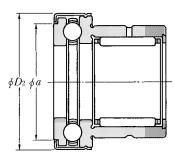
Table 1 Bearing in on chart and in neutring (recomme										
Bearing type	Shaft	Housing								
Series NKX, NKXR	k5	K6 (M6)								
Series NKIA, NKIB	k5	M6								
Series AXN, ARN	j5	J6								

Remarks: The parenthesized housing code is applied, where high rigidity is required.

Calculation of rating life

The rating life (L) of any complex bearing is determined as follows. Determine individually the rating life (L_r) of radial needle roller bearing from radial load acting thereon and the rating life (L_a) of thrust bearing from axial load acting thereon. And determine the rating life (L) from these determined rating lives (L_r, L_a) using the following formula.

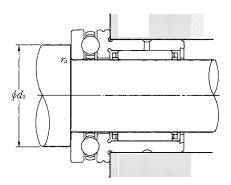

Rating life L of complex bearing


$$L = \frac{1}{\left(\frac{1}{L_{\rm r}^{1.1}} + \frac{1}{L_{\rm a}^{1.1}}\right)^{0.91}}....(1)$$

² To be determined based on "D".

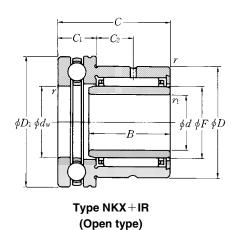
Without inner ring

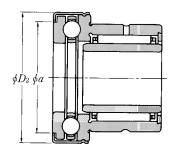
Type NKX Type NKX ⋅ · Z


Type NKX · · Z (With cover)

Fw 10∼70mm

Boundary dimensions										Basic load ratings dynamic static dynamic static				
					mm					43	١		kg	gf
	$F_{ m W}$	dw	D	D_1	D_2	_C _0	C ₁	C_2	a	γ _{s min} 1)		Radi		
						-0.25	-0.20				C_{r}	Cor	C_{r}	Cor
	10 ^{+0.022} _{+0.013}	10 ^{+0.040} +0.025	19	24	25	23	9	6.5	19.7	0.3	5 450	6 450	555	660
	12 +0.027 +0.016	12 ^{+0.050} _{+0.032}	21	26	27	23	9	6.5	21.7	0.3	6 000	7 700	615	785
	15 ^{+0.027} _{+0.016}	15 ^{+0.050} _{+0.032}	24	28	29	23	9	6.5	23.7	0.3	8 250	10 200	840	1 040
	17 ^{+0.027} _{+0.016}	17 ^{+0.050} _{+0.032}	26	30	31	25	9	8	25.7	0.3	10 400	14 400	1 060	1 460
	20 ^{+0.033} _{+0.020}	20 +0.061 +0.040	30	35	36	30	10	10.5	30.7	0.3	16 400	27 100	1 670	2 760
	25 +0.033 +0.020	25 ^{+0.061} +0.040	37	42	43	30	11	9.5	37.7	0.6	14 200	24 000	1 450	2 450
	30 ^{+0.033} _{+0.020}	30 ^{+0.061} +0.040	42	47	48	30	11	9.5	42.7	0.6	22 300	39 500	2 280	4 000
	35 +0.041 +0.025	35 ^{+0.075} +0.050	47	52	53	30	12	9	47.7	0.6	20 000	36 000	2 040	3 650
	40 ^{+0.041} _{+0.025}	40 ^{+0.075} +0.050	52	60	61	32	13	10	55.7	0.6	25 900	52 500	2 650	5 350
	45 +0.041 +0.025	45 ^{+0.075} +0.050	58	65	66.5	32	14	9	60.5	0.6	27 600	59 000	2 810	6 000
	50 +0.041 +0.025	50 ^{+0.075} +0.050	62	70	71.5	35	14	10	65.5	0.6	27 900	62 000	2 850	6 300
	60 ^{+0.049} _{+0.030}	60 ^{+0.090} +0.060	72	85	86.5	40	17	12	80.5	1	29 800	71 500	3 050	7 300
	70 ^{+0.049} _{+0.030}	70 ^{+0.090} +0.060	85	95	96.5	40	18	11	90.5	1	36 500	86 000	3 700	8 750

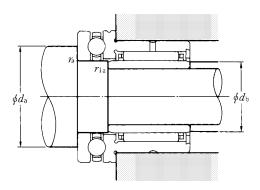

Note 1) Allowable minimum chamfer dimension \mathcal{T} . 2) Max. allowable dimension of radius \mathcal{T} a for corner roundness on shaft/housing.



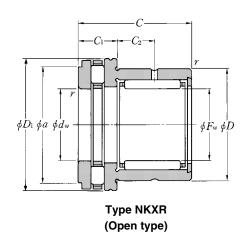
dynamic	Basic load static	dynamic k	static gf	dimer mi	iting nsions n ⁻¹		numbers	dime i m	tment nsions	(ap _l	ass prox.)
$C_{ m a}$	C_{oa}	al $C_{ m a}$	C_{oa}	grease	oil	Type NKX	Type NKX⋯Z	$d_{ m a}$ min	$r_{ m as}^{2)}$ max	Type NKX	Type NKX…Z
10 000	14 000	1 020	1 420	6 700	9 500	NKX10T2	NKX10T2Z	18	0.3	0.037	0.039
10 300	15 400	1 050	1 570	6 400	9 200	NKX12T2	NKX12T2Z	20	0.3	0.042	0.044
10 500	16 800	1 070	1 710	6 200	8 800	NKX15T2	NKX15T2Z	23	0.3	0.044	0.048
10 800	18 200	1 100	1 850	6 000	8 500	NKX17T2	NKX17T2Z	25	0.3	0.051	0.056
14 200	24 700	1 450	2 520	5 200	7 500	NKX20T2	NKX20T2Z	29	0.3	0.085	0.090
19 600	37 000	1 990	3 800	4 600	6 500	NKX25T2	NKX25T2Z	35	0.6	0.125	0.132
20 400	42 000	2 080	4 300	4 300	6 200	NKX30T2	NKX30T2Z	40	0.6	0.140	0.148
20 400	44 500	2 080	4 550	3 900	5 600	NKX35T2	NKX35T2Z	45	0.6	0.167	0.175
26 900	63 000	2 740	6 400	3 500	5 000	NKX40	NKX40Z	52	0.6	0.216	0.225
27 900	69 000	2 840	7 050	3 200	4 600	NKX45	NKX45Z	57	0.6	0.252	0.265
28 800	75 500	2 930	7 700	3 100	4 500	NKX50	NKX50Z	62	0.6	0.302	0.318
41 500	113 000	4 200	11 500	2 600	3 700	NKX60	NKX60Z	75	1	0.465	0.484
43 000	127 000	4 400	12 900	2 400	3 400	NKX70	NKX70Z	85	1	0.612	0.635

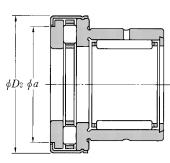
With inner ring

Type NKX+IR Type NKX $\cdot\cdot$ Z+IR



Type NKX··Z+IR (With cover)

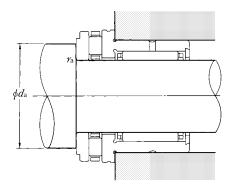

			Е	Bound	ary c	limer	nsior	ıs							В	asic loa	d rating:	S		
			_			~	~	~	-		4	4)	dynamic	N	,	c static kgf	dynamic	N	dynamic kgf	static
d	$d_{ m w}$	D	D_1	D_2	В	C -0 -0.25	C ₁ -0 -0.20	C_2	F	a	rs min 1)	$r_{1 \text{s min}}$ 1)	$C_{\rm r}$	$C_{ m or}$	adial $C_{ m r}$	Cor	i Ca	Coa	kial $C_{ m a}$	C_{oa}
7	10 +0.040 +0.025	19	24	25	16	23	9	6.5	10	19.7	0.3	0.3	5 450	6 450	555	660	10 000	14 000	1 020	1 420
9	12 ^{+0.050} _{+0.032}	21	26	27	16	23	9	6.5	12	21.7	0.3	0.3	6 000	7 700	615	785	10 300	15 400	1 050	1 570
12	15 ^{+0.050} _{+0.032}	24	28	29	16	23	9	6.5	15	23.7	0.3	0.3	8 250	10 200	840	1 040	10 500	16 800	1 070	1 710
14	17 ^{+0.050} _{+0.032}	26	30	31	17	25	9	8	17	25.7	0.3	0.3	10 400	14 400	1 060	1 460	10 800	18 200	1 100	1 850
17	20 +0.061 +0.040	30	35	36	20	30	10	10.5	20	30.7	0.3	0.3	16 400	27 100	1 670	2 760	14 200	24 700	1 450	2 520
20	25 ^{+0.061} _{+0.040}	37	42	43	20	30	11	9.5	25	37.7	0.6	0.3	14 200	24 000	1 450	2 450	19 600	37 000	1 990	3 800
25	30 +0.061 +0.040	42	47	48	20	30	11	9.5	30	42.7	0.6	0.3	22 300	39 500	2 280	4 000	20 400	42 000	2 080	4 300
30	35 ^{+0.075} _{+0.050}	47	52	53	20	30	12	9	35	47.7	0.6	0.3	20 000	36 000	2 040	3 650	20 400	44 500	2 080	4 550
35	40 +0.075 +0.050	52	60	61	20	32	13	10	40	55.7	0.6	0.3	25 900	52 500	2 650	5 350	26 900	63 000	2 740	6 400
40	45 ^{+0.075} _{+0.050}	58	65	66.5	20	32	14	9	45	60.5	0.6	0.3	27 600	59 000	2 810	6 000	27 900	69 000	2 840	7 050
45	50 ^{+0.075} +0.050	62	70	71.5	25	35	14	10	50	65.5	0.6	0.6	27 900	62 000	2 850	6 300	28 800	75 500	2 930	7 700
50	60 ^{+0.090} _{+0.060}	72	85	86.5	25	40	17	12	60	80.5	1	1	29 800	71 500	3 050	7 300	41 500	113 000	4 200	11 500
60	70 ^{+0.090} _{+0.060}	85	95	96.5	25	40	18	11	70	90.5	1	1	36 500	86 000	3 700	8 750	43 000	127 000	4 400	12 900



Limi dimen	sions	Bearing	numbers	J	dime n	tment nsions nm $r_{\rm as}^{2)}$	2)	(app	ass prox.)
grease	oil	Type NKX+IR	Type NKX··Z+IR	da min	$d_{^{ m b}}$ min	max	$r_{ m las}^{2}$) max	Type NKX+IR	Type NKX··Z+IR
6 700	9 500	NKX10T2+IR 7×10×16	NKX10T2Z+IR 7×10×16	18	9	0.3	0.3	0.042	0.044
6 400	9 200	NKX12T2+IR 9×12×16	NKX12T2Z+IR 9×12×16	20	11	0.3	0.3	0.048	0.050
6 200	8 800	NKX15T2+IR12×15×16	NKX15T2Z+IR12 \times 15 \times 16	23	14	0.3	0.3	0.052	0.056
6 000	8 500	NKX17T2+IR14×17×17	NKX17T2Z+IR14×17×17	25	16	0.3	0.3	0.061	0.066
5 200	7 500	NKX20T2+IR17×20×20	NKX20T2Z+IR17 \times 20 \times 20	29	19	0.3	0.3	0.099	0.104
4 600	6 500	NKX25T2+IR20 \times 25 \times 20	$NKX25T2Z \!+\! IR20 \!\times\! 25 \!\times\! 20$	35	22	0.6	0.3	0.152	0.159
4 300	6 200	NKX30T2+IR25 \times 30 \times 20	NKX30T2Z+IR25 \times 30 \times 20	40	27	0.6	0.3	0.173	0.181
3 900	5 600	NKX35T2+IR30 \times 35 \times 20	NKX35T2Z+IR30 \times 35 \times 20	45	32	0.6	0.3	0.205	0.213
3 500	5 000	NKX40 +IR35×40×20	NKX40Z $+$ IR35 \times 40 \times 20	52	37	0.6	0.3	0.260	0.269
3 200	4 600	NKX45 +IR40×45×20	NKX45Z $+$ IR40 \times 45 \times 20	57	42	0.6	0.3	0.293	0.316
3 100	4 500	NKX50 +IR45×50×25	NKX50Z $+$ IR45 \times 50 \times 25	62	48	0.6	0.6	0.373	0.389
2 600	3 700	NKX60 +IR50×60×25	NKX60Z $+IR50\times60\times25$	75	55	1	1	0.635	0.654
2 400	3 400	NKX70 +IR60×70×25	NKX70Z $+IR60\times70\times25$	85	65	1	1	0.814	0.837

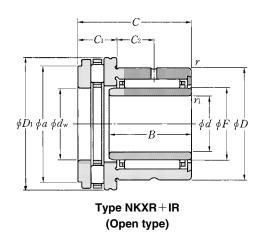
Without inner ring

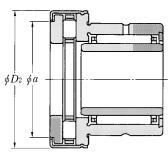
Type NKXR Type NKXR · · Z


Type NKXR · · Z (With cover)

Fw 15∼50mm

			Bound	ary dime	ensions					dynamic	Basic load	d ratings dynamic	static
$F_{ m w}$	$d\mathrm{w}$	D	D_1	$egin{array}{c} mm \ D_2 \end{array}$	C -0 -0.25	C ₁ -0 -0.20	C_2	a	rs min 1)		N	kgf dial $C_{ m r}$	Cor
15 ^{+0.027} _{+0.016}	15 ^{+0.050} _{+0.032}	24	28	29	23	9	6.5	23.7	0.3	8 250	10 200	840	1 040
17 ^{+0.027} _{+0.016}	17 ^{+0.050} _{+0.032}	26	30	31	25	9	8	25.7	0.3	10 400	14 400	1 060	1 460
20 ^{+0.033} _{+0.020}	20 +0.061 +0.040	30	35	36	30	10	10.5	30.7	0.3	16 400	27 100	1 670	2 760
25 +0.033 +0.020	25 ^{+0.061} _{+0.040}	37	42	43	30	11	9.5	37.7	0.6	14 200	24 000	1 450	2 450
30 ^{+0.033} _{+0.020}	30 ^{+0.061} _{+0.040}	42	47	48	30	11	9.5	42.7	0.6	22 300	39 500	2 280	4 000
35 +0.041 +0.025	35 ^{+0.075} _{+0.050}	47	52	53	30	12	9	47.7	0.6	20 000	36 000	2 040	3 650
40 ^{+0.041} _{+0.025}	40 ^{+0.075} +0.050	52	60	61	32	13	10	55.7	0.6	25 900	52 500	2 650	5 350
45 ^{+0.041} _{+0.025}	45 ^{+0.075} _{+0.050}	58	65	66.5	32	14	9	60.5	0.6	27 600	59 000	2 810	6 000
50 ^{+0.041} _{+0.025}	50 ^{+0.075} +0.050	62	70	71.5	35	14	10	65.5	0.6	27 900	62 000	2 850	6 300

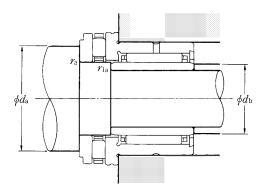

Note 1) Allowable minimum chamfer dimension \mathcal{T} . 2) Max. allowable dimension of radius \mathcal{T}_a for corner roundness on shaft/housing.



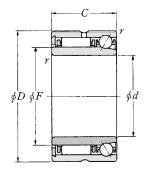
dynamic	Basic loa static	ad ratings dynamic k		dime	iting nsions in ⁻¹	Bearing	g numbers	dimer	ment nsions	(app	ass prox.)
$C_{ m a}$	C_{oa}	xial $C_{ m a}$	C_{oa}	grease	oil	Type NKXR	Type NKXR··Z	$d_{ m a}$ min	r _{as} 2) max	Type NKXR	Type NKXR··Z
12 200	26 800	1 250	2 730	2 800	11 000	NKXR15T2	NKXR15T2Z	25	0.3	0.048	0.052
12 700	29 000	1 300	2 960	2 500	10 000	NKXR17T2	NKXR17T2Z	27	0.3	0.050	0.053
20 200	46 500	2 060	4 700	2 100	8 500	NKXR20T2	NKXR20T2Z	32	0.3	0.090	0.095
27 300	68 000	2 790	6 900	1 800	7 000	NKXR25T2	NKXR25T2Z	39	0.6	0.128	0.135
27 800	72 500	2 840	7 400	1 500	6 000	NKXR30T2	NKXR30T2Z	44	0.6	0.162	0.169
31 000	87 000	3 150	8 900	1 400	5 500	NKXR35T2	NKXR35T2Z	49	0.6	0.184	0.195
43 000	121 000	4 350	12 400	1 200	4 800	NKXR40T2	NKXR40T2Z	56	0.6	0.226	0.237
45 500	135 000	4 650	13 800	1 100	4 400	NKXR45T2	NKXR45T2Z	61	0.6	0.267	0.286
48 500	150 000	4 900	15 300	1 000	4 000	NKXR50T2	NKXR50T2Z	66	0.6	0.309	0.329

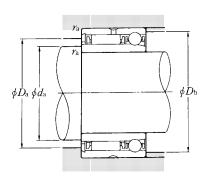
With inner ring

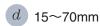
Type NKXR+IR Type NKXR $\cdot\cdot$ Z+IR



Type NKXR··Z+IR (With cover)

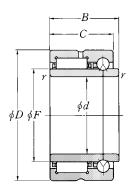


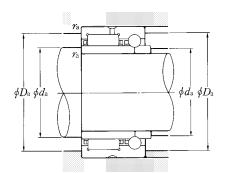

			ı	Bound	ary o	dime	nsio	ns									d rating			
					m	m							dynamic	static N	•	c static kgf	•	static N	dynamic kg	
d	$d_{ m w}$	D	D_1	D_2	В	C	C_1	C_2	F	a	$r_{\rm smin}$ 1)	$r_{1 \text{s min}}$ 1)	'		adial	Kgi			kial	
						-0 -0.25	-0						$C_{ m r}$	Cor	$C_{\rm r}$	$C_{ m or}$	C_{a}	C_{oa}	C_{a}	C_{oa}
12	15 ^{+0.050} _{+0.032}	24	28	29	16	23	9	6.5	15	23.7	0.3	0.3	8 250	10 200	840	1 040	12 200	26 800	1 250	2 730
14	17 ^{+0.050} _{+0.032}	26	30	31	17	25	9	8	17	25.7	0.3	0.3	10 400	14 400	1 060	1 460	12 700	29 000	1 300	2 960
17	20 +0.061 +0.040	30	35	36	20	30	10	10.5	20	30.7	0.3	0.3	16 400	27 100	1 670	2 760	20 200	46 500	2 060	4 700
20	25 ^{+0.061} _{+0.040}	37	42	43	20	30	11	9.5	25	37.7	0.6	0.3	14 200	24 000	1 450	2 450	27 300	68 000	2 790	6 900
25	30 ^{+0.061} _{+0.040}	42	47	48	20	30	11	9.5	30	42.7	0.6	0.3	22 300	39 500	2 280	4 000	27 800	72 500	2 840	7 400
30	35 ^{+0.075} _{+0.050}	47	52	53	20	30	12	9	35	47.7	0.6	0.3	20 000	36 000	2 040	3 650	31 000	87 000	3 150	8 900
35	40 ^{+0.075} _{+0.050}	52	60	61	20	32	13	10	40	55.7	0.6	0.3	25 900	52 500	2 650	5 350	43 000	121 000	4 350	12 400
40	45 ^{+0.075} _{+0.050}	58	65	66.5	20	32	14	9	45	60.5	0.6	0.3	27 600	59 000	2 810	6 000	45 500	135 000	4 650	13 800
45	50 ^{+0.075} _{+0.050}	62	70	71.5	25	35	14	10	50	65.5	0.6	0.6	27 900	62 000	2 850	6 300	48 500	150 000	4 900	15 300

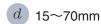


Limiting dimensions min ⁻¹ grease oil	Bearing	numbers	$d_{ m a}$	dime	tment nsions nm $r_{as}^{2)}$	_{r1as} 2)	(app	ass orox.) sg Type
grease on	Type NKXR+IR	Type NKXR··Z+IR	min	min	max	max		NKXR··Z+IR
2 800 11 000	NKXR15T2+IR12×15×16	NKXR15T2Z $+$ IR12 \times 15 \times 16	25	14	0.3	0.3	0.056	0.060
2 500 10 000	NKXR17T2+IR14×17×17	NKXR17T2Z+IR14×17×17	27	16	0.3	0.3	0.060	0.063
2 100 8 500	NKXR20T2+IR17×20×20	NKXR20T2Z+IR17 \times 20 \times 20	32	19	0.3	0.3	0.105	0.110
1 800 7 000	NKXR25T2+IR20×25×20	NKXR25T2Z+IR20 \times 25 \times 20	39	22	0.6	0.3	0.155	0.162
1 500 6 000	NKXR30T2+IR25×30×20	NKXR30T2Z+IR25 \times 30 \times 20	44	27	0.6	0.3	0.197	0.202
1 400 5 500	NKXR35T2+IR30×35×20	NKXR35T2Z $+$ IR30 $ imes$ 35 $ imes$ 20	49	32	0.6	0.3	0.224	0.235
1 200 4 800	NKXR40T2+IR35×40×20	NKXR40T2Z $+$ IR35 $ imes$ 40 $ imes$ 20	56	37	0.6	0.3	0.270	0.281
1 100 4 400	NKXR45T2+IR40×45×20	NKXR45T2Z $+$ IR40 \times 45 \times 20	61	42	0.6	0.3	0.318	0.337
1 000 4 000	NKXR50T2+IR45×50×25	NKXR50T2Z+IR45×50×25	66	48	0.6	0.6	0.379	0.400

Type NKIA59




	Bounda	ary din	nensio	ns	d	-1-1-	d	Basic load	_	-4-4!-	d	4 - 4		iting
		mm			dynamic	static N	dynamic k	static gf	dynamic N		dynamic k	gf		nsions in ⁻¹
			-	1)	~		dial		_		xial		grease	oil
d	D	C	F	$r_{\rm s min}$ 1)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	Ca	Coa	C_{a}	Coa		
15	28	18	20	0.3	9 500	13 400	970	1 370	2 340	3 050	239	310	13 000	20 000
17	30	18	22	0.3	10 100	14 900	1 030	1 520	2 530	3 550	258	360	12 000	18 000
20	37	23	25	0.3	16 500	22 100	1 680	2 250	4 700	6 150	480	625	11 000	16 000
22	39	23	28	0.3	17 500	24 800	1 790	2 530	4 900	6 750	500	690	9 500	14 000
25	42	23	30	0.3	18 600	27 400	1 900	2 790	5 100	7 350	520	750	8 500	13 000
30	47	23	35	0.3	19 400	30 500	1 980	3 100	5 400	8 550	550	870	7 500	11 000
35	55	27	42	0.6	25 700	46 000	2 630	4 700	7 400	12 300	755	1 260	6 500	9 500
40	62	30	48	0.6	31 000	61 000	3 150	6 250	7 750	14 000	790	1 430	5 500	8 500
45	68	30	55	0.6	33 000	69 500	3 350	7 100	8 500	17 100	870	1 740	5 000	7 500
50	72	30	60	0.6	33 500	73 500	3 450	7 500	8 800	18 700	900	1 910	4 300	6 500
55	80	34	63	1	44 500	95 500	4 500	9 700	14 300	33 000	1 460	3 350	4 300	6 500
60	85	34	68	1	45 500	101 000	4 600	10 300	14 800	36 000	1 510	3 650	4 000	6 000
65	90	34	75	1	46 000	106 000	4 700	10 800	15 200	39 000	1 550	4 000	3 700	5 500
70	100	40	80	1	62 500	146 000	6 350	14 900	18 600	47 500	1 890	4 850	3 300	5 000

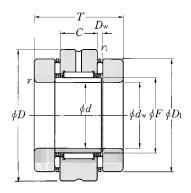

Note 1) Allowable minimum chamfer dimension r. 2) Max. allowable dimension of radius ra for corner roundness on shaft/housing. Remarks: Nominal code number of inner ring comprises IR. Bore diameter×outer diameter×width.

Bearing numbers		Abuti dimen	sions		Mass
	$d_{ m a}$	$D_{\rm a}$	$D_{ m b}$	_{7'as} 2)	kg
	min	max	max	max	(approx.)
NKIA 5902A	17.5	22	25.5	0.3	0.050
NKIA 5903A	19.5	24	27.5	0.3	0.056
NKIA 5904A	22.5	28	34.5	0.3	0.111
NKIA59/22A	24.5	31	36.5	0.3	0.120
NKIA 5905A	27.5	33	39.5	0.3	0.130
NKIA 5906A	32.5	38	44.5	0.3	0.147
NKIA 5907A	40	45	50	0.6	0.243
NKIA 5908A	45	51	57	0.6	0.347
NKIA 5909A	50	58	63	0.6	0.401
NKIA 5910A	55	63	67	0.6	0.410
NKIA 5911A	61	66.5	74	1	0.590
NKIA 5912A	66	71.5	79	1	0.632
NKIA 5913A	71	78.5	84	1	0.708
NKIA 5914A	76	84	94	1	1.05

Type NKIB 59

	Boui	ndary		sion	S	dynamic	static	dynamic	Basic load static	dynamic	static	dynamic		dime	iting nsions
d	D	B	nm C	F	_{√s min} 1)		N Rad	kį dial	gf	N	Ax	kg kial	t	grease	in ⁻¹ oil
		-0 -0.3		1	7 S Hall	C_{r}	Cor	$C_{\rm r}$	$C_{ m or}$	$C_{ m a}$	C_{oa}	C_{a}	Coa	9	
15	28	20	18	20	0.3	10 800	13 600	1 100	1 390	2 750	4 200	280	430	13 000	20 000
17	30	20	18	22	0.3	11 200	14 600	1 140	1 490	2 960	4 900	300	495	12 000	18 000
20	37	25	23	25	0.3	21 300	25 500	2 170	2 600	4 650	7 400	475	755	11 000	16 000
22	39	25	23	28	0.3	23 200	29 300	2 360	2 990	5 000	8 650	510	880	9 500	14 000
25	42	25	23	30	0.3	24 000	31 500	2 450	3 200	5 150	9 250	525	945	8 500	13 000
30	47	25	23	35	0.3	25 500	35 500	2 600	3 600	5 600	11 200	570	1 140	7 500	11 000
35	55	30	27	42	0.6	32 000	50 000	3 300	5 100	7 050	14 900	720	1 520	6 500	9 500
40	62	34	30	48	0.6	43 500	66 500	4 450	6 800	8 700	19 400	890	1 980	5 500	8 500
45	68	34	30	52	0.6	46 000	73 000	4 700	7 450	9 100	21 400	925	2 180	5 000	7 500
50	72	34	30	58	0.6	48 000	80 000	4 900	8 150	9 600	24 300	980	2 480	4 300	6 500
55	80	38	34	63	1	58 500	99 500	6 000	10 100	11 400	29 400	1 170	3 000	4 300	6 500
60	85	38	34	68	1	61 500	108 000	6 250	11 000	11 800	32 000	1 200	3 250	4 000	6 000
65	90	38	34	72	1	62 500	112 000	6 350	11 400	12 100	34 000	1 240	3 500	3 700	5 500
70	100	45	40	80	1	85 500	156 000	8 750	15 900	15 900	44 500	1 620	4 550	3 300	5 000

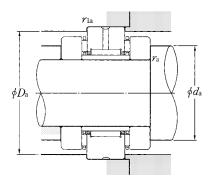
Note 1) Allowable minimum chamfer dimension \hat{r} . 2) Max. allowable dimension of radius \hat{r} a for corner roundness on shaft/housing.


Remarks: 1. This complex can support bi-directional axial load.

2. The ball bearing of this complex bearing is complete with a synthetic resin cage, and the allowable operating temperature shall be 120°C and, under continuous running, 100°C or less.

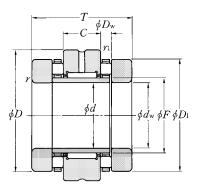
3. This bearing type is the imported product from INA, Germany.

Bearing numbers	d	Abutmen imensior mm	าร	Mass kg
	$d_{ m a}$ min	$D_{ m a}$ max	$r_{\rm as}^{2)}$ max	(approx.)
NKIB 5902R	17.5	25.5	0.3	0.052
NKIB 5903R	19.5	27.5	0.3	0.058
NKIB 5904R	22.5	34.5	0.3	0.107
NKIB59/22R	24.5	36.5	0.3	0.122
NKIB 5905R	27.5	39.5	0.3	0.134
NKIB 5906R	32.5	44.5	0.3	0.151
NKIB 5907R	40	50	0.6	0.247
NKIB 5908R	45	57	0.6	0.320
NKIB 5909R	50	63	0.6	0.380
NKIB 5910R	55	67	0.6	0.385
NKIB 5911R	61	74	1	0.555
NKIB 5912R	66	79	1	0.595
NKIB 5913R	71	84	1	0.640
NKIB 5913R NKIB 5914R	76	94	1	0.985


Type AXN

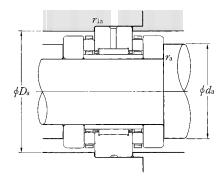
d 20∼50mm

a	20 301																
		В	oundar	ry dime	ensior	าร				d	-4-4!-			d ratings	-4-4-		-4-4
				mm						dynamic	Static	dynamic	kgf	dynamic	static N	dynamic k	static (gf
d	$d_{ m W}$	D	<i>D</i> ₁ -0.20	<i>T</i> -0	C 0	F	$D_{\mathbf{W}}$	$r_{\rm s min}$ 1)	$\gamma_{1 \text{s min}} 1)$	a		adial	a	a	Axia		
	+0.061		-0.20 -0.50				_			Cr	$C_{ m or}$	$C_{ m r}$	Cor	Ca	Coa	Ca	C_{oa}
	20 +0.061		42	40	16	25	2		0.6		22 400		2 280	14 600	58 000	1 490	5 900
	25 ^{+0.061} _{+0.040}		47	44	20	30	2	0.6	0.6	22 100	34 000	2 260	3 500	16 300	69 500	1 660	7 100
	30 ^{+0.061} _{+0.040}		52	44	20	35	2	0.6	0.6	24 800	41 500	2 520	4 250	17 800	81 500	1 820	8 300
35	35 ^{+0.075} _{+0.050}	70	60	48	20	40	3	1	0.6	26 400	47 000	2 700	4 800	27 400	110 000	2 790	11 300
40	$40^{+0.075}_{+0.050}$	75	65	48	20	45	3	1	0.6	28 000	52 500	2 860	5 400	29 800	128 000	3 050	13 100
45	45 ^{+0.075} _{+0.050}	80	70	54	25	50	3	1	0.6	38 500	74 500	3 950	7 550	31 500	143 000	3 250	14 500
50	50 ^{+0.075} _{+0.050}	90	78	54	25	55	3	1	0.6	41 000	82 000	4 150	8 400	38 000	186 000	3 850	19 000


Note 1) Allowable minimum chamfer dimension ${\cal V}$ or ${\cal V}_1$.

	niting nsions	Bearing numbers		dial ance			ment nsions		Prelo	ad	Starting	torque ²⁾	Mass
m	in ⁻¹	numbers		m	,	m	m	2)	N	kgf	N∙mm	kgf·mm	kg
grease	oil		min	max	da min	$D_{ m a}$ max	r _{as} 2) max	$r_{ m las}$ 2) max					(approx.)
1 800	7 000	AXN2052	10	30	39	46	0.6	0.6	1 300	130	330	33	0.400
1 500	6 000	AXN2557	10	30	44	51	0.6	0.6	1 450	145	400	40	0.520
1 400	5 500	AXN3062	10	40	50	56	0.6	0.6	1 600	160	550	55	0.590
1 200	4 700	AXN3570	10	40	56	64	1	0.6	2 450	245	900	90	0.800
1 100	4 300	AXN4075	10	40	62	69	1	0.6	2 650	265	1 050	105	0.890
1 000	3 900	AXN4580	10	40	67	74	1	0.6	2 800	280	1 200	120	1.00
900	3 500	AXN5090	15	50	75	83	1	0.6	3 400	340	1 600	160	1.42

Note 2) Max. allowable dimension of radius r_a for corner roundness on shaft/housing. 3) Starting torque subject to standard preload.


Type ARN

d 20~70mm

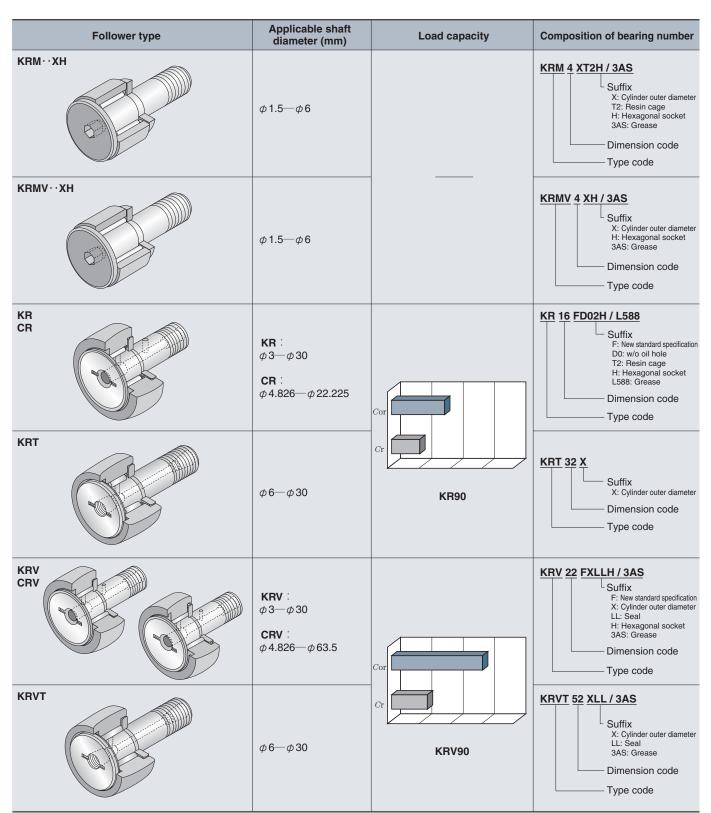
		Bound	ary dim	ensior	าร							Basic loa	d ratings			
									dynamic	static N	dynamic		dynamic	static N	dynamic	static
d	dw D			C	F	Dw	$r_{\rm s min}$ 1)	$r_{1 \text{s min}}$ 1)			adial	kgf		Axia	kį al	yı .
		-0.2 -0.5	0 -0 0 -0.370	-0 -0.130)				$C_{ m r}$	Cor	$C_{ m r}$	Cor	C_{a}	Coa	$C_{ m a}$	Coa
20	20 ^{+0.061} _{+0.040} 5	2 42	46	16	25	5	0.6	0.6	15 100	22 400	1 540	2 280	27 300	68 000	2 790	6 900
20	20+0.061 6	2 52	60	20	30	7.5	1	0.6	22 100	34 000	2 260	3 500	53 500	129 000	5 450	13 100
25	25 ^{+0.061} _{+0.040} 5	7 47	50	20	30	5	0.6	0.6	22 100	34 000	2 260	3 500	27 800	72 500	2 840	7 400
25	25 ^{+0.061} _{+0.040} 7	2 62	60	20	35	7.5	1	0.6	24 800	41 500	2 520	4 250	54 500	139 000	5 550	14 200
30	30+0.061 6	2 52	50	20	35	5	0.6	0.6	24 800	41 500	2 520	4 250	31 000	87 000	3 150	8 900
30	30+0.061 8	0 68	66	20	40	9	1	0.6	26 400	47 000	2 700	4 800	74 500	190 000	7 600	19 400
35	35 ^{+0.075} _{+0.050} 7	0 60	54	20	40	6	1	0.6	26 400	47 000	2 700	4 800	43 000	121 000	4 350	12 400
35	35 ^{+0.075} _{+0.050} 8	5 73	66	20	45	9	1	0.6	28 000	52 500	2 860	5 400	82 000	222 000	8 350	22 600
40	40 +0.075 7	5 65	54	20	45	6	1	0.6	28 000	52 500	2 860	5 400	45 500	135 000	4 650	13 800
40	40 +0.075 9	0 78	75	25	50	9	1	0.6	38 500	74 500	3 950	7 550	85 000	238 000	8 650	24 200
45	45 ^{+0.075} _{+0.050} 8	0 70	60	25	50	6	1	0.6	38 500	74 500	3 950	7 550	48 500	150 000	4 900	15 300
45	45 ^{+0.075} _{+0.050} 10	5 90	82	25	55	11	1	0.6	41 000	82 000	4 150	8 400	121 000	340 000	12 300	34 500
50	50 ^{+0.075} _{+0.050} 9	0 78	60	25	55	6	1	0.6	41 000	82 000	4 150	8 400	62 500	215 000	6 350	21 900
50	50 ^{+0.075} _{+0.050} 11	0 95	82	25	60	11	1.1	0.6	41 000	85 000	4 200	8 700	125 000	365 000	12 800	37 000
55	55 ^{+0.090} _{+0.060} 11	5 100	82	25	65	11	1.1	0.6	45 000	98 000	4 550	10 000	130 000	385 000	13 200	39 500
60	60 ^{+0.090} _{+0.060} 12	0 105	82	25	70	11	1.1	0.6	45 000	91 500	4 600	9 350	134 000	410 000	13 700	42 000
65	65 ^{+0.090} _{+0.060} 12	5 110	82	25	75	11	1.1	0.6	55 000	104 000	5 600	10 600	138 000	435 000	14 100	44 500
70	70 ^{+0.090} _{+0.060} 13	0 115	82	25	80	11	1.1	0.6	57 000	119 000	5 800	12 200	142 000	460 000	14 500	47 000

Note 1) Allowable minimum chamfer dimension ${\it r}$ or ${\it r}_1$.

	iting nsions	Bearing numbers		dial rance			ment nsions		Prel	oad	Starting	torque ²⁾	Mass
m	in ⁻¹			ı m		m	m	2)	N	kgf	N∙mm	kgf∙mm	kg
grease	oil		min	max	$d_{ m a}$ min	$D_{ m a}$ max	r _{ass} 2) max	r _{lass} 2) max					(approx.)
1 800	7 000	ARN2052T2	10	30	39	46	0.6	0.6	2 500	250	430	43	0.440
1 500	6 000	ARN2062	10	30	48	56	1	0.6	4 950	495	1 150	115	0.910
1 500	6 000	ARN2557T2	10	30	44	51	0.6	0.6	2 600	260	500	50	0.560
1 200	4 900	ARN2572	10	40	56	66	1	0.6	5 050	505	1 400	140	1.22
1 400	5 500	ARN3062T2	10	40	49	56	0.6	0.6	2 900	290	650	65	0.630
1 100	4 400	ARN3080	10	40	63	73	1	0.6	6 900	690	2 100	210	1.54
1 200	4 800	ARN3570T2	10	40	56	64	1	0.6	3 950	395	1 050	105	0.850
1 000	4 100	ARN3585	10	40	68	77	1	0.6	7 600	760	2 500	250	1.67
1 100	4 400	ARN4075T2	10	40	61	69	1	0.6	4 200	420	1 250	125	0.930
950	3 800	ARN4090	10	40	73	87	1	0.6	7 850	785	2 850	285	2.15
1 000	4 000	ARN4580T2	10	40	66	74	1	0.6	4 450	445	1 550	155	1.16
850	3 300	ARN45105	15	50	83	96	1	0.6	11 200	1 120	4 350	435	3.16
900	3 600	ARN5090	15	50	75	83	1	0.6	5 800	580	2 050	205	1.48
800	3 100	ARN50110	15	50	88	101	1	0.6	11 600	1 160	4 900	490	3.38
750	2 900	ARN55115	15	50	93	106	1	0.6	12 000	1 200	5 500	550	3.61
700	2 700	ARN60120	15	50	98	111	1	0.6	12 400	1 240	6 000	600	3.81
650	2 600	ARN65125	15	50	103	116	1	0.6	12 800	1 280	6 500	650	4.00
650	2 500	ARN70130	15	50	106	121	1	0.6	13 200	1 320	7 000	700	4.25

Note 2) Max. allowable dimension of radius $r_{\rm a}$ for corner roundness on shaft/housing. 3) Starting torque subject to standard preload.

Cam Followers / Roller Followers



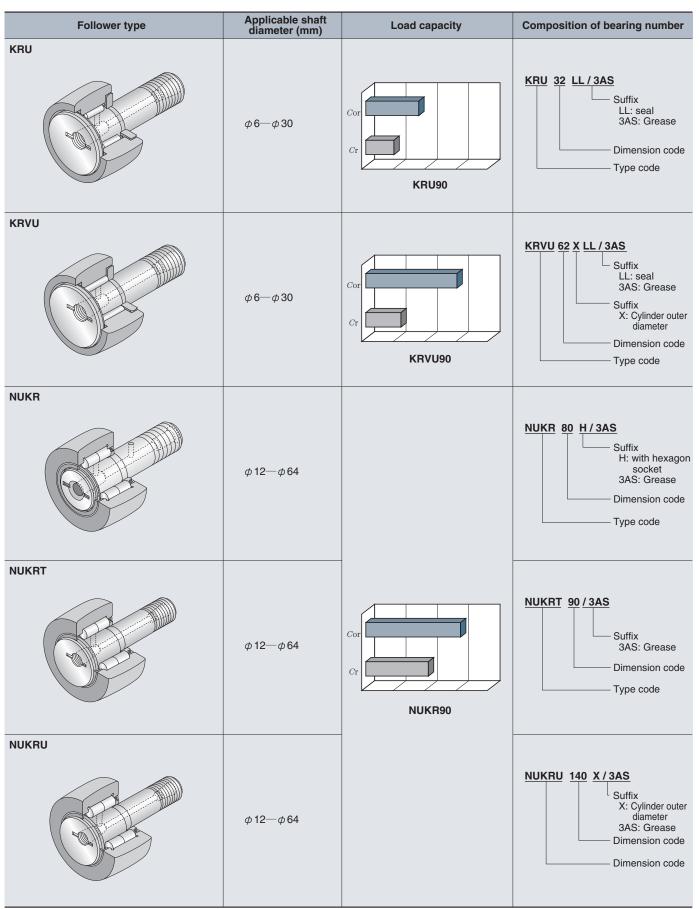
Cam Followers (Stud Type Track Roller)

This is a track roller complete with stud instead of inner ring, which is designed to operate with its outer ring rolling on the track. These NTN stud type track rollers are applied to eccentric roller, guide roller, rocker arm roller, etc. similarly to the roller followers. One end of the stud is threaded and the hexagonal nut is used to be mounted

easily.

The cam follower types marked with a suffix including "F" are product per new standard specification. They are identically to the conventional products in terms of fitting method and lubrication method, but boast improved functionality through crowned rollers and special heat

%Each listed load capacity is subject to the reference bearing diameter of ϕ 30.


treatment. Note that the cam follower types having a suffix including "F" but lacking an oil hole are prefilled with urea-based high-functionality grease and are identified with a suffix including "DO".

The outer ring is guided in the axial direction with a flange at the end of stud and the side plate press-fitted to

the stud.

The outer ring has a thick wall and both of spherical outer profile and cylindrical outer surface (tail code: **X**) are available for it similarly to the outer ring of the roller follower.

Follower components	Features
Outer ring outer diameter: ϕ 4 With metric series cage Outer profile: Cylindrical Stud head: Hexagonal socket Cage: Resin cage Grease: Prefilled	 Polyamide resin cage (T2 suffix) can operate at temperatures up to 120°C (100°C for continuous operation). Prelubricated (no relubrication hole)
Outer ring outer diameter: ϕ 4 Metric series full complement roller type Outer profile: Cylindrical Stud head: Hexagonal socket Grease: Prefilled	Better for heavy loads than KRM··XH type. Prelubricated (no relubrication hole)
Outer ring outer diameter: $φ$ 16 With metric series cage New standard specification Without oil hole Without seal Outer profile: Spherical Stud head: Hexagonal socket Cage: resin cage Grease: Prefilled Outer ring outer diameter: $φ$ 32 With metric series cage Stud head: with recessed slot for screwdriver use and tapped hole Outer surface profile: Cylindrical Seal: w/o seal Grease: Not prefilled	 Standard cage is pressed steel. Polyamide resin cage (T2 suffix) is also available. Allowable temperature: 120°C max. Continuous operating temperature: 100°C max Suited to high speed. Due to a high initial grease fill, this type can be used for a long period of time without additional greasing. The standard Type KRT follower has no hexagonal hole (H suffix), but a hexagonal socket is standard with a threaded plug. If there is no grease code, the follower is not prelubricated.
Outer ring outer diameter: ϕ 22 Metric series full complement roller type New standard specification Stud head: Hexagonal socket Outer surface profile: Cylindrical Seal: w/ seal Grease: Prefilled Outer ring outer diameter: ϕ 52 Metric series full complement roller type Stud head: with recessed slot for screwdriver use and tapped hole Outer surface profile: Cylindrical Seal: w/ seal Grease: Prefilled	 Suited to high load. Lower allowable running speed than caged types. Grease replenishing interval must be shortened due to the small internal volume available for grease. The standard Type KRVT follower has no hexagonal hole (H suffix), but a hexagonal socket is standard with a threaded plug.

%Each listed load capacity is subject to the reference bearing diameter of ϕ 30.

Follower components	Features				
Outer ring outer diameter: ϕ 32 Eccentric stud w/ metric series cage Stud head: with recessed slot for screw- driver use and tapped hole Outer profile: Spherical Seal: w/ seal Grease: Prefilled	 Unlike Type KRT and KRVT, Type KRU and KRVU have the eccentric stud (eccentricity: 0.25 to 1.0mm) so as to enable to adjust positional variation of the stud mounting hole. 				
Outer ring outer diameter: ϕ 62 Eccentric stud, metric series full complement roller type Stud head: with recessed slot for screwdriver use and tapped hole Outer profile: Cylindrical Seal: w/ seal Grease: Prefilled	Certain Type KRU cam followers, which lack a seal and whose suffix does not include grease code, are supplied without prefilled grease.				
Outer ring outer diameter: ϕ 80 Metric series double-row cylindrical roller type Shielded full-complement roller type Stud head: Hexagonal socket Outer profile: Spherical Grease: Prefilled					
Outer ring outer diameter ϕ f90 Metric series double-row cylindrical roller type Shielded full-complement roller type Stud head: with recessed slot for screw- driver use and tapped hole Outer profile: Spherical Grease: Prefilled	 Highest rated load, best-suited to applications subjected to high load and shock load. The outer ring is guided in axial direction by the outer ring ribs and the end faces of cylindrical roller. Grease replenishing interval must be shortened due to the small spacing volume. Type NUKRU has the eccentric stud (eccentricity: 0.4 to 2.5mm) so as to enable to adjust positional variation of the stud mounting hole. 				
Outer ring outer diameter: ϕ 140 Metric series double-row cylindrical roller type Shielded full-complement roller type stud, eccentric type Stud head: with recessed slot for screwdriver use and tapped hole Outer profile: Cylindrical Grease: Prefilled					

Bearing accuracy

The dimensional accuracy and profile accuracy of cylindrical roller outer diameter (D) and outer ring width (C), and the running accuracy of bearing assy are as shown in **Tables 4.3** and 4.4 of Section 4 "**Bearing Tolerances**" (page A-26) and the accuracy class of each conforms to JIS Class-0. The dimensional accuracy of spherical outer diameter (D) and stud diameter (D) are as shown in applicable Dimensions Table.

Bearing fit and radial internal clearance

Table 1 shows the recommended fitting tolerance for the stud mounting hole.

And Table 2 shows the radial internal clearance.

Table 1 Recommended tolerance

Classification	Tolerance range class for mounting hole
Metric series	H7
Inch series	F7

Note) When shock load acts on, make the stud - hole clearance as less as possible in assembling.

Table 2 Radial internal clearance

Unit: µm Nominal roller Clearance nscribed circle diameter CN (ordinary) C4 C2 C3 F_{W} (mm) incl min max min max min max min max over

Fitting relations

(1) Make the face height at the cam follower mount greater than "e" dimension given in applicable Dimension Table. (Fig.1)

Furthermore, chamfer the stud mounting hole at R as small as possible (around $0.5\times45^{\circ}$) and bring the side faces of side face in precise contact.

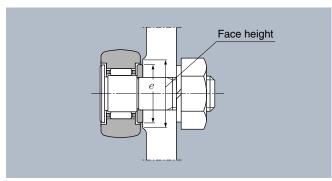


Fig. 1

(2) Don't hammer directly the cam follower rib. Doing so would cause breakdown and rotation failure of the rib.

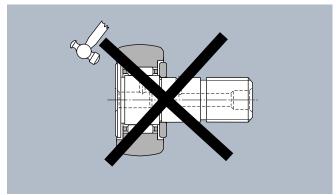


Fig. 2

(3) The oil hole position on the stud raceway surface is shown with NTN mark stamped on the stud rib surface. Mount the stud so the oil hole locates within the non-load area (non-load side). (Fig. 3) If the oil hole locates within the load area, it would cause shorter life of the follower.(4) Particularly where loose

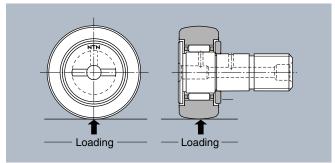


Fig. 3

of the mounting screw is forecast due to wide amplitude vibration during running, the mounting methods as illustrated in **Fig. 4** are available.

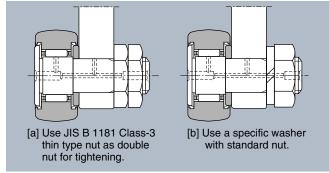


Fig. 4

- (5) The stud is subjected to bending stress and tensile force arising from bearing load. Tighten the stud screws with tightening torque which does not exceed the torque value specified in applicable Dimension Table. Too tight tightening torque could result in rupture of the threaded portion.
- (6) A hole is provided on the stud center at right angle to the shaft axial center, as illustrated in **Fig. 5**. Use this hole for locking or grease replenishment.

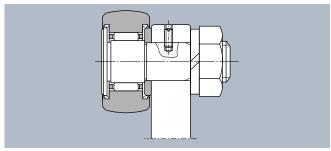


Fig. 5

- (7) For mounting and adjusting the eccentric stud type cam follower, follow the sequence given hereunder.
- Insert the stud into the mounting hole such that the NTN mark (oil hole position) is located relative to the load acting direction as shown in Fig. 3. Then, lightly tighten the nut. Be sure that the stud remains capable of turning.
- Fit the tip of flat blade screwdriver into the slot on the stud head or insert an Allen key into the socket of the hexagonal socket head plug (included with the cam follower) fastened into the stud; then turn the stud to adjust the gap between the cam follower to the mating contact surface.
- 3. After completion of gap adjustment, tighten the nut to the tightening torque listed in the relevant dimension table in order to jam the stud.

Usually, NTN cam followers are each mounted in cantilever configuration: consequently, when used for a prolonged period, fit of a cam follower to a corresponding bearing can get loose, and a non-uniform load (biased load) can eventually act on the bearing. To keep the machinery having NTN cam followers, it is necessary to prevent excessive loosening of the cam followers.

Lubrication and how to feed and replenish grease into the follower

Lubrication

The types having a synthetic rubber seal (suffix LL) and the full complement roller types are prefilled with lithium soap grease (grease code: 3AS), while the new standard specification bearing (w/o oil hole) is prefilled with ureabased high-functionality grease (grease code: L588),

thereby these bearing types may be used in a temperature range of -20 to +120°C or can be continuously used at a temperature of 100°C or lower. When a bearing is always used a temperature of 0°C or lower, use of a bearing prefilled with cold temperature grease. For more information, contact NTN Engineering.

Bearings having a cage, but lacking a seal, do not have prefilled grease. (This description does not apply to bearings whose stud lacks an oil hole.)

If a prefilled grease is needed, feel free to contact NTN.

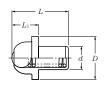
Note that **NTN** offers its unique bearing products prefilled with solid grease: these bearings feature minimized outward leakage of lubricant.

For bearing applications that need to minimize possible release oil mist into the atmosphere, NTN will offer bearings prefilled with low dusting grease. For more information, contact NTN Engineering.

The outer ring outer surface of bearing and the track surface must both be lubricated. Lack of lubrication for these surfaces can lead to premature bearing failure.

How to feed and replenish grease

Use a tool such as a grease gun to inject grease into a grease nipple installed to the end face of flange or end face of threaded side of the stud. In this case, plug the grease-feed hole or the tapped hole at non-greasing side (with a special-purposed plug or a threaded plug with hexagon socket.)


These grease nipple and plug are enclosed in each cam follower package. Screw-in them in specific position before mounting the cam follower.

Special grease nipple and that specified in JIS Standard as applicable are available for use. The dimensions thereof and the applicable bearing types are as specified in **Tables 3** and **4** respectively.

Furthermore, special press-fit type plug and threaded plug with hexagon socket are available for use. The dimensions thereof and the applicable bearing types are as specified in **Tables 5-1**, **-2** and **Table 6** respectively.

When using the special-purposed press-fit plug, press-fit it in the grease feed hole using a mandrel of applicable dimension shown in **Table 7**.

Table 3 Grease nipple dimension

Nominal		Dimension mm						
nipple number	d	D	L	L_1				
NIP-B3	3	7.5	9	5.5				
NIP-B4	4	7.5	10	5.5				
NIP-B6	6	8	13	6				
NIP-B8	8	10	16	7				

-	Nominal	Dime				
	nipple number	d	Н	l	L	B
!	NIP-X30	M4×0.7	13.9	4	5	7
	JIS A-M6F	M6×0.75	13.5	4	5.4	7
	JIS A-PT1/8	PT1/8	20	8	9.5	10

Table 4 Grease nipple applied bearing types and grease nipple dimension codes

Nominal		Nipple applied bearing types										
nipple number	KR, KRV	KR··H, KRV··H	CR, CRV	CR··H, CRV··H	NUKR	NUKR··H	KRT, KRVT	NUKRT	KRU, KRVU	NUKRU		
NIP-B3	_	_			_	_	_	_	_	_		
NIP-B4	16~26	22~26			_	_	_	_	_	_		
NIP-B6	30~40	30~40	Refer to the	e accessories	30~40	30~40	_	_	_	_		
NIP-B8	47~90	47~90	field in the		47~90	47~90	_	_	_	_		
NIP-X30	_	_	dimension	table.	_	_	16~26	_	16~26	_		
JIS Type 1 (A-M6F)	_	_			_	_	30~32	30	30~35	30~35		
JIS Type 2 (A-PT1/8)	_	_			100~180 (Threaded side)	100~180 (Threaded side)	35~90	35~180	40~90	40~180		

Special-purposed plug

	ur	nit : mm
Nominal number	D	Н
SEN 3	3	3
SEN 4	4	4
SEN 6	6	6
SEN 8	8	8

Table 5-1 Plug dimension

Threaded plug with hexagon socket

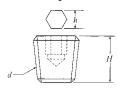


Table 5-2 Plug dimension

unit: mm

Nominal number	d	Н	Width across flats h
M4X0.7X4 &	M4X0.7	4	2
M6X0.75X6 ℓ	M6X0.75	6	3
PT1/8X7 ℓ	PT1/8	7	5

Table 6 Plug applied bearing types and plug dimension codes

DI		Plug applied bearing types											
Plug	KR, KRV	KR··H, KRV··H	CR, CRV	CR··H, CRV··H	NUKR	NUKR··H	KRT, KRVT	NUKRT	KRU, KRVU	NUKRU			
SEN3	30~40	30~40			30~40	30~40	_	_	_	_			
SEN4	16~26 47~90	22~26 47~90			47~90	47~90	_	_	_	_			
SEN6	30~40	30~40	Refer to the	accessories	30~40	30~40	_	_	_	_			
SEN8	47~90	47~90	field in the r		47~180	47~90	_	_	_	_			
M4X0.7X4 &	_	_	uimension a	able.	_	_	16~26	_	16~26	_			
M6X0.75X6 ℓ	_	_				_	30~32	30	30~35	30~35			
PT1/8X7 ℓ	_	_			_	100~180	35~90	35~180	40~90	40~180			

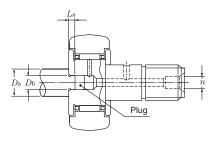


Table 7 Mandrels used for plug press-fitting Mandrel dimension Grease feed hole dia. $D_{\rm b}{}_{\rm -0.1}^{\rm 0}$ $L_{\rm a} \, ^{0}_{-0.1}$ $D_{\rm a}$ 3 8 2.8 1.5

Track load capacity of cam follower and roller follower

The reference hardness (reference tensile stress) was set up from the relationship between the follower hardness and net tensile stress of the material and the track load capacity was determined

from the relationship of the setup reference stress to hertz stress.

How to set up the reference hardness (tensile stress) differs a little bit depending on each bearing manufacturer. Herein, the relevant Table appended to "JIS Handbook for Irons and Steels" was used as the hardness - tensile stress relationship.

(Approximate values per Hardness Conversion Table SAE J 417)

For HRC40, σ = 1.245MPa (127kgf/mm²) was adopted as the reference hardness (tensile stress).

<Track load capacity adjustment factor>

The tensile stress of a material for cam follower is greater with increase in material hardness, and, at the same time, the load capacity of the track will be greater. The resultant track load capacity can be determined by multiplying a track load capacity found in the relevant dimension table by an appropriate track load adjustment factor found in Table 8 "Track load adjustment factor". If the calculated track load capacity exceeds the basic static load rating $C_{\rm or}$ of the cam follower in question, then take $C_{\rm or}$ as the track load capacity of that cam follower.

Note) The track load capacity determined herein is based on net tensile stress as the reference, not allowable hertz stress. Generally stress (specific stress) resulting in creep of follower material is greater than the tensile stress. Particularly in the case of static load, this track load capacity comes to a safety side value.

[Ex.] Determination of load capacity T_c of track with certain hardness by use of track load capacity adjustment factor.

Assuming track load capacity described in Dimensions Table as T_c and track load capacity adjustment factor at applicable hardness as G respectively, the track load capacity T_c can be determined as follows.

$$T_c' = G \cdot T_c$$

For hardness HRC50 at KR35XH,
 $T_c = 11 900N (1 220kgf), G = 1.987$
 $\therefore T_c' = 1.987 \times 11 900N (1 220kgf)$
 $= 23 645N (2 424kgf)$

Since the basic static load rating $C_{\rm or}$ of the KR35XH is 17,900 N (1,830 kgf), and, accordingly, $T_{\rm c}$ '> $C_{\rm or}$, track load capacity is assumed to be the value of $C_{\rm or}$, that is, 17,900 N (1,830 kgf).

Reference (Track load capacity calculation process)

• For a cylindrical outer ring

$$\sigma_{
m max} = 190.7 \quad \sqrt{\frac{T_{
m c} \Sigma \rho}{B_{
m eff}}} \quad
m N$$

$$= 60.9 \quad \sqrt{\frac{T_{
m c} \Sigma \rho}{B_{
m eff}}} \quad
m kgf$$

• For spherical R outer

$$\sigma_{\text{max}} = \frac{856.8}{\mu V} \sqrt[3]{(\Sigma \rho)^{-2} T_{\text{c}}} \qquad \text{N}$$
$$= \frac{187}{\mu V} \sqrt[3]{(\Sigma \rho)^{-2} T_{\text{c}}} \qquad \text{kgf}$$

 $\sigma \max = 1.245 MPa (127 kgf / mm^2)$

 T_c : Track load capacity N (kgf) Σ_{ρ} : Sum of curvature B_{eff} : Effective contact length mm Herein (Outer ring width - chamfer) μ_{ν} : Factor being determined by curvature

Table 8 Track load capacity adjustment factor

Hardness	Tensile st	rength	Adjustmer	nt factor G
HRC	MPa {kgf/		for cylindrical outer ring	for spherical outer ring
20	755	{77 }	0.368	0.223
21	774	{79}	0.387	0.241
22	784	{80}	0.397	0.250
23	804	{82 }	0.417	0.269
24	823	{84}	0.437	0.289
25	843	{86 }	0.459	0.311
26	862	{88}	0.480	0.333
27	882	{90}	0.502	0.356
28	911	{93}	0.536	0.393
29	931	{95}	0.560	0.419
30	951	{97}	0.583	0.446
31	980	{100}	0.620	0.488
32	1 000	{102}	0.645	0.518
33	1 029	{105}	0.684	0.565
34	1 058	{108}	0.723	0.615
35	1 078	{110}	0.750	0.650
36	1 117	{114}	0.806	0.723
37	1 156	{118}	0.863	0.802
38	1 176	{120}	0.893	0.844
39	1 215	{124}	0.953	0.931
40	1 245	{127}	1.0	1.0
41	1 294	{132}	1.080	1.123
42	1 333	{136}	1.147	1.228
43	1 382	{141}	1.233	1.369
44	1 431	{146}	1.322	1.519
45	1 480	{151}	1.414	1.681
46	1 529	{156}	1.509	1.853
47	1 578	{161}	1.607	2.037
48	1 637	{167}	1.729	2.274
49	1 686	{172}	1.834	2.484
50	1 754	{179}	1.987	2.800
51	1 823	{186}	2.145	3.141
52	1 882	{192}	2.286	3.455
53	1 950	{199}	2.455	3.847
54	2 009	{205}	2.606	4.206
55	2 078	{212}	2.787	4.652

Outer ring strength

Generally any outer ring never breaks down as long as the load acting it is a usual operating load. This paragraph describes hereunder the strength calculation method to be used when the outer ring strength under shock load and heavy load is reviewed.

The outer ring strength can be determined using the formula given hereunder, assuming the respective outer ring profiles as illustrated in **Fig. 6**. In this case, the outer ring rupture strength means the bridged rupture strength of roller.

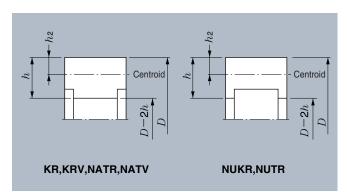


Fig. 6

Regarding how to set up breaking stress, in general 1760MPa [180kg/mm²] can be set up as the breaking stress for bearing steel, but it is desirable to set up the breaking strength with safety-side value (1170MPa [120kgf/mm²]), where stress concentration is taken into account. Generally any outer ring never break down as long as the load acting on it is usual operating load, but it necessary to check the rupture structure of outer ring, where shock load and heavy load act on it.

Incidentally, the stress acting on the outer ring in the bearing in ordinary use should be 196 MPa [20kgf/mm²] or smaller

$$P = \frac{4\pi}{1 + f(\alpha)} \times \frac{D - 2h}{h(D - 2h^2)^2} \times I \times \sigma$$

Where

$$f(\alpha) = \frac{(\pi - \alpha)\sin\alpha - (1 + \cos\alpha)}{2\cos\alpha}$$

$$\alpha = \frac{\pi}{Z}$$
 (rad.)

P : Breaking load (N)

I Secondary moment of outer ring section (mm⁴)

Z : Number of rollers

 $\sigma =$ Breaking stress (MPa)

 D, h, h_2 : per **Fig. 6** (mm)

Stud strength

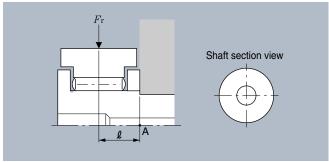


Fig. 7

When load Fr acts on the center point of outer ring as illustrated in **Fig.7**, bending moment $F_{\rm r} \cdot \ell$ generates and consequently bending stress σ_1 (deemed as tensile stress) acts on the stud surface. In addition to this bending stress, tensile stress σ_2 generates from screw tightening because the stud itself is clamped to machine body with nuts. The stud strength can be reviewed from comparison of the sum ($\sigma_1 + \sigma_2$) of these two tensile stresses with allowable stress σ for the stud material.

 $\sigma_1 + \sigma_2 < \sigma$

 $\sigma_1 {=} {- \frac{F_{\rm r} \cdot \mathbf{\ell}}{Z}} \quad \begin{array}{cc} F_{\rm r} \ \ \vdots \ \text{Maximum radial load} \\ Z \ \ \vdots \ \text{Coefficient of shaft section through Point-A} \end{array}$

 σ ₂=98MPa (10kgf/mm²)

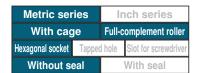
Tensile stress generating from maximum tightening torque described in "Dimensions Table"

 σ : Allowable stress for material

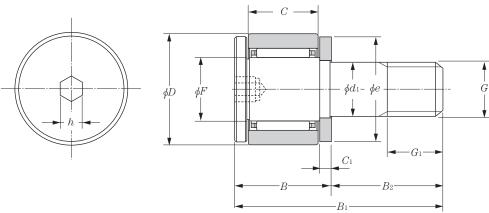
The following values are adopted from the repeated bending test result of the stud material. Where the stud material is subjected to static bending stress;

 $\sigma = 1372 MPa (140 kgf/mm^2)$

Where the stud material is subjected to repeated bending stress (single direction)


 $\sigma = 784 MPa (80 kgf/mm²)$

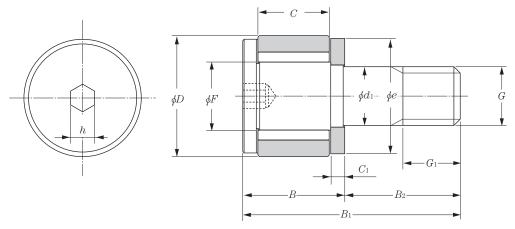
Where the stud material is subjected to repeated bending stress (double directions)


 $\sigma = 392 MPa (40 kgf/mm²)$

Accordingly,

$$F_{\rm r} < \frac{Z}{\varrho} (\sigma - \sigma_2)$$

KRM··XH type (with cage) KRMV··XH type (Full-complement roller type)



KRM··XH type (with cage)

D 4∼12mm

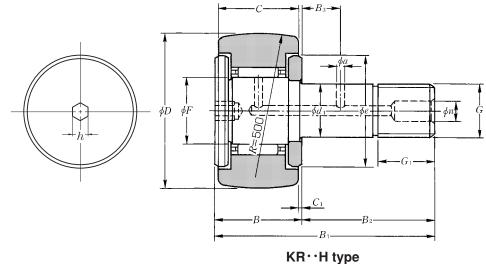
OD ¹⁾							nd ratings								
mm					r	mm						dynamic N		dynamic	
D	d1	C	F	В	B_1	B_2	G	G_1	C_1	e	h	$C_{ m r}$	$C_{ m or}$	$ m egin{array}{c} k m egin{array}{c} C_{ m r} \end{array}$	$C_{ m or}$
4	1.5 ₀ 1.5 ^{-0.006}	2	1.8 1.8	3.5 3.5	6.5 6.5	3	M1.4×0.3 M1.4×0.3	1.5 1.5	0.7 0.7	3.8 3.8	0.9 0.9	222 505	138 480	23 51	14 49
4.5	2 0	2.5	2.25	4	8	4	M2 ×0.4	2	0.7	4.3	0.9	305	216	31	22
	2 -0.006	2.5	2.25	4	8	4	M2 ×0.4	2	0.7	4.3	0.9	695	765	71	78
5	2.5 ₀	3	2.7	4.5	9.5	5	M2.5×0.45	2.5	0.7	4.8	0.9	445	370	45	37
	2.5 ^{-0.006}	3	2.7	4.5	9.5	5	M2.5×0.45	2.5	0.7	4.8	0.9	905	1 110	92	114
6	3 0	4	3.4	5.5	11.5	6	M3 ×0.5	3	0.7	5.8	1.3	645	630	66	64
	3 -0.006	4	3.4	5.5	11.5	6	M3 ×0.5	3	0.7	5.8	1.3	1 280	1 840	130	187
8	4 0	5	4.5	7	15	8	M4 ×0.7	4	1	7.7	1.5	1 120	1 120	114	114
	4 -0.008	5	4.5	7	15	8	M4 ×0.7	4	1	7.7	1.5	2 120	3 050	216	310
10	5 0	6	5.9	8	18	10	M5 ×0.8	5	1	9.6	2	1 570	1 860	160	189
	5 -0.008	6	5.9	8	18	10	M5 ×0.8	5	1	9.6	2	2 820	4 800	288	490
12	6 0 6 -0.008	7 7	6.7 6.7	9.5 9.5	21.5 21.5	12	M6 ×1 M6 ×1	6 6		11.6	2.5 2.5	2 160 4 150	2 300 6 450	220 425	237 655

Note: 1. JIS Class 0 is the dimensional tolerance.

KRMV··XH type (Full-complement roller type)

Accessories

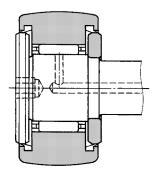
Applicable bearing number	Applicable hexagonal nut
4	1M1.4×0.3
4.5	1M2×0.4
5	1M2.5×0.45
6	1M3×0.5
8	1M4×0.7
10	1M5×0.8
12	1M6×1



1M6×1

Track load	capacity	Track load capacity		tightening que	Bearing I	numbers	Mass	Stud dia.
N	kgf	kgf	N·m	kgf∙m	with cage	Full-complement roller type	kg (approx.)	mm d_1
147	15	15	0.1	0.01	KRM4XT2H/3AS		0.0003 0.0004	1.5
216	22	22	0.1	0.01	KRM4.5XT2H/3AS		0.0005 0.0006	2
294	30	30	0.3	0.03	KRM5XT2H/3AS	 KRMV5XH/3AS	0.0007 0.0009	2.5
480	49	49	0.5	0.05	KRM6XT2H/3AS	 KRMV6XH/3AS	0.0013 0.0014	3
785	80	80	1	0.1	KRM8XT2H/3AS	 KRMV8XH/3AS	0.0029 0.0030	4
1 190	121	121	2	0.2	KRM10XT2H/3AS	 KRMV10XH/3AS	0.0055 0.0059	5
1 640	167	167	3	0.3	KRM12XT2H/3AS —	KRMV12XH/3AS	0.0093 0.0080	6

KR··H type
KR··XH type
KR··LLH type
KR··XLLH type



(with cage)

D 10∼90mm

OD ¹⁾ mm						Bounda	ary dimensions	S							Basic load dynamic N	ratings static
D 0 -0.05	d_1	C	F	В	B_1	B_2	G	G_1	B_3	C_1	n	a	e	h	$C_{ m r}$	$C_{ m or}$
10	3 _0	7	4	8	17	9	M3×0.5	5	_	0.5	_	_	7	2.5	1 640 168	1 270 130
12	4 0 -0.012	8	4.8	9	20	11	M4×0.7	6	_	0.5	_	_	8.5	2.5	2 170 221	1 690 172
13	$5 \begin{array}{c} 0 \\ -0.012 \end{array}$	9	5.75	10	23	13	M5×0.8	7.5	_	0.5	_	_	9.5	3	2 650 270	2 260 231
16	$6_{-0.012}^{0}$	11	8	12	28	16	M6×1	8	_	0.6	_	_	12	3	4 050 415	4 200 430
19	8 ⁰ -0.015	11	10	12	32	20	M8×1.25	10	_	0.6	_	—	14	4	4 750 480	5 400 555
22	$10_{-0.015}^{$	12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	4	5 300 540	6 650 680
26	$10_{-0.015}^{$	12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	4	5 300 540	6 650 680
30	$12_{-0.018}^{$	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	6	7 850 800	9 650 985
32	$12_{-0.018}^{$	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	6	7 850 800	9 650 985
35	$16_{-0.018}^{$	18	18	19.5	52	32.5	M16×1.5	17	8	0.8	6	3	27	6	12 200 1 240	17 900 1 830
40	$18 \begin{array}{c} 0 \\ -0.018 \end{array}$	20	22	21.5	58	36.5	M18×1.5	19	8	0.8	6	3	32	6	14 000 1 430	22 800 2 330
47	20 0 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	0.8	8	4	37	8	20 700 2 110	33 500 3 450
52	20 0 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	0.8	8	4	37	8	20 700 2 110	33 500 3 450
62	24 0 -0.021	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	8	28 900 2 950	55 000 5 600
72	24 ⁰ -0.021	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	8	28 900 2 950	55 000 5 600
80	30 0 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	8	45 000 4 600	88 500 9 050
85	30 0 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	8	45 000 4 600	88 500 9 050
90	30 0 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	8	45 000 4 600	88 500 9 050

Note 1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the KR \cdot XH and KR \cdot XLLH types whose outside surface form is cylindrical.

KR··LLH type (with cage, sealed)

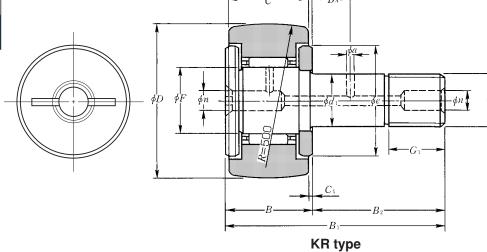
Accessories

Applicable bearing number	Grease nipple number	Plug number	Applicable hexagonal nut				
10~19	_	_	1M3×0.5~1M8×1.25				
22~26	NIP-B4	SEN4	1M10×1.25				
30~40	NIP-B6	SEN3, SEN6	1M12×1.5~1M18×1.5				
47~90	NIP-B8	SEN4, SEN8	1M20×1.5~1M30×1.5				

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

NIP-B6

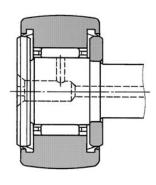
SEN6


Track load		Limiting mi	g speed	Maximum tightening		Mass	Stud dia.			
N ko	N af			torque N·m	Witho	out seal	With	seal	kg	mm
Spherical outer ring	Cylindrical outer ring	Grease lubrication	Oil lubrication	kgf·m	Spherical outer rings	Cylindrical outer rings	Spherical outer rings	Cylindrical outer rings	(approx.)	
560 57	1 360 139	*27 000	*40 000	0.5 0.05	KR10T2H/3AS	KR10XT2H/3AS	KR10T2LLH/3AS	KR10XT2LLH/3AS	0.005	3
725 74	1 790 183	*25 000	*36 000	1 0.1	KR12T2H/3AS	KR12XT2H/3AS	KR12T2LLH/3AS	KR12XT2LLH/3AS	0.008	4
805 82	2 220 226	*23 000	*33 000	2 0.2	KR13T2H/3AS	KR13XT2H/3AS	KR13T2LLH/3AS	KR13XT2LLH/3AS	0.010	5
1 080 110	3 400 350	*19 000	*25 000	3 0.3	KR16FDOH/L588	KR16FXDOH/L588	KR16FLLDOH/L588	KR16FXLLDOH/L588	0.019	6
1 380 141	4 050 415	*15 000	*20 000	8 0.8	KR19FDOH/L588	KR19FXDOH/L588	KR19FLLDOH/L588	KR19FXLLDOH/L588	0.031	8
1 690 172	5 150 525	*12 000	*16 000	14 1.4	KR22FH	KR22FXH	KR22FLLH/3AS	KR22FXLLH/3AS	0.046	10
2 120 216	6 100 620	*12 000	*16 000	14 1.4	KR26FH	KR26FXH	KR26FLLH/3AS	KR26FXLLH/3AS	0.059	10
2 620 267	7 700 785	10 000	*13 000	20 2	KR30H	KR30XH	KR30LLH/3AS	KR30XLLH/3AS	0.087	12
2 860 291	8 200 835	10 000	*13 000	20 2	KR32H	KR32XH	KR32LLH/3AS	KR32XLLH/3AS	0.097	12
3 200 325	11 900 1 220	8 000	*11 000	52 5.3	KR35H	KR35XH	KR35LLH/3AS	KR35XLLH/3AS	0.169	16
3 850 390	14 500 1 480	7 000	9 000	76 7.8	KR40H	KR40XH	KR40LLH/3AS	KR40XLLH/3AS	0.248	18
4 700 480	21 000 2 150	6 000	8 000	98 10	KR47H	KR47XH	KR47LLH/3AS	KR47XLLH/3AS	0.386	20
5 550 565	23 300 2 370	6 000	8 000	98 10	KR52H	KR52XH	KR52LLH/3AS	KR52XLLH/3AS	0.461	20
6 950 710	34 500 3 500	5 000	6 500	178 18	KR62H	KR62XH	KR62LLH/3AS	KR62XLLH/3AS	0.790	24
8 050 820	38 500 3 900	5 000	6 500	178 18	KR72H	KR72XH	KR72LLH/3AS	KR72XLLH/3AS	1.04	24
9 800 1 000	53 000 5 400	4 000	5 500	360 37	KR80H	KR80XH	KR80LLH/3AS	KR80XLLH/3AS	1.55	30
10 400 1 060	56 000 5 750	4 000	5 500	360 37	KR85H	KR85XH	KR85LLH/3AS	KR85XLLH/3AS	1.74	30
11 400 1 160	59 000 6 100	4 000	5 500	360 37	KR90H	KR90XH	KR90LLH/3AS	KR90XLLH/3AS	1.95	30

Remarks: 1. The limiting speed of KR··LLH and KR··XLLH types incorporating a seal (those marked with an asterisk) is approximately 10,000 min⁻¹.

2. A bearing number with a T2 suffix indicates a bearing with a resin cage. Its maximum allowable temperature is 120°C and continuous operation temperature is 100°C.

KR type
KR··X type
KR··LL type
KR··XLL type



(with cage)

D 16∼90mm

OD¹) mm D						Bound	ary dimension	s						dynamic	ad ratings static N gf
-0.05	d1	C	F	В	B_1	B_2	G	G_1	B_3	C_1	n	a	e	$C_{ m r}$	Cor
16	$6 \frac{0}{-0.012}$	11	8	12	28	16	M6×1	8		0.6	42)	_	12	4 050 415	4 200 430
19	8 ⁰ -0.015	11	10	12	32	20	M8×1.25	10	_	0.6	4 ²⁾	_	14	4 750 480	5 400 555
22	$10 \begin{array}{c} 0 \\ -0.015 \end{array}$	12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	5 300 540	6 650 680
26	$10 \begin{array}{c} 0 \\ -0.015 \end{array}$	12	12	13	36	23	M10×1.25	12		0.6	4	_	17	5 300 540	6 650 680
30	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	7 850 800	9 650 985
32	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	7 850 800	9 650 985
35	$16 \begin{array}{c} 0 \\ -0.018 \end{array}$	18	18	19.5	52	32.5	M16×1.5	17	8	0.8	6	3	27	12 200 1 240	17 900 1 830
40	$18 \begin{array}{c} 0 \\ -0.018 \end{array}$	20	22	21.5	58	36.5	M18×1.5	19	8	0.8	6	3	32	14 000 1 430	22 800 2 330
47	20 0 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	0.8	8	4	37	20 700 2 110	33 500 3 450
52	20 0 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	0.8	8	4	37	20 700 2 110	33 500 3 450
62	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	28 900 2 950	55 000 5 600
72	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	28 900 2 950	55 000 5 600
80	30 ⁰ _{-0.021}	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	45 000 4 600	88 500 9 050
85	30 ⁰ _{-0.021}	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	45 000 4 600	88 500 9 050
90	30 ⁰ _{-0.021}	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	45 000 4 600	88 500 9 050

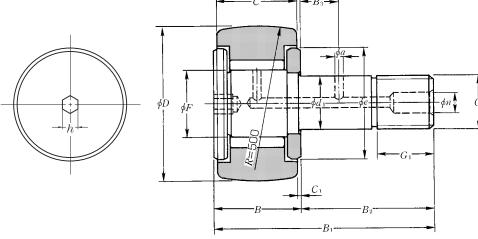
Note 1) JIS Class 0 is the dimensional tolerance of the outside diameter *D* of the outer rings of the KR·X and KR·XLL types whose outside surface form is cylindrical. 2) The grease replenishment port is situated only in the front (in the left side face in the diagram above).

KR··LL type (with cage, sealed)

Accessories

Applicable bearing number	Grease nipple number	Plug number	Applicable hexagonal nut
16~26	NIP-B4	SEN4	1M 6×1 ~1M10×1.25
30~40	NIP-B6	SEN3, SEN6	1M12×1.5~1M18×1.5
47~90	NIP-B8	SEN4, SEN8	1M20×1.5~1M30×1.5

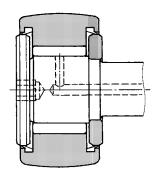
Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.


SEN6 1M12

		d capacity		g speed	Maximum tightening		Car		Mass	Stud dia.	
	N kç Spherical outer ring		Grease lubrication	Oil lubrication	torque N·m kgf·m	Withou Spherical outer rings	ut seal Cylindrical outer rings	Wit Spherical outer rings	th seal Cylindrical outer rings	kg (approx.)	mm
	1 080 110	3 400 350	*19 000	*25 000	3 0.3	KR16F	KR16FX	KR16FLL/3AS	KR16FXLL/3AS	0.019	6
	1 380 141	4 050 415	*15 000	*20 000	8 0.8	KR19F	KR19FX	KR19FLL/3AS	KR19FXLL/3AS	0.031	8
•	1 690 172	5 150 525	*12 000	*16 000	14 1.4	KR22F	KR22FX	KR22FLL/3AS	KR22FXLL/3AS	0.046	10
	2 120 216	6 100 620	*12 000	*16 000	14 1.4	KR26F	KR26FX	KR26FLL/3AS	KR26FXLL/3AS	0.059	10
	2 620 267	7 700 785	10 000	*13 000	20 2	KR30	KR30X	KR30LL/3AS	KR30FXLL/3AS	0.087	12
	2 860 291	8 200 835	10 000	*13 000	20 2	KR32	KR32X	KR32LL/3AS	KR32XLL/3AS	0.097	12
	3 200 325	11 900 1 220	8 000	*11 000	52 5.3	KR35	KR35X	KR35LL/3AS	KR35XLL/3AS	0.169	16
	3 850 390	14 500 1 480	7 000	9 000	76 7.8	KR40	KR40X	KR40LL/3AS	KR40XLL/3AS	0.248	18
	4 700 480	21 000 2 150	6 000	8 000	98 10	KR47	KR47X	KR47LL/3AS	KR47XLL/3AS	0.386	20
	5 550 565	23 300 2 370	6 000	8 000	98 10	KR52	KR52X	KR52LL/3AS	KR52XLL/3AS	0.461	20
	6 950 710	34 500 3 500	5 000	6 500	178 18	KR62	KR62X	KR62LL/3AS	KR62XLL/3AS	0.790	24
	8 050 820	38 500 3 900	5 000	6 500	178 18	KR72	KR72X	KR72LL/3AS	KR72XLL/3AS	1.04	24
	9 800 1 000	53 000 5 400	4 000	5 500	360 37	KR80	KR80X	KR80LL/3AS	KR80XLL/3AS	1.55	30
	10 400 1 060	56 000 5 750	4 000	5 500	360 37	KR85	KR85X	KR85LL/3AS	KR85XLL/3AS	1.74	30
	11 400 1 160	59 000 6 100	4 000	5 500	360 37	KR90	KR90X	KR90LL/3AS	KR90XLL/3AS	1.95	30

 $Remarks: 1. \ The \ limiting \ speed \ of \ KR \cdot LL \ and \ KR \cdot XLL \ types \ incorporating \ a \ seal \ (those \ marked \ with \ an \ asterisk) \ is \ approximately \ 10,000 \ min^{-1}.$

KRV··H type KRV··XH type KRV··LLH type KRV··XLLH type



D 10∼90mm

KRV··H type (Full-complement roller type)

OD¹) mm D							nry dimensions mm								dynamic !	d ratings static N
0-0.05	d_1	C	F	В	B_1	B_2	G	G_1	B_3	C_1	n	a	e	h	$C_{ m r}$	Cor
10	$3_{-0.010}^{0000000000000000000000000000000000$	7	4	8	17	9	M3×0.5	5	_	0.5	_	_	7	2.5	2 500 255	2 610 267
12	$4 \begin{array}{c} 0 \\ -0.012 \end{array}$	8	4.8	9	20	11	M4×0.7	6	_	0.5	_	_	8.5	2.5	3 500 360	3 800 385
13	5 0 -0.012	9	5.75	10	23	13	M5×0.8	7.5	_	0.5	_	_	9.5	3	4 650 475	5 550 570
16	$6_{-0.012}^{0}$	11	8	12	28	16	M6×1	8	_	0.6	_	_	12	3	6 500 665	9 350 955
19	$8_{-0.015}^{00000000000000000000000000000000000$	11	10	12	32	20	M8×1.25	10	_	0.6	_	_	14	4	7 450 760	11 700 1 190
22	$10_{-0.015}^{$	12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	4	8 200 840	14 000 1 420
26	$10_{-0.015}^{$	12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	4	8 200 840	14 000 1 420
30	$12_{-0.018}^{$	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	6	12 000 1 230	20 300 2 070
32	$12_{-0.018}^{$	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	6	12 000 1 230	20 300 2 070
35	$16_{-0.018}^{$	18	18	19.5	52	32.5	M16×1.5	17	8	8.0	6	3	27	6	17 600 1 790	34 000 3 500
40	$18_{-0.018}^{$	20	22	21.5	58	36.5	M18×1.5	19	8	8.0	6	3	32	6	19 400 1 980	42 000 4 250
47	$20_{-0.021}^{$	24	25	25.5	66	40.5	M20×1.5	21	9	0.8	8	4	37	8	28 800 2 940	61 000 6 250
52	$20_{-0.021}^{$	24	25	25.5	66	40.5	M20×1.5	21	9	0.8	8	4	37	8	28 800 2 940	61 000 6 250
62	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	8	39 500 4 000	98 500 10 000
72	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	8	39 500 4 000	98 500 10 000
80	$30_{-0.021}^{0}$	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	8	58 000 5 900	147 000 15 000
90	$30_{-0.021}^{0}$	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	8	58 000 5 900	147 000 15 000

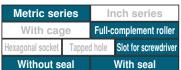
Note 1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the KRV ·· XH and KRV ·· XLLH types whose outside surface form is cylindrical.

KRV··LLH type (Full-complement roller type, with seal)

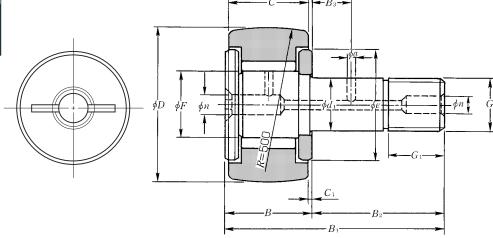
Accessories

Applicable bearing number	Grease nipple number	Plug number	Applicable hexagonal nut
10~19	_	_	1M3×0.5~1M8×1.25
22~26	NIP-B4	SEN4	1M10×1.25
30~40	NIP-B6	SEN3, SEN6	1M12×1.5~1M18×1.5
47~90	NIP-B8	SEN4, SEN8	1M20×1.5~1M30×1.5

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

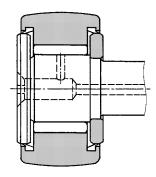


1M12


NIP-B6 SEN6

Track load capacity			Limiting speed		Maximum tightening		Mass	Stud dia.			
	N kç		1111	11	torque	Witho	ut seal	With	l lea	mm	
	Spherical outer ring	Cylindrical outer ring			N·m kgf·m	Spherical outer rings	Cylindrical outer rings	Spherical outer rings	Cylindrical outer rings		kg (approx.)
	560 57	1 360 139	*25 000	*32 000	0.5 0.05	KRV10H/3AS	KRV10XH/3AS	KRV10LLH/3AS	KRV10XLLH/3AS	0.005	3
	725 74	1 790 183	*20 000	*27 000	1 0.1	KRV12H/3AS	KRV12XH/3AS	KRV12LLH/3AS	KRV12XLLH/3AS	0.008	4
	805 82	2 220 226	*17 000	*22 000	2 0.2	KRV13H/3AS	KRV13XH/3AS	KRV13LLH/3AS	KRV13XLLH/3AS	0.011	5
	1 080 110	3 400 350	*13 000	*16 000	3 0.3	KRV16FDOH/L588	KRV16FXDOH/L588	KRV16FLLDOH/L588	KRV16FXLLDOH/L588	0.020	6
	1 380 141	4 050 415	10 000	*13 000	8 0.8	KRV19FDOH/L588	KRV19FXDOH/L588	KRV19FLLDOH/L588	KRV19FXLLDOH/L588	0.032	8
	1 690 172	5 150 525	8 500	*11 000	14 1.4	KRV22FH/3AS	KRV22FXH/3AS	KRV22FLLH/3AS	KRV22FXLLH/3AS	0.047	10
	2 120 216	6 100 620	8 500	*11 000	14 1.4	KRV26FH/3AS	KRV26FXH/3AS	KRV26FLLH/3AS	KRV26FXLLH/3AS	0.061	10
	2 620 267	7 700 785	6 500	8 500	20 2	KRV30H/3AS	KRV30XH/3AS	KRV30LLH/3AS	KRV30XLLH/3AS	0.089	12
	2 860 291	8 200 835	6 500	8 500	20 2	KRV32H/3AS	KRV32XH/3AS	KRV32LLH/3AS	KRV32XLLH/3AS	0.100	12
	3 200 325	11 900 1 220	5 500	7 000	52 5.3	KRV35H/3AS	KRV35XH/3AS	KRV35LLH/3AS	KRV35XLLH/3AS	0.172	16
	3 850 390	14 500 1 480	4 500	6 000	76 7.8	KRV40H/3AS	KRV40XH/3AS	KRV40LLH/3AS	KRV40XLLH/3AS	0.252	18
	4 700 480	21 000 2 150	4 000	5 000	98 10	KRV47H/3AS	KRV47XH/3AS	KRV47LLH/3AS	KRV47XLLH/3AS	0.392	20
	5 550 565	23 300 2 370	4 000	5 000	98 10	KRV52H/3AS	KRV52XH/3AS	KRV52LLH/3AS	KRV52XLLH/3AS	0.465	20
	6 950 710	34 500 3 500	3 300	4 500	178 18	KRV62H/3AS	KRV62XH/3AS	KRV62LLH/3AS	KRV62XLLH/3AS	0.800	24
	8 050 820	38 500 3 900	3 300	4 500	178 18	KRV72H/3AS	KRV72XH/3AS	KRV72LLH/3AS	KRV72XLLH/3AS	1.05	24
	9 800 1 000	53 000 5 400	2 600	3 500	360 37	KRV80H/3AS	KRV80XH/3AS	KRV80LLH/3AS	KRV80XLLH/3AS	1.56	30
•	11 400 1 160	59 000 6 100	2 600	3 500	360 37	KRV90H/3AS	KRV90XH/3AS	KRV90LLH/3AS	KRV90XLLH/3AS	1.97	30
					1					1	

 $Remarks: 1. \ The \ limiting \ speed \ of \ KRV \cdot LLH \ and \ KRV \cdot XLLH \ types \ incorporating \ a seal \ (those \ marked \ with \ an \ asterisk) \ is \ approximately \ 10,000 \ min^{-1}.$


KRV type
KRV··X type
KRV··LL type
KRV··XLL type

D 16∼90mm

KRV type (Full-complement roller type)

OD ¹⁾ mm <i>D</i>	Boundary dimensions mm											Basic load ratings dynamic static N			
0 -0.05	d_1	C	F	В	B_1	B_2	G	G_1	B_3	C_1	n	a	e	$C_{ m r}$	$C_{ m or}$
16	$6_{-0.012}^{00000000000000000000000000000000000$	11	8	12	28	16	M6×1	8	_	0.6	42)	_	12	6 500 665	9 350 955
19	$8_{-0.015}^{00000000000000000000000000000000000$	11	10	12	32	20	M8×1.25	10	_	0.6	4 ²⁾	_	14	7 450 760	11 700 1 190
22	$10_{-0.015}^{$	12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	8 200 840	14 000 1 420
26	$10_{-0.015}^{$	12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	8 200 840	14 000 1 420
30	$12_{-0.018}^{0}$	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	12 000 1 230	20 300 2 070
32	$12_{-0.018}^{00000000000000000000000000000000000$	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	12 000 1 230	20 300 2 070
35	$16_{-0.018}^{0}$	18	18	19.5	52	32.5	M16×1.5	17	8	8.0	6	3	27	17 600 1 790	34 000 3 500
40	$18_{-0.018}^{0}$	20	22	21.5	58	36.5	M18×1.5	19	8	8.0	6	3	32	19 400 1 980	42 000 4 250
47	$20_{-0.021}^{$	24	25	25.5	66	40.5	M20×1.5	21	9	8.0	8	4	37	28 800 2 940	61 000 6 250
52	$20_{-0.021}^{$	24	25	25.5	66	40.5	M20×1.5	21	9	8.0	8	4	37	28 800 2 940	61 000 6 250
62	$24_{-0.021}^{0}$	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	39 500 4 000	98 500 10 000
72	$24_{-0.021}^{$	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	39 500 4 000	98 500 10 000
80	$30_{-0.021}^{$	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	58 000 5 900	147 000 15 000
90	$30_{-0.021}^{0}$	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	58 000 5 900	147 000 15 000

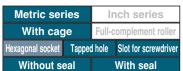
KRV⋯LL type

(Full-complement roller type, with seal)

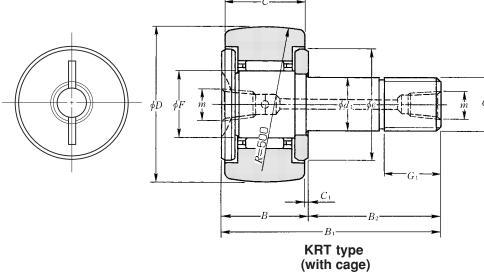
Accessories

Applicable bearing number	Grease nipple number	Plug number	Applicable hexagonal nut
16~26	NIP-B4	SEN4	1M 6×1 ~1M10×1.25
30~40	NIP-B6	SEN3, SEN6	1M12×1.5~1M18×1.5
47~90	NIP-B8	SEN4, SEN8	1M20×1.5~1M30×1.5

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

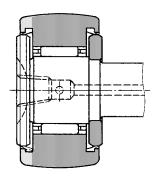


NIP-B6 SEN6


1M12

Track load	d capacity		g speed n ⁻¹	Maximum tightening		Cam Fol	lower number		Mass	Stud
	١	mi	n ·	torque	Without	seal	With s	seal		dia.
Spherical outer ring	gf Cylindrical outer ring	Grease lubrication	Oil lubrication	N·m kgf·m	Spherical outer rings	Cylindrical outer rings	Spherical outer rings	Cylindrical outer rings	kg (approx.)	
1 080 110	3 400 350	*13 000	*16 000	3 0.3	KRV16F/3AS	KRV16FX/3AS	KRV16FLL/3AS	KRV16FXLL/3AS	0.020	6
1 380 141	4 050 415	10 000	*13 000	8 0.8	KRV19F/3AS	KRV19FX/3AS	KRV19FLL/3AS	KRV19FXLL/3AS	0.032	8
1 690 172	5 150 525	8 500	*11 000	14 1.4	KRV22F/3AS	KRV22FX/3AS	KRV22FLL/3AS	KRV22FXLL/3AS	0.047	10
2 120 216	6 100 620	8 500	*11 000	14 1.4	KRV26F/3AS	KRV26FX/3AS	KRV26FLL/3AS	KRV26FXLL/3AS	0.061	10
2 620 267	7 700 785	6 500	8 500	20 2	KRV30/3AS	KRV30X/3AS	KRV30LL/3AS	KRV30XLL/3AS	0.089	12
2 860 291	8 200 835	6 500	8 500	20 2	KRV32/3AS	KRV32X/3AS	KRV32LL/3AS	KRV32XLL/3AS	0.100	12
3 200 325	11 900 1 220	5 500	7 000	52 5.3	KRV35/3AS	KRV35X/3AS	KRV35LL/3AS	KRV35XLL/3AS	0.172	16
3 850 390	14 500 1 480	4 500	6 000	76 7.8	KRV40/3AS	KRV40X/3AS	KRV40LL/3AS	KRV40XLL/3AS	0.252	18
4 700 480	21 000 2 150	4 000	5 000	98 10	KRV47/3AS	KRV47X/3AS	KRV47LL/3AS	KRV47XLL/3AS	0.390	20
5 550 565	23 300 2 370	4 000	5 000	98 10	KRV52/3AS	KRV52X/3AS	KRV52LL/3AS	KRV52XLL/3AS	0.465	20
6 950 710	34 500 3 500	3 300	4 500	178 18	KRV62/3AS	KRV62X/3AS	KRV62LL/3AS	KRV62XLL/3AS	0.800	24
8 050 820	38 500 3 900	3 300	4 500	178 18	KRV72/3AS	KRV72X/3AS	KRV72LL/3AS	KRV72XLL/3AS	1.05	24
9 800 1 000	53 000 5 400	2 600	3 500	360 37	KRV80/3AS	KRV80X/3AS	KRV80LL/3AS	KRV80XLL/3AS	1.56	30
11 400 1 160	59 000 6 100	2 600	3 500	360 37	KRV90/3AS	KRV90X/3AS	KRV90LL/3AS	KRV90XLL/3AS	1.97	30

Remarks: 1. The limiting speed of KRV \cdot LL and KRV \cdot XLL types incorporating a seal (those marked with an asterisk) is approximately 10,000 min⁻¹.


KRT type
KRT··X type
KRT··LL type
KRT··XLL type

D 16∼90mm

OD¹) mm D						Bound	ary dimension mm	s				Basic load dynamic N kg	static
-0.05	d_1	C	F	В	B_1	B_2	G	G_1	C_1	m	e	$C_{ m r}$	Cor
16	$6 {0 \atop -0.012}$	11	8	12	28	16	M6×1	8	0.6	$M4 \times 0.7^{2)}$	12	4 050 415	4 200 430
19	8 ⁰ -0.015	11	10	12	32	20	M8×1.25	10	0.6	M4×0.7 ²⁾	14	4 750 480	5 400 555
22	$10 \begin{array}{c} 0 \\ -0.015 \end{array}$	12	12	13	36	23	M10×1.25	12	0.6	M4×0.7	17	5 300 540	6 650 680
26	$10 \begin{array}{c} 0 \\ -0.015 \end{array}$	12	12	13	36	23	M10×1.25	12	0.6	M4×0.7	17	5 300 540	6 650 680
30	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	15	15	40	25	M12×1.5	13	0.6	M6×0.75	23	7 850 800	9 650 985
32	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	15	15	40	25	M12×1.5	13	0.6	M6×0.75	23	7 850 800	9 650 985
35	$16 \begin{array}{c} 0 \\ -0.018 \end{array}$	18	18	19.5	52	32.5	M16×1.5	17	0.8	PT ¹ / ₈	27	12 200 1 240	17 900 1 830
40	$18 \begin{array}{c} 0 \\ -0.018 \end{array}$	20	22	21.5	58	36.5	M18×1.5	19	0.8	PT ¹ / ₈	32	14 000 1 430	22 800 2 330
47	$20 \begin{array}{c} 0 \\ -0.021 \end{array}$	24	25	25.5	66	40.5	M20×1.5	21	0.8	PT ¹ / ₈	37	20 700 2 110	33 500 3 450
52	$20 \begin{array}{c} 0 \\ -0.021 \end{array}$	24	25	25.5	66	40.5	M20×1.5	21	0.8	PT ¹ / ₈	37	20 700 2 110	33 500 3 450
62	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	30	30.5	80	49.5	M24×1.5	25	0.8	PT ¹ / ₈	44	28 900 2 950	55 000 5 600
72	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	30	30.5	80	49.5	M24×1.5	25	0.8	PT ¹ / ₈	44	28 900 2 950	55 000 5 600
80	30 ⁰ -0.021	35	38	37	100	63	M30×1.5	32	1	PT ¹ / ₈	53	45 000 4 600	88 500 9 050
85	30 ⁰ -0.021	35	38	37	100	63	M30×1.5	32	1	PT ¹ / ₈	53	45 000 4 600	88 500 9 050
90	30 ⁰ -0.021	35	38	37	100	63	M30×1.5	32	1	PT ¹ / ₈	53	45 000 4 600	88 500 9 050

Note 1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the KRT··XLL types whose outside surface form is cylindrical. 2) The grease replenishment port is situated only in the front (in the left side face in the diagram above).

KRT··LL type (with cage, sealed)

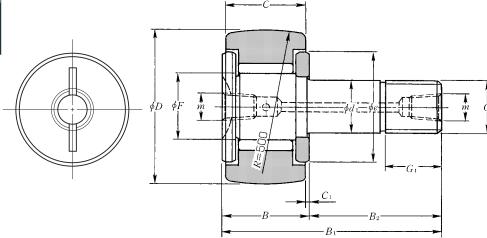
Accessories

Applicable bearing number	Grease nipple number	Plug with hexagonal socket number	Applicable hexagonal nut
16~26	NIP-X30	M4×0.7 ×4 ℓ	1M 6×1 ~1M10×1.25
30~32	JIS 1 (A-M6F)	M6×0.75×6 ℓ	1M12×1.5
35~90	JIS 2 (A-PT/8)	PT½×7 £	1M16×1.5~1M30×1.5

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

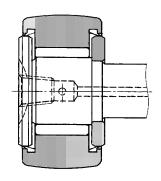
JIS 2 (A-PT1/8)

 PT^{1}_{8}


1M12

	d capacity		g speed	Maximum tightening		Car	m Follower number		Mass	Stud dia.
1		""		torque	Withou	ut seal	Wit	h seal	l.a	mm
Spherical outer ring	gf Cylindrical outer ring	Grease lubrication	Oil lubrication	N·m kgf·m	Spherical outer rings	Cylindrical outer rings	Spherical outer rings	Cylindrical outer rings	kg (approx.)	
1 080 110	3 400 350	*19 000	*25 000	3 0.3	KRT16	KRT16X	KRT16LL/3AS	KRT16XLL/3AS	0.019	6
1 380 141	4 050 415	*15 000	*20 000	8 0.8	KRT19	KRT19X	KRT19LL/3AS	KRT19XLL/3AS	0.031	8
1 690 172	5 150 525	*12 000	*16 000	14 1.4	KRT22	KRT22X	KRT22LL/3AS	KRT22XLL/3AS	0.046	10
2 120 216	6 100 620	*12 000	*16 000	14 1.4	KRT26	KRT26X	KRT26LL/3AS	KRT26XLL/3AS	0.059	10
2 620 267	7 700 785	10 000	*13 000	20 2	KRT30	KRT30X	KRT30LL/3AS	KRT30XLL/3AS	0.087	12
2 860 291	8 200 835	10 000	*13 000	20 2	KRT32	KRT32X	KRT32LL/3AS	KRT32XLL/3AS	0.097	12
3 200 325	11 900 1 220	8 000	*11 000	52 5.3	KRT35	KRT35X	KRT35LL/3AS	KRT35XLL/3AS	0.169	16
3 850 390	14 500 1 480	7 000	9 000	76 7.8	KRT40	KRT40X	KRT40LL/3AS	KRT40XLL/3AS	0.248	18
4 700 480	21 000 2 150	6 000	8 000	98 10	KRT47	KRT47X	KRT47LL/3AS	KRT47XLL/3AS	0.386	20
5 550 565	23 300 2 370	6 000	8 000	98 10	KRT52	KRT52X	KRT52LL/3AS	KRT52XLL/3AS	0.461	20
6 950 710	34 500 3 500	5 000	6 500	178 18	KRT62	KRT62X	KRT62LL/3AS	KRT62XLL/3AS	0.790	24
8 050 820	38 500 3 900	5 000	6 500	178 18	KRT72	KRT72X	KRT72LL/3AS	KRT72XLL/3AS	1.04	24
9 800 1 000	53 000 5 400	4 000	5 500	360 37	KRT80	KRT80X	KRT80LL/3AS	KRT80XLL/3AS	1.55	30
10 400 1 060	56 000 5 750	4 000	5 500	360 37	KRT85	KRT85X	KRT85LL/3AS	KRT85XLL/3AS	1.74	30
11 400 1 160	59 000 6 100	4 000	5 500	360 37	KRT90	KRT90X	KRT90LL/3AS	KRT90XLL/3AS	1.95	30

Remarks: 1. The limiting speed of KRT ·· LL and KRT ·· XLL types incorporating a seal (those marked with an asterisk) is approximately 10,000 min⁻¹.


KRVT type
KRVT··X type
KRVT··LL type
KRVT··XLL type

D 16∼90mm

KRVT type (Full-complement roller type)

OD¹) mm D						Bound	ary dimension mm	S				Basic loa dynamic N	
-0.05	d_1	C	F	В	B_1	B_2	G	G_1	C_1	m	e	$C_{ m r}$	$C_{ m or}$
16	$6 {0 \atop -0.012}$	11	8	12	28	16	M6×1	8	0.6	$M4 \times 0.7^{2)}$	12	6 500 665	9 350 955
19	8 ⁰ -0.015	11	10	12	32	20	M8×1.25	10	0.6	M4×0.7 ²⁾	14	7 450 760	11 700 1 190
22	$10 \begin{array}{c} 0 \\ -0.015 \end{array}$	12	12	13	36	23	M10×1.25	12	0.6	M4×0.7	17	8 200 840	14 000 1 420
26	$10 \begin{array}{c} 0 \\ -0.015 \end{array}$	12	12	13	36	23	M10×1.25	12	0.6	M4×0.7	17	8 200 840	14 000 1 420
30	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	15	15	40	25	M12×1.5	13	0.6	M6×0.75	23	12 000 1 230	20 300 2 070
32	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	15	15	40	25	M12×1.5	13	0.6	M6×0.75	23	12 000 1 230	20 300 2 070
35	$16 \begin{array}{c} 0 \\ -0.018 \end{array}$	18	18	19.5	52	32.5	M16×1.5	17	8.0	PT ¹ / ₈	27	17 600 1 790	34 000 3 500
40	$18 \begin{array}{c} 0 \\ -0.018 \end{array}$	20	22	21.5	58	36.5	M18×1.5	19	8.0	PT ¹ / ₈	32	19 400 1 980	42 000 4 250
47	$20 \ _{-0.021}^{0}$	24	25	25.5	66	40.5	M20×1.5	21	0.8	PT ¹ / ₈	37	28 800 2 940	61 000 6 250
52	$20 \begin{array}{c} 0 \\ -0.021 \end{array}$	24	25	25.5	66	40.5	M20×1.5	21	0.8	PT ¹ / ₈	37	28 800 2 940	61 000 6 250
62	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	30	30.5	80	49.5	M24×1.5	25	0.8	PT ¹ / ₈	44	39 500 4 000	98 500 10 000
72	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	30	30.5	80	49.5	M24×1.5	25	0.8	PT ¹ / ₈	44	39 500 4 000	98 500 10 000
80	$30 \begin{array}{c} 0 \\ -0.021 \end{array}$	35	38	37	100	63	M30×1.5	32	1	PT ¹ / ₈	53	58 000 5 900	147 000 15 000
90	30 ⁰ -0.021	35	38	37	100	63	M30×1.5	32	1	PT ¹ / ₈	53	58 000 5 900	147 000 15 000

KRVT··LL type (Full-complement roller type, with seal)

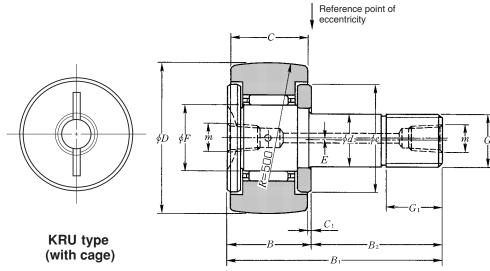
Accessories

Applicable bearing number	Grease nipple number	Plug with hexagonal socket number	Applicable hexagonal nut
16~26	NIP-X30	M4×0.7 ×4 ℓ	1M 6×1 ~1M10×1.25
30~32	JIS 1 (A-M6F)	M6×0.75×6ℓ	1M12×1.5
35~90	JIS 2 (A-PT 1/8)	PT ¹ / ₈ ×7 ℓ	1M16×1.5~1M30×1.5

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

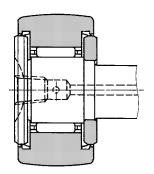

JIS 2 (A-PT/8)

 $PT^{1/2}$


1M12

	ad capacity		g speed	Maximum tightening		Cam Foll	lower number		Mass	Stud dia.
	N kgf			torque N·m	Witho	ut seal	Wit	th seal	kg	mm
Spherical outer ring	Cylindrical outer ring	Grease lubrication	Oil lubrication	kgf·m	Spherical outer rings	Cylindrical outer rings	Spherical outer rings	Cylindrical outer rings	(approx.)	
1 080 110	3 400 350	*13 000	*16 000	3 0.3	KRVT16/3AS	KRVT16X/3AS	KRVT16LL/3AS	KRVT16XLL/3AS	0.020	6
1 380 141	4 050 415	10 000	*13 000	8 0.8	KRVT19/3AS	KRVT19X/3AS	KRVT19LL/3AS	KRVT19XLL/3AS	0.032	8
1 690 172	5 150 525	8 500	*11 000	14 1.4	KRVT22/3AS	KRVT22X/3AS	KRVT22LL/3AS	KRVT22XLL/3AS	0.047	10
2 120 216	6 100 620	8 500	*11 000	14 1.4	KRVT26/3AS	KRVT26X/3AS	KRVT26LL/3AS	KRVT26XLL/3AS	0.061	10
2 620 267	7 700 785	6 500	8 500	20 2	KRVT30/3AS	KRVT30X/3AS	KRVT30LL/3AS	KRVT30XLL/3AS	0.089	12
2 860 291	8 200 835	6 500	8 500	20 2	KRVT32/3AS	KRVT32X/3AS	KRVT32LL/3AS	KRVT32XLL/3AS	0.100	12
3 200 325	11 900 1 220	5 500	7 000	52 5.3	KRVT35/3AS	KRVT35X/3AS	KRVT35LL/3AS	KRVT35XLL/3AS	0.172	16
3 850 390	14 500 1 480	4 500	6 000	76 7.8	KRVT40/3AS	KRVT40X/3AS	KRVT40LL/3AS	KRVT40XLL/3AS	0.252	18
4 700 480	21 000 2 150	4 000	5 000	98 10	KRVT47/3AS	KRVT47X/3AS	KRVT47LL/3AS	KRVT47XLL/3AS	0.390	20
5 550 565	23 300 2 370	4 000	5 000	98 10	KRVT52/3AS	KRVT52X/3AS	KRVT52LL/3AS	KRVT52XLL/3AS	0.465	20
6 950 710	34 500 3 500	3 300	4 500	178 18	KRVT62/3AS	KRVT62X/3AS	KRVT62LL/3AS	KRVT62XLL/3AS	0.800	24
8 050 820	38 500 3 900	3 300	4 500	178 18	KRVT72/3AS	KRVT72X/3AS	KRVT72LL/3AS	KRVT72XLL/3AS	1.05	24
9 800 1 000	53 000 5 400	2 600	3 500	360 37	KRVT80/3AS	KRVT80X/3AS	KRVT80LL/3AS	KRVT80XLL/3AS	1.56	30
11 400 1 160	59 000 6 100	2 600	3 500	360 37	KRVT90/3AS	KRVT90X/3AS	KRVT90LL/3AS	KRVT90XLL/3AS	1.97	30

Remarks: 1. The limiting speed of KRVT··LL and KRVT··LL types incorporating a seal (those marked with an asterisk) is approximately 10,000 min⁻¹.


KRU type
KRU··X type
KRU··LL type
KRU··XLL type

D 16∼90mm

OD¹) mm D						Bound	ary dimension mm	s					dynamic	ad ratings static
0 -0.05	d1	C	F	В	<i>B</i> ₁	B_2	G	G_1	Eccentricity E	C_1	m	e	$C_{ m r}$	$egin{aligned} C_{ m or} \end{aligned}$
16	$6_{-0.012}^{00000000000000000000000000000000000$	11	8	12	28	16	M6×1	8	0.25	0.6	M4×0.7 ²⁾	12	4 050 415	4 200 430
19	$8_{-0.015}^{00000000000000000000000000000000000$	11	10	12	32	20	M8×1.25	10	0.25	0.6	M4×0.7 ²⁾	14	4 750 480	5 400 555
22	$10_{-0.015}^{00000000000000000000000000000000000$	12	12	13	36	23	M10×1.25	12	0.3	0.6	M4×0.7	17	5 300 540	6 650 680
26	$10_{-0.015}^{00000000000000000000000000000000000$	12	12	13	36	23	M10×1.25	12	0.3	0.6	M4×0.7	17	5 300 540	6 650 680
30	$12_{-0.018}^{00000000000000000000000000000000000$	14	15	15	40	25	M12×1.5	13	0.4	0.6	M6×0.75	23	7 850 800	9 650 985
32	$12_{-0.018}^{00000000000000000000000000000000000$	14	15	15	40	25	M12×1.5	13	0.4	0.6	M6×0.75	23	7 850 800	9 650 985
35	$16_{-0.018}^{00000000000000000000000000000000000$	18	19	19.5	52	32.5	M16×1.5	17	0.5	8.0	M6×0.75	27	12 500 1 280	18 900 1 930
40	$18_{-0.018}^{0}$	20	22	21.5	58	36.5	M18×1.5	19	0.6	8.0	PT ¹ / ₈	32	14 000 1 430	22 800 2 330
47	$20_{-0.021}^{00000000000000000000000000000000000$	24	25	25.5	66	40.5	M20×1.5	21	0.7	8.0	PT1/8	37	20 700 2 110	33 500 3 450
52	$20_{-0.021}^{0}$	24	25	25.5	66	40.5	M20×1.5	21	0.7	8.0	PT1/8	37	20 700 2 110	33 500 3 450
62	$24_{-0.021}^{0}$	29	30	30.5	80	49.5	M24×1.5	25	0.8	8.0	PT1/8	44	28 900 2 950	55 000 5 600
72	$24_{-0.021}^{0}$	29	30	30.5	80	49.5	M24×1.5	25	0.8	8.0	PT1/8	44	28 900 2 950	55 000 5 600
80	30 _{-0.021}	35	38	37	100	63	M30×1.5	32	1.0	1	PT1/8	53	45 000 4 600	88 500 9 050
85	$30_{-0.021}^{00000000000000000000000000000000000$	35	38	37	100	63	M30×1.5	32	1.0	1	PT1/8	53	45 000 4 600	88 500 9 050
90	$30_{-0.021}^{00000000000000000000000000000000000$	35	38	37	100	63	M30×1.5	32	1.0	1	PT/8	53	45 000 4 600	88 500 9 050

Reference point of eccentricity

KRU··LL type (with cage)

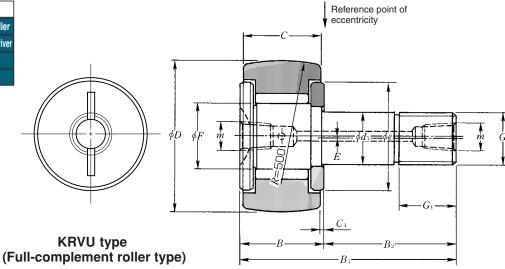
Accessories

	Applicable bearing number	Grease nipple number	Plug with hexagonal socket number	Applicable hexagonal nut
	16~26	NIP-X30	M4×0.7 ×4ℓ	1M 6×1 ~1M10×1.25
	30~35	JIS 1 (A-M6F)	M6×0.75×6ℓ	1M12×1.5~1M16×1.5
ĺ	40~90	JIS 2 (A-PT//8)	PT½×7 ℓ	1M18×1.5~1M30×1.5

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

JIS 2 (A-PT1/8)

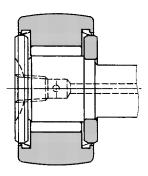
 $PT^{1/8}$


1M12

Track loa	ad capacity	Limitinç mi		Maximum tightening		Car	m Follower number		Mass	Stud dia.
	N kgf			torque N·m	Witho	ut seal	Wit	h seal	kg	mm
Spherical outer ring	Cylindrical outer ring	Grease lubrication	Oil lubrication	kgf·m	Spherical outer rings	Cylindrical outer rings	Spherical outer rings	Cylindrical outer rings	(approx.)	
1 080 110	3 400 350	*19 000	*25000	3 0.3	KRU16	KRU16X	KRU16LL/3AS	KRU16XLL/3AS	0.019	6
1 380 141	4 050 415	*15 000	*20 000	8 0.8	KRU19	KRU19X	KRU19LL/3AS	KRU19XLL/3AS	0.031	8
1 690 172	5 150 525	*12 000	*16 000	14 1.4	KRU22	KRU22X	KRU22LL/3AS	KRU22XLL/3AS	0.046	10
2 120 216	6 100 620	*12 000	*16 000	14 1.4	KRU26	KRU26X	KRU26LL/3AS	KRU26XLL/3AS	0.059	10
2 620 267	7 700 785	10 000	*13 000	20 2	KRU30	KRU30X	KRU30LL/3AS	KRU30XLL/3AS	0.087	12
2 860 291	8 200 835	10 000	*13 000	20 2	KRU32	KRU32X	KRU32LL/3AS	KRU32XLL/3AS	0.097	12
3 200 325	11 900 1 220	8 000	*11 000	52 5.3	KRU35	KRU35X	KRU35LL/3AS	KRU35XLL/3AS	0.169	16
3 850 390	14 500 1 480	7 000	9 000	76 7.8	KRU40	KRU40X	KRU40LL/3AS	KRU40XLL/3AS	0.248	18
4 700 480	21 000 2 150	6 000	8 000	98 10	KRU47	KRU47X	KRU47LL/3AS	KRU47XLL/3AS	0.386	20
5 550 565	23 300 2 370	6 000	8 000	98 10	KRU52	KRU52X	KRU52LL/3AS	KRU52XLL/3AS	0.461	20
6 950 710	34 500 3 500	5 000	6 500	178 18	KRU62	KRU62X	KRU62LL/3AS	KRU62XLL/3AS	0.790	24
8 050 820	38 500 3 900	5 000	6 500	178 18	KRU72	KRU72X	KRU72LL/3AS	KRU72XLL/3AS	1.04	24
9 800 1 000	53 000 5 400	4 000	5 500	360 37	KRU80	KRU80X	KRU80LL/3AS	KRU80XLL/3AS	1.55	30
10 400 1 060	56 000 5 750	4 000	5 500	360 37	KRU85	KRU85X	KRU85LL/3AS	KRU85XLL/3AS	1.74	30
11 400 1 160	59 000 6 100	4 000	5 500	360 37	KRU90	KRU90X	KRU90LL/3AS	KRU90XLL/3AS	1.95	30

Remarks: 1. The limiting speed of KRU \cdot LL and KRU \cdot XLL types incorporating a seal (those marked with an asterisk) is approximately 10,000 min⁻¹.

KRVU type
KRVU··X type
KRVU··LL type
KRVU··XLL type



D 16∼90mm

OD ¹⁾						Bound	ary dimension	s					Basic load	ratings static
mm D							mm						N kgl	
$\begin{bmatrix} 0 \\ -0.05 \end{bmatrix}$	d_1	C	F	В	B_1	B_2	G	G_1	Eccentricity E	C_1	m	e	$C_{ m r}$	$C_{ m or}$
16	$6_{-0.012}^{$	11	8	12	28	16	M6×1	8	0.25	0.6	$M4 \times 0.7^{2)}$	12	6 500 665	9 350 955
19	$8_{-0.015}^{$	11	10	12	32	20	M8×1.25	10	0.25	0.6	M4×0.7 ²⁾	14	7 450 760	11 700 1 190
22	$10_{-0.015}^{$	12	12	13	36	23	M10×1.25	12	0.3	0.6	M4×0.7	17	8 200 840	14 000 1 420
26	$10_{-0.015}^{$	12	12	13	36	23	M10×1.25	12	0.3	0.6	M4×0.7	17	8 200 840	14 000 1 420
30	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	15	15	40	25	M12×1.5	13	0.4	0.6	M6×0.75	23	12 000 1 230	20 300 2 070
32	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	15	15	40	25	M12×1.5	13	0.4	0.6	M6×0.75	23	12 000 1 230	20 300 2 070
35	$16 \begin{array}{c} 0 \\ -0.018 \end{array}$	18	19	19.5	52	32.5	M16×1.5	17	0.5	8.0	M6×0.75	27	18 000 1 840	36 500 3 700
40	$18_{-0.018}^{$	20	22	21.5	58	36.5	M18×1.5	19	0.6	8.0	PT1/8	32	19 400 1 980	42 000 4 250
47	$20 {0 \atop -0.021}$	24	25	25.5	66	40.5	M20×1.5	21	0.7	0.8	PT ¹ / ₈	37	28 800 2 940	61 000 6 250
52	$20 {0 \atop -0.021}$	24	25	25.5	66	40.5	M20×1.5	21	0.7	0.8	PT ¹ / ₈	37	28 800 2 940	61 000 6 250
62	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	30	30.5	80	49.5	M24×1.5	25	0.8	0.8	PT1/8	44	39 500 4 000	98 500 10 000
72	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	30	30.5	80	49.5	M24×1.5	25	0.8	0.8	PT1/8	44	39 500 4 000	98 500 10 000
80	30 0 -0.021	35	38	37	100	63	M30×1.5	32	1.0	1	PT ¹ / ₈	53	58 000 5 900	147 000 15 000
90	30 ⁰ -0.021	35	38	37	100	63	M30×1.5	32	1.0	1	PT ¹ / ₈	53	58 000 5 900	147 000 15 000

Note 1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the KRVU·X and KRVU·XLL types whose outside surface form is cylindrical. 2) The grease replenishment port is situated only in the front (in the left side face in the diagram above).

Reference point of eccentricity

KRVU··LL type (Full-complement roller type, with seal)

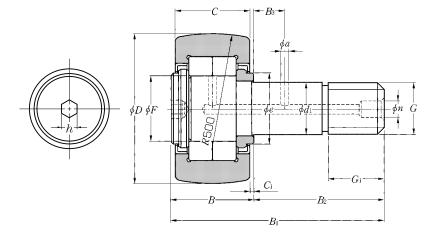
Accessories

Applicable bearing number	Grease nipple number	Plug with hexagonal socket number	Applicable hexagonal nut
16~26	NIP-X30	M4×0.7 ×4 ℓ	1M 6×1 ~1M10×1.25
30~35	JIS 1 (A-M6F)	M6×0.75×6ℓ	1M12×1.5~1M16×1.5
40~90	JIS 2 (A-PT/8)	PT½×7 £	1M18×1.5~1M30×1.5

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

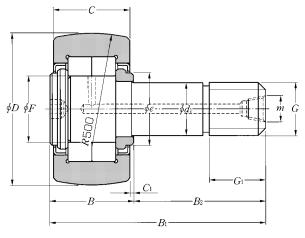
JIS 2 (A-PT1/8)

PT/8


HVI I 2

Track load			g speed n ⁻¹	Maximum tightening		Cam Fol	lower number		Mass	Stud
N ko				torque N·m	Witho	ut seal	Wit	h seal	kg	mm
Spherical outer ring	Cylindrical outer ring	Grease lubrication	Oil lubrication	kgf·m	Spherical outer rings	Cylindrical outer rings	Spherical outer rings	Cylindrical outer rings	(approx.)	
1 080 110	3 400 350	*13 000	*16 000	3 0.3	KRVU16/3AS	KRVU16X/3AS	KRVU16LL/3AS	KRVU16XLL/3AS	0.020	6
1 380 141	4 050 415	10 000	*13 000	8 0.8	KRVU19/3AS	KRVU19X/3AS	KRVU19LL/3AS	KRVU19XLL/3AS	0.032	8
1 690 172	5 150 525	8 500	*11 000	14 1.4	KRVU22/3AS	KRVU22X/3AS	KRVU22LL/3AS	KRVU22XLL/3AS	0.047	10
2 120 216	6 100 620	8 500	*11 000	14 1.4	KRVU26/3AS	KRVU26X/3AS	KRVU26LL/3AS	KRVU26XLL/3AS	0.061	10
2 620 267	7 700 785	6 500	8 500	20 2	KRVU30/3AS	KRVU30X/3AS	KRVU30LL/3AS	KRVU30XLL/3AS	0.089	12
2 860 291	8 200 835	6 500	8 500	20 2	KRVU32/3AS	KRVU32X/3AS	KRVU32LL/3AS	KRVU32XLL/3AS	0.100	12
3 200 325	11 900 1 220	5 500	7 000	52 5.3	KRVU35/3AS	KRVU35X/3AS	KRVU35LL/3AS	KRVU35XLL/3AS	0.172	16
3 850 390	14 500 1 480	4 500	6 000	76 7.8	KRVU40/3AS	KRVU40X/3AS	KRVU40LL/3AS	KRVU40XLL/3AS	0.252	18
4 700 480	21 000 2 150	4 000	5 000	98 10	KRVU47/3AS	KRVU47X/3AS	KRVU47LL/3AS	KRVU47XLL/3AS	0.390	20
5 550 565	23 300 2 370	4 000	5 000	98 10	KRVU52/3AS	KRVU52X/3AS	KRVU52LL/3AS	KRVU52XLL/3AS	0.465	20
6 950 710	34 500 3 500	3 300	4 500	178 18	KRVU62/3AS	KRVU62X/3AS	KRVU62LL/3AS	KRVU62XLL/3AS	0.800	24
8 050 820	38 500 3 900	3 300	4 500	178 18	KRVU72/3AS	KRVU72X/3AS	KRVU72LL/3AS	KRVU72XLL/3AS	1.05	24
9 800 1 000	53 000 5 400	2 600	3 500	360 37	KRVU80/3AS	KRVU80X/3AS	KRVU80LL/3AS	KRVU80XLL/3AS	1.56	30
11 400 1 160	59 000 6 100	2 600	3 500	360 37	KRVU90/3AS	KRVU90X/3AS	KRVU90LL/3AS	KRVU90XLL/3AS	1.97	30

 $Remarks: 1. \ The \ limiting \ speed \ of \ KRVU \cdots LL \ and \ KRVU \cdots LL \ types \ incorporating \ a seal \ (those \ marked \ with \ an \ asterisk) \ is \ approximately \ 10,000 \ min^{-1}.$


NUKR··H type NUKR··XH type

\widehat{D}	30~180mm
D	130 \sim 180mm

OD ¹⁾ mm							Boundary dir	nensio	ns						
D 0 -0.05	d_1	C	F	В	B_1	B_2	G	G_1	B_3	C_1	n	m	a	e	h
30	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	14.5	15	40	25	M12×1.5	13	6	0.6	6	_	3	15	6
35	$16 \begin{array}{c} 0 \\ -0.018 \end{array}$	18	19	19.5	52	32.5	M16×1.5	17	8	0.8	6	_	3	21	6
40	$18 \begin{array}{c} 0 \\ -0.018 \end{array}$	20	21.5	21.5	58	36.5	M18×1.5	19	8	0.8	6	_	3	23	6
47	$20 \begin{array}{c} 0 \\ -0.021 \end{array}$	24	25.5	25.5	66	40.5	M20×1.5	21	9	0.8	8	_	4	27	8
52	$20 \begin{array}{c} 0 \\ -0.021 \end{array}$	24	30	25.5	66	40.5	M20×1.5	21	9	0.8	8	_	4	31	8
62	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	35	30.5	80	49.5	M24×1.5	25	11	0.8	8	_	4	38	8
72	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	41.5	30.5	80	49.5	M24×1.5	25	11	0.8	8	_	4	44	8
80	$30 \begin{array}{c} 0 \\ -0.021 \end{array}$	35	47.5	37	100	63	M30×1.5	32	15	1	8	_	4	51	8
90	$30 \begin{array}{c} 0 \\ -0.021 \end{array}$	35	47.5	37	100	63	M30×1.5	32	15	1	8	_	4	51	8
100	$36 \begin{array}{c} 0 \\ -0.025 \end{array}$	43	48.5	46	120	74	M36×1.5	38	_	1.5	_	PT½	_	53	14
120	$42 \begin{array}{c} 0 \\ -0.025 \end{array}$	50	60.5	53	140	87	M42×1.5	44	_	1.5	_	PT ¹ / ₈	_	66	14
140	$48 \begin{array}{c} 0 \\ -0.025 \end{array}$	57	65	60	160	100	M48×1.5	52	_	1.5	_	PT½	_	72.5	14
150	$52 \begin{array}{c} 0 \\ -0.030 \end{array}$	60	75.5	63	170	107	M52×1.5	52	_	1.5	_	PT½	_	85.5	17
160	$56 \begin{array}{c} 0 \\ -0.030 \end{array}$	63	80.5	67	180	113	M56×3	58	_	2	_	PT1/8		89.5	17
170	60 ⁰ _{-0.030}	66	86	70	190	120	M60×3	58	_	2	_	PT ¹ / ₈	_	96.5	17
180	$64 \begin{array}{c} 0 \\ -0.030 \end{array}$	72	91.5	76	200	124	M64×3	65	_	2	_	PT½	_	103.5	17

Note 1) JIS Class 0 is the dimensional tolerance of the outside diameter \it{D} of the outer rings of the KUKR \cdot XH types whose outside surface form is cylindrical.

NUKR··H type (D≥100mm)

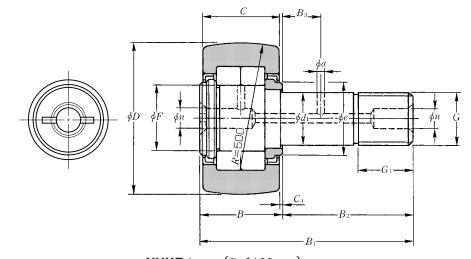
Accessories

Applicable bearing number	Grease nipple number	Plug number	Applicable hexagonal nut
30~40	NIP-B6	SEN3, SEN6	1M12×1.5~1M18×1.5
47~90	NIP-B8	SEN4, SEN8	1M20×1.5~1M30×1.5
100~180	JIS 2 (A-PT/8)	_	M36×1.5~ M64×3

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

NIP-B6

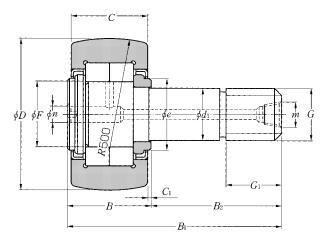
JIS 2 (A-PT/8)


SEN6

1M12

dynamic	ad ratings static N		d capacity	Limiting speed min ⁻¹	Maximum tightening torque	Cam Follo	wer number	Mass	Stud dia. mm
	kgf $C_{ m or}$	Spherical outer rings	gf Cylindrical outer rings	Grease lubrication	N·m kgf·m	Spherical outer rings	Cylindrical outer rings	kg (approx.)	111111
13 300 1 360	13 500 1 380	2 620 267	7 700 785	6 900	20 2	NUKR30H/3AS	NUKR30XH/3AS	0.088	12
22 300 2 280	25 700 2 620	3 200 325	11 900 1 220	5 500	52 5.3	NUKR35H/3AS	NUKR35XH/3AS	0.165	16
24 100 2 450	29 100 2 970	3 850 390	14 500 1 480	4 700	76 7.8	NUKR40H/3AS	NUKR40XH/3AS	0.242	18
38 500 3 950	48 000 4 900	4 700 480	21 000 2 150	4 000	98 10	NUKR47H/3AS	NUKR47XH/3AS	0.380	20
42 500 4 350	57 500 5 850	5 550 565	23 300 2 370	3 300	98 10	NUKR52H/3AS	NUKR52XH/3AS	0.450	20
56 500 5 750	72 500 7 400	6 950 710	34 500 3 500	2 900	178 18	NUKR62H/3AS	NUKR62XH/3AS	0.795	24
62 000 6 350	85 500 8 700	8 050 820	38 500 3 900	2 400	178 18	NUKR72H/3AS	NUKR72XH/3AS	1.01	24
101 000 10 300	151 000 15 400	9 800 1 000	53 000 5 400	2 100	360 37	NUKR80H/3AS	NUKR80XH/3AS	1.54	30
101 000 10 300	151 000 15 400	11 400 1 160	59 000 6 100	2 100	360 37	NUKR90H/3AS	NUKR90XH/3AS	1.96	30
119 000 12 100	167 000 17 000	13 000 1 300	79 000 8 050	2 000	630 65	NUKR100H/3AS	NUKR100XH/3AS	3.08	36
172 000 17 600	266 000 27 100	16 400 1 670	113 000 11 500	1 700	1 020 105	NUKR120H/3AS	NUKR120XH/3AS	5.17	42
201 000 20 500	294 000 30 000	20 000 2 040	152 000 15 500	1 500	1 540 160	NUKR140H/3AS	NUKR140XH/3AS	7.98	48
258 000 26 300	380 000 39 000	22 000 2 250	173 000 17 600	1 300	1 950 200	NUKR150H/3AS	NUKR150XH/3AS	9.70	52
274 000 27 900	400 000 41 000	24 000 2 450	194 000 19 800	1 200	2 480 250	NUKR160H/3AS	NUKR160XH/3AS	11.7	56
320 000 32 500	475 000 48 500	26 000 2 650	218 000 22 200	1 100	3 030 310	NUKR170H/3AS	NUKR170XH/3AS	13.9	60
365 000 37 500	555 000 56 500	27 900 2 840	253 000 25 800	1 000	3 670 375	NUKR180H/3AS	NUKR180XH/3AS	17.0	64

NUKR type NUKR··X type



D 30∼180mm

NUKR type (D<100mm) (Shielded full-complement double-row cylindrical roller type)

OD¹) mm						Вог	undary dimens mm	ions						
D 0 -0.05	d_1	C	F	В	B_1	B_2	G	G_1	B_3	C_1	n	m	a	e
30	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	14.5	15	40	25	M12×1.5	13	6	0.6	6	_	3	15
35	$16 \begin{array}{c} 0 \\ -0.018 \end{array}$	18	19	19.5	52	32.5	M16×1.5	17	8	0.8	6	_	3	21
40	$18 \begin{array}{c} 0 \\ -0.018 \end{array}$	20	21.5	21.5	58	36.5	M18×1.5	19	8	0.8	6	_	3	23
47	$20 \begin{array}{c} 0 \\ -0.021 \end{array}$	24	25.5	25.5	66	40.5	M20×1.5	21	9	0.8	8	_	4	27
52	$20 \begin{array}{c} 0 \\ -0.021 \end{array}$	24	30	25.5	66	40.5	M20×1.5	21	9	0.8	8	_	4	31
62	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	35	30.5	80	49.5	M24×1.5	25	11	0.8	8	_	4	38
72	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	41.5	30.5	80	49.5	M24×1.5	25	11	0.8	8	_	4	44
80	$30 \begin{array}{c} 0 \\ -0.021 \end{array}$	35	47.5	37	100	63	M30×1.5	32	15	1	8	_	4	51
90	$30 \begin{array}{c} 0 \\ -0.021 \end{array}$	35	47.5	37	100	63	M30×1.5	32	15	1	8	_	4	51
100	$36 \begin{array}{c} 0 \\ -0.025 \end{array}$	43	48.5	46	120	74	M36×1.5	38	_	1.5	8	PT ¹ / ₈	_	53
120	$42 \begin{array}{c} 0 \\ -0.025 \end{array}$	50	60.5	53	140	87	M42×1.5	44	_	1.5	8	PT1/8	_	66
140	$48 \begin{array}{c} 0 \\ -0.025 \end{array}$	57	65	60	160	100	M48×1.5	52	_	1.5	8	PT ¹ / ₈	_	72.5
150	$52 \begin{array}{c} 0 \\ -0.030 \end{array}$	60	75.5	63	170	107	M52×1.5	52	_	1.5	8	PT ¹ / ₈	_	85.5
160	56 ⁰ -0.030	63	80.5	67	180	113	M56×3	58	_	2	8	PT ¹ / ₈	_	89.5
170	60 _{-0.030}	66	86	70	190	120	M60×3	58	_	2	8	PT1/8	_	96.5
180	$64 \begin{array}{c} 0 \\ -0.030 \end{array}$	72	91.5	76	200	124	M64×3	65	_	2	8	PT1/8	_	103.5

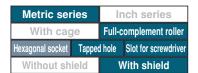
Note 1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the KUKR \cdot X types whose outside surface form is cylindrical.

NUKR type (D≥100mm)

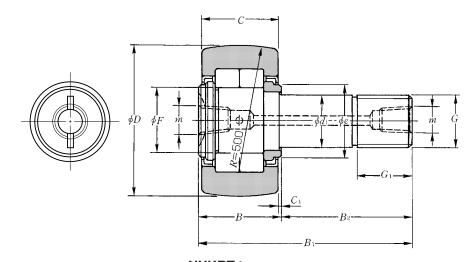
Accessories

Applicable bearing number	Grease nipple number	Plug number	Applicable hexagonal nut		
30~40	NIP-B6	SEN3, SEN6	1M12×1.5~1M18×1.5		
47~90	NIP-B8	SEN4, SEN8	1M20×1.5~1M30×1.5		
100~180	JIS 2 (A-PT 1/8)	SEN8	M36×1.5~ M64×3		

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.


NIP-B6

JIS 2 (A-PT/8)


SEN6

1M12

Basic lo dynamic	pad ratings static	Track load		Limiting speed min ⁻¹	Maximum tightening torque	Cam Follo	ower number	Mass	Stud dia. mm
$C_{ m r}$	N kgf $C_{ m or}$	Spherical outer rings	gf Cylindrical outer rings	Grease lubrication	N·m kgf·m	Spherical outer rings	Cylindrical outer rings	kg (approx.)	111111
13 300 1 360	13 500 1 380	2 620 267	7 700 785	6 900	20 2	NUKR 30/3AS	NUKR 30X/3AS	0.088	12
22 300 2 280	25 700 2 620	3 200 325	11 900 1 220	5 500	52 5.3	NUKR 35/3AS	NUKR 35X/3AS	0.165	16
24 100 2 450	29 100 2 970	3 850 390	14 500 1 480	4 700	76 7.8	NUKR 40/3AS	NUKR 40X/3AS	0.242	18
38 500 3 950	48 000 4 900	4 700 480	21 000 2 150	4 000	98 10	NUKR 47/3AS	NUKR 47X/3AS	0.380	20
42 500 4 350	57 500 5 850	5 550 565	23 300 2 370	3 300	98 10	NUKR 52/3AS	NUKR 52X/3AS	0.450	20
56 500 5 750	72 500 7 400	6 950 710	34 500 3 500	2 900	178 18	NUKR 62/3AS	NUKR 62X/3AS	0.795	24
62 000 6 350	85 500 8 700	8 050 820	38 500 3 900	2 400	178 18	NUKR 72/3AS	NUKR 72X/3AS	1.01	24
101 000 10 300	151 000 15 400	9 800 1 000	53 000 5 400	2 100	360 37	NUKR 80/3AS	NUKR 80X/3AS	1.54	30
101 000 10 300	151 000 15 400	11 400 1 160	59 000 6 100	2 100	360 37	NUKR 90/3AS	NUKR 90X/3AS	1.96	30
119 000 12 100	167 000 17 000	13 000 1 300	79 000 8 050	2 000	630 65	NUKR 100/3AS	NUKR 100X/3AS	3.08	36
172 000 17 600	266 000 27 100	16 400 1 670	113 000 11 500	1 700	1 020 105	NUKR 120/3AS	NUKR 120X/3AS	5.17	42
201 000 20 500	294 000 30 000	20 000 2 040	152 000 15 500	1 500	1 540 160	NUKR 140/3AS	NUKR 140X/3AS	7.98	48
258 000 26 300	380 000 39 000	22 000 2 250	173 000 17 600	1 300	1 950 200	NUKR 150/3AS	NUKR 150X/3AS	9.70	52
274 000 27 900	400 000 41 000	24 000 2 450	194 000 19 800	1 200	2 480 250	NUKR 160/3AS	NUKR 160X/3AS	11.7	56
320 000 32 500	475 000 48 500	26 000 2 650	218 000 22 200	1 100	3 030 310	NUKR 170/3AS	NUKR 170X/3AS	13.9	60
365 000 37 500	555 000 56 500	27 900 2 840	253 000 25 800	1 000	3 670 375	NUKR 180/3AS	NUKR 180X/3AS	17.0	64

NUKRT type NUKRT··X type

D 30∼180mm

NUKRT type (Shielded full-complement double-row cylindrical roller type)

OD ¹⁾ mm D					Bound	lary dime	ensions					dynamic	ad ratings static
0 -0.05	d_1	C	F	В	B_1	B_2	G	G_1	C_1	m	e		cgf C or
30	$12 \begin{array}{c} 0 \\ -0.018 \end{array}$	14	14.5	15	40	25	M12×1.5	13	0.6	M6×0.75	15	13 300 1 360	13 500 1 380
35	$16 \begin{array}{c} 0 \\ -0.018 \end{array}$	18	19	19.5	52	32.5	M16×1.5	17	0.8	PT ¹ / ₈	21	22 300 2 280	25 700 2 620
40	$18 \begin{array}{c} 0 \\ -0.018 \end{array}$	20	21.5	21.5	58	36.5	M18×1.5	19	0.8	PT ¹ / ₈	23	24 100 2 450	29 100 2 970
47	$20 \begin{array}{c} 0 \\ -0.021 \end{array}$	24	25.5	25.5	66	40.5	M20×1.5	21	0.8	PT½	27	38 500 3 950	48 000 4 900
52	$20 \begin{array}{c} 0 \\ -0.021 \end{array}$	24	30	25.5	66	40.5	M20×1.5	21	0.8	PT½	31	42 500 4 350	57 500 5 850
62	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	35	30.5	80	49.5	M24×1.5	25	0.8	PT½	38	56 500 5 750	72 500 7 400
72	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	41.5	30.5	80	49.5	M24×1.5	25	0.8	PT1/8	44	62 000 6 350	85 500 8 700
80	$30 \begin{array}{c} 0 \\ -0.021 \end{array}$	35	47.5	37	100	63	M30×1.5	32	1	PT1/8	51	101 000 10 300	151 000 15 400
90	$30 \begin{array}{c} 0 \\ -0.021 \end{array}$	35	47.5	37	100	63	M30×1.5	32	1	PT1/8	51	101 000 10 300	151 000 15 400
100	$36 \begin{array}{c} 0 \\ -0.025 \end{array}$	43	48.5	46	120	74	M36×1.5	38	1.5	PT ¹ / ₈	53	119 000 12 100	167 000 17 000
120	$42 \begin{array}{c} 0 \\ -0.025 \end{array}$	50	60.5	53	140	87	M42×1.5	44	1.5	PT ¹ / ₈	66	172 000 17 600	266 000 27 100
140	$48 \begin{array}{c} 0 \\ -0.025 \end{array}$	57	65	60	160	100	M48×1.5	52	1.5	PT ¹ / ₈	72.5	201 000 20 500	294 000 30 000
150	52 ⁰ -0.030	60	75.5	63	170	107	M52×1.5	52	1.5	PT ¹ / ₈	85.5	258 000 26 300	380 000 39 000
160	56 ⁰ _{-0.030}	63	80.5	67	180	113	M56×3	58	2	PT½	89.5	274 000 27 900	400 000 41 000
170	60 0 -0.030	66	86	70	190	120	M60×3	58	2	PT ¹ / ₈	96.5	320 000 32 500	475 000 48 500
180	64 0 -0.030	72	91.5	76	200	124	M64×3	65	2	PT ¹ / ₈	103.5	365 000 37 500	555 000 56 500

Note 1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the KUKRT $\cdot\cdot$ X types whose outside surface form is cylindrical.

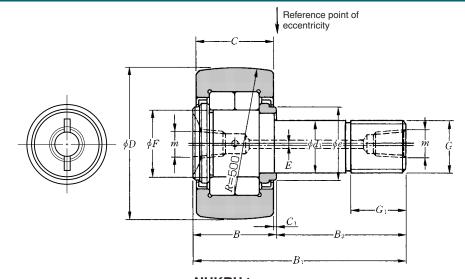
Accessories

Applicable bearing number	Grease nipple number	Plug with hexagonal socket number	Applicable hexagonal nut
30	JIS 1 (A-M6F)	M6×0.75×6 ℓ	1M12×1.5
35~180	JIS 2 (A-PT/8)	PT½×7 ℓ	1M16×1.5~1M64×3

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

JIS 2 (A-PT1/8)

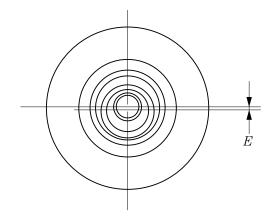
 $PT_{8}^{1/8}$


1M12

	ad capacity	Limiting speed min ⁻¹	Maximum tightening torque	Cam Follo	wer number	Mass	Stud dia. mm
Spherical outer rings	kgf Cylindrical outer rings	Grease lubrication	N·m kgf·m	Spherical outer rings	Cylindrical outer rings	kg (approx.)	
2 620 267	7 700 785	6 900	20 2	NUKRT 30/3AS	NUKRT 30X/3AS	0.088	12
3 200 325	11 900 1 220	5 500	52 5.3	NUKRT 35/3AS	NUKRT 35X/3AS	0.165	16
3 850 390	14 500 1 480	4 700	76 7.8	NUKRT 40/3AS	NUKRT 40X/3AS	0.242	18
4 700 480	21 000 2 150	4 000	98 10	NUKRT 47/3AS	NUKRT 47X/3AS	0.380	20
5 550 565	23 300 2 370	3 300	98 10	NUKRT 52/3AS	NUKRT 52X/3AS	0.450	20
6 950 710	34 500 3 500	2 900	178 18	NUKRT 62/3AS	NUKRT 62X/3AS	0.795	24
8 050 820	38 500 3 900	2 400	178 18	NUKRT 72/3AS	NUKRT 72X/3AS	1.01	24
9 800 1 000	53 000 5 400	2 100	360 37	NUKRT 80/3AS	NUKRT 80X/3AS	1.54	30
11 400 1 160	59 000 6 100	2 100	360 37	NUKRT 90/3AS	NUKRT 90X/3AS	1.96	30
13 000 1 300	79 000 8 050	2 000	630 65	NUKRT 100/3AS	NUKRT 100X/3AS	3.08	36
16 400 1 670	113 000 11 500	1 700	1 020 105	NUKRT 120/3AS	NUKRT 120X/3AS	5.17	42
20 000 2 040	152 000 15 500	1 500	1 540 160	NUKRT 140/3AS	NUKRT 140X/3AS	7.98	48
22 000 2 250	173 000 17 600	1 300	1 950 200	NUKRT 150/3AS	NUKRT 150X/3AS	9.70	52
24 000 2 450	194 000 19 800	1 200	2 480 250	NUKRT 160/3AS	NUKRT 160X/3AS	11.7	56
26 000 2 650	218 000 22 200	1 100	3 030 310	NUKRT 170/3AS	NUKRT 170X/3AS	13.9	60
27 900 2 840	253 000 25 800	1 000	3 670 375	NUKRT 180/3AS	NUKRT 180X/3AS	17.0	64

Cam followers stud type truck rollers

NUKRU type NUKRU··X type



D 30∼180mm

NUKRU type (Shielded full-complement double-row cylindrical roller type)

OD¹) mm D		Boundary dimensions mm												load ratings static
-0.05	d_1	C	F	В	B_1	B_2	G	G_1	C_1	m	e	Eccentricity E	$C_{ m r}$	kgf $C_{ m or}$
30	12 0 -0.018	14	14.5	15	40	25	M12×1.5	13	0.6	M6×0.75	15	0.4	13 300 1 360	13 500 1 380
35	$16 \begin{array}{c} 0 \\ -0.018 \end{array}$	18	19	19.5	52	32.5	M16×1.5	17	0.8	M6×0.75	21	0.5	22 300 2 280	25 700 2 620
40	$18 \begin{array}{c} 0 \\ -0.018 \end{array}$	20	21.5	21.5	58	36.5	M18×1.5	19	0.8	PT1/8	23	0.6	24 100 2 450	29 100 2 970
47	20 0 -0.021	24	25.5	25.5	66	40.5	M20×1.5	21	0.8	PT1/8	27	0.7	38 500 3 950	48 000 4 900
52	20 0 -0.021	24	30	25.5	66	40.5	M20×1.5	21	0.8	PT1/8	31	0.7	42 500 4 350	57 500 5 850
62	24 ⁰ -0.021	29	35	30.5	80	49.5	M24×1.5	25	0.8	PT1/8	38	0.8	56 500 5 750	72 500 7 400
72	24 ⁰ -0.021	29	41.5	30.5	80	49.5	M24×1.5	25	0.8	PT1/8	44	1.0	62 000 6 350	85 500 8 700
80	30 0 -0.021	35	47.5	37	100	63	M30×1.5	32	1	PT1/8	51	1.0	101 000 10 300	151 000 15 400
90	30 0 -0.021	35	47.5	37	100	63	M30×1.5	32	1	PT1/8	51	1.0	101 000 10 300	151 000 15 400
100	$36_{-0.025}^{$	43	48.5	46	120	74	M36×1.5	38	1.5	PT1/8	53	1.5	119 000 12 100	167 000 17 000
120	42 ⁰ -0.025	50	60.5	53	140	87	M42×1.5	44	1.5	PT1/8	66	1.5	172 000 17 600	266 000 27 100
140	$48_{-0.025}^{$	57	65	60	160	100	M48×1.5	52	1.5	PT1/8	72.5	2	201 000 20 500	294 000 30 000
150	52 ⁰ -0.030	60	75.5	63	170	107	M52×1.5	52	1.5	PT1/8	85.5	2	258 000 26 300	380 000 39 000
160	56 ⁰ _{-0.030}	63	80.5	67	180	113	M56×3	58	2	PT1/8	89.5	2	274 000 27 900	400 000 41 000
170	60 0 -0.030	66	86	70	190	120	M60×3	58	2	PT1/8	96.5	2.5	320 000 32 500	475 000 48 500
180	64 0 -0.030	72	91.5	76	200	124	M64×3	65	2	PT1/8	103.5	2.5	365 000 37 500	555 000 56 500

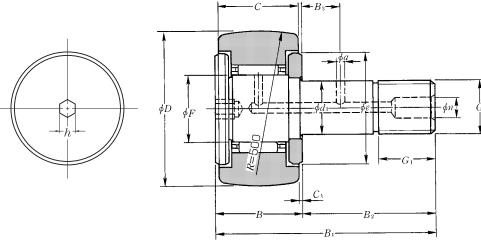
Note 1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the KUKRU \cdot X types whose outside surface form is cylindrical.

Accessories

Applicable bearing number	Grease nipple number	Plug with hexagonal socket number	Applicable hexagonal nut
30~35	JIS 1 (A-M6F)	M6×0.75×6 ℓ	1M12×1.5~1M16×1.5
40~180	JIS 2 (A-PT/8)	PT ¹ ⁄ ₈ ×7 ℓ	1M18×1.5~1M64×3

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

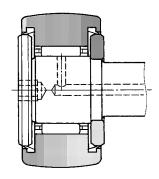
JIS 2 (A-PT/8)


 PT_{8}^{1}

1M12

	ad capacity N	Limiting speed min ⁻¹	Maximum tightening torque		wer number	Mass kg	Stud dia. mm
Spherical outer rings	Cylindrical outer rings	Grease lubrication	N·m kgf·m	Spherical outer rings	Cylindrical outer rings	(approx.)	
2 620 267	7 700 785	6 900	20 2	NUKRU 30/3AS	NUKRU 30X/3AS	0.088	12
3 200 325	11 900 1 220	5 500	52 5.3	NUKRU 35/3AS	NUKRU 35X/3AS	0.165	16
3 850 390	14 500 1 480	4 700	76 7.8	NUKRU 40/3AS	NUKRU 40X/3AS	0.242	18
4 700 480	21 000 2 150	4 000	98 10	NUKRU 47/3AS	NUKRU 47X/3AS	0.380	20
5 550 565	23 300 2 370	3 300	98 10	NUKRU 52/3AS	NUKRU 52X/3AS	0.450	20
6 950 710	34 500 3 500	2 900	178 18	NUKRU 62/3AS	NUKRU 62X/3AS	0.795	24
8 050 820	38 500 3 900	2 400	178 18	NUKRU 72/3AS	NUKRU 72X/3AS	1.01	24
9 800 1 000	53 000 5 400	2 100	360 37	NUKRU 80/3AS	NUKRU 80X/3AS	1.54	30
11 400 1 160	59 000 6 100	2 100	360 37	NUKRU 90/3AS	NUKRU 90X/3AS	1.96	30
13 000 1 300	79 000 8 050	2 000	630 65	NUKRU 100/3AS	NUKRU 100X/3AS	3.08	36
16 400 1 670	113 000 11 500	1 700	1 020 105	NUKRU 120/3AS	NUKRU 120X/3AS	5.17	42
20 000 2 040	152 000 15 500	1 500	1 540 160	NUKRU 140/3AS	NUKRU 140X/3AS	7.98	48
22 000 2 250	173 000 17 600	1 300	1 950 200	NUKRU 150/3AS	NUKRU 150X/3AS	9.70	52
24 000 2 450	194 000 19 800	1 200	2 480 250	NUKRU 160/3AS	NUKRU 160X/3AS	11.7	56
26 000 2 650	218 000 22 200	1 100	3 030 310	NUKRU 170/3AS	NUKRU 170X/3AS	13.9	60
27 900 2 840	253 000 25 800	1 000	3 670 375	NUKRU 180/3AS	NUKRU 180X/3AS	17.0	64

CR··H type
CR··XH type
CR··LLH type
CR··XLLH type



D 12.700~57.150mm

CR··H type (with cage)

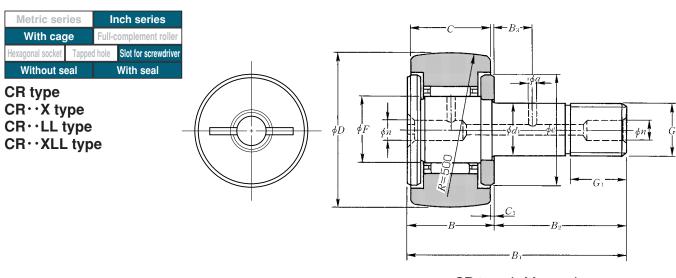
OD ¹⁾ mm <i>D</i>					В	ounda	nry dimensions mm	S							Basic Ioa dynamic	static
0 -0.05	$d_1^{+0.025}$	C _0.130	F	В	B_1	B_2	G	G_1	B_3	C_1	n	a	e	h	kç Cr	
12.700 (1/2)	4.762 (3/8)	8.731(¹¹ ⁄ ₃₂)	6	10.3	23	12.7	No.10-32UNF	6.4	_	0.8	_	_	10	1/8	2 820 287	2 450 250
12.700 (½)	4.762 (3/8)	9.525 (3/8)	6	11.1	27	15.9	No.10-32UNF	6.4	_	0.8	_	_	10	1/8	2 820 287	2 450 250
15.875 (⁵ / ₈)	6.350 (1/4)	10.319 (13/32)	8	11.9	27.8	15.9	½-28UNF	7.9	_	8.0	_	_	12.5	1/8	4 050 415	4 200 430
15.875 (5/8)	6.350 (1/4)	11.112 (7/16)	8	12.7	31.8	19.1	½-28UNF	7.9	_	8.0	_	_	12.5	1/8	4 050 415	4 200 430
19.050 (3/4)	9.525 (3/8)	12.700 (1/2)	12	14.3	36.5	22.2	³ ⁄ ₈ -24UNF	9.5	6.35	8.0	4	3	16.5	³ / ₁₆	5 300 540	6 650 680
22.225 (1/8)	9.525 (3/8)	12.700 (1/2)	12	14.3	36.5	22.2	³ ⁄ ₈ -24UNF	9.5	6.35	8.0	4	3	16.5	³ / ₁₆	5 300 540	6 650 680
25.400 (1)	11.112 (7/16)	15.875 (5/8)	13	17.4	42.8	25.4	⅓ ₆ -20UNF	12.7	6.35	8.0	4	3	21	1/4	7 250 740	8 350 850
28.575 (1½)	11.112 (7/16)	15.875 (5/8)	13	17.4	42.8	25.4	⅓ ₆ -20UNF	12.7	6.35	8.0	4	3	21	1/4	7 250 740	8 350 850
31.750 (1 ¹ ⁄ ₄)	12.700 (1/2)	19.050 (3/4)	16	20.6	52.4	31.8	½-20UNF	15.9	7.94	8.0	6	3	25	1/4	11 400 1 160	15 900 1 620
34.925 (1 ³ / ₈)	12.700 (1/2)	19.050 (3/4)	16	20.6	52.4	31.8	½-20UNF	15.9	7.94	8.0	6	3	25	1/4	11 400 1 160	15 900 1 620
38.100 (1½)	15.875 (5/8)	22.225 (%)	20	23.8	61.9	38.1	⁵ ⁄ ₈ -18UNF	19.1	9.53	8.0	6	4	30	⁵ / ₁₆	13 300 1 360	20 800 2 120
41.275 (1 ⁵ / ₈)	15.875 (5/8)	22.225 (1/8)	20	23.8	61.9	38.1	⁵ ⁄ ₈ -18UNF	19.1	9.53	8.0	6	4	30	⁵ / ₁₆	13 300 1 360	20 800 2 120
44.450 (1 ³ ⁄ ₄)	19.050 (3/4)	25.400 (1)	25	27	71.4	44.4	³ ⁄ ₄ -16UNF	22.2	11.11	8.0	6	4	36.5	⁵ / ₁₆	20 700 2 110	33 500 3 450
47.625 (1 ⁷ / ₈)	19.050 (3/4)	25.400 (1)	25	27	71.4	44.4	³ ⁄ ₄ -16UNF	22.2	11.11	8.0	6	4	36.5	⁵ / ₁₆	20 700 2 110	33 500 3 450
50.800 (2)	22.225 (%)	31.750 (11/4)	30	33.3	84.1	50.8	½-14UNF	25.4	12.7	8.0	6	5	42	7/ ₁₆	28 900 2 950	55 000 5 600
57.150 (2 ¹ ⁄ ₄)	22.225 (%)	31.750 (11/4)	30	33.3	84.1	50.8	½-14UNF	25.4	12.7	8.0	6	5	42	7/16	28 900 2 950	55 000 5 600

Note 1) $^{0}_{-0.025}$ is the dimensional tolerance of the outside diameter D of the outer rings of the CR \cdot XH and CR \cdot XLLH types whose outside surface form is cylindrical.

Accessories

Applicable bearing number	Grease nipple number	Plug number	Applicable hexagonal nut
8,8-1	NIP-B3	SEN3	No. 10-32UNF
10,10-1	NIP-B4	SEN4	½-28UNF
12~18	NIP-B4	SEN3. SEN4	3/ ₈ -24UNF~ ⁷ / ₁₆ -20UNF
20~22	NIP-B6	SEN3. SEN6	½-20UNF
24~30	NIP-B6	SEN4. SEN6	½-18UNF~¾-16UNF
32~36	NIP-B6	SEN5. SEN8	7⁄ ₈ -14UNF

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

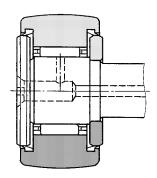


CR··LLH type (with cage, sealed)

SEN6 ½-20UN

١	d capacity	Limitin g		Maximum tightening torque	ning				Mass	Stud dia.
Spherical outer rings	Cylindrical outer rings	Grease lubrication	Oil lubrication	N·m kgf·m	Spherical outer rings	Cylindrical outer rings	Spherical outer rings	Cylindrical outer rings	kg (approx.)	mm
790 81	2 090 213	20 000	28 000	2 0.2	CR8T2H/3AS	CR8XT2H/3AS			0.009	4.762 (³ ⁄ ₁₈)
790 81	2 310 235	20 000	28 000	2 0.2	CR8-1T2H/3AS	CR8-1XT2H/3AS	· ——		0.010	4.762 (³ ⁄ ₁₈)
1 080 110	3 000 310	18 000	25 000	4 0.4	CR10H/3AS	CR10XH/3AS			0.020	6.350 (1/4)
1 080 110	3 300 335	*18 000	*25 000	4 0.4	CR10-1H/3AS	CR10-1XH/3AS	CR10-1LLH/3AS	CR10-1XLLH/3AS	0.022	6.350 (1/4)
1 380 140	4 600 470	13 000	*16 000	13 1.3	CR12H	CR12XH	CR12LLH/3AS	CR12XLLH/3AS	0.037	9.525 (³ / ₈)
1 710 174	5 350 545	13 000	*16 000	13 1.3	CR14H	CR14XH	CR14LLH/3AS	CR14XLLH/3AS	0.048	9.525 (³ / ₈)
2 060 210	7 400 755	12 000	15 000	18 1.9	CR16H	CR16XH	CRV16LLH/3AS	CR16XLLH/3AS	0.087	11.112 (½ ₁₆)
2 430 248	8 350 850	12 000	15 000	18 1.9	CR18H	CR18XH	CR18LLH/3AS	CR18XLLH/3AS	0.100	11.112 (½ ₁₆)
2 840 290	11 400 1 160	9 000	13 000	24 2.4	CR20H	CR20XH	CR20LLH/3AS	CR20XLLH/3AS	0.150	12.700 (½)
3 250 330	12 500 1 280	9 000	13 000	24 2.4	CR22H	CR22XH	CR22LLH/3AS	CR22XLLH/3AS	0.166	12.700 (½)
3 600 365	16 300 1 660	7 500	10 000	51 5.2	CR24H	CR24XH	CR24LLH/3AS	CR24XLLH/3AS	0.225	15.875 (5/8)
4 050 410	17 600 1 800	7 500	10 000	51 5.2	CR26H	CR26XH	CR26LLH/3AS	CR26XLLH/3AS	0.265	15.875 (5/8)
4 400 450	21 600 2 200	6 000	8 000	92 9.3	CR28H	CR28XH	CR28LLH/3AS	CR28XLLH/3AS	0.375	19.050 (¾)
4 850 495	23 200 2 360	6 000	8 000	92 9.3	CR30H	CR30XH	CR30LLH/3AS	CR30XLLH/3AS	0.420	19.050 (¾)
5 300 540	31 000 3 150	5 000	6 600	150 15	CR32H	CR32XH	CR32LLH/3AS	CR32XLLH/3AS	0.505	22.225 (%)
6 200 635	35 000 3 550	5 000	6 600	150 15	CR36H	CR36XH	CR36LLH/3AS	CR36XLLH/3AS	0.750	22.225 (%)

Note: The limiting speed of cam followers incorporating a seal (those marked with an asterisk) is approximately 10,000 min⁻¹.



D 12.700~57.150mm

CR	type	(with	cage)
----	------	-------	-------

OD ¹⁾ mm D 0 -0.05					В	ounda	ry dimension mm	s						Basic loa dynamic N kự	static
12.700 (1/2)	4.762 (3/8)	8.731(¹¹ / ₃₂)	6	10.3	23	12.7	No.10-32UNF	6.4	_	0.8	32)	_	10	2 820 287	2 450 250
12.700 (1/2)	4.762 (3/8)	9.525 (3/8)	6	11.1	27	15.9	No.10-32UNF	6.4	_	0.8	32)	_	10	2 820 287	2 450 250
15.875 (5/8)	6.350 (1/4)	10.319 (¹³ ⁄ ₃₂)) 8	11.9	27.8	15.9	½-28UNF	7.9	_	0.8	42)	_	12.5	4 050 415	4 200 430
15.875 (5/8)	6.350 (1/4)	11.112 (7/16)	8	12.7	31.8	19.1	½-28UNF	7.9	_	0.8	42)	_	12.5	4 050 415	4 200 430
19.050 (¾)	9.525 (3/8)	12.700 (½)	12	14.3	36.5	22.2	³ ⁄ ₈ -24UNF	9.5	6.35	0.8	4	3	16.5	5 300 540	6 650 680
22.225 (7/8)	9.525 (3/8)	12.700 (1/2)	12	14.3	36.5	22.2	³ ⁄ ₈ -24UNF	9.5	6.35	0.8	4	3	16.5	5 300 540	6 650 680
25.400 (1)	11.112 (7/16)	15.875 (5/8)	13	17.4	42.8	25.4	½6-20UNF	12.7	6.35	0.8	4	3	21	7 250 740	8 350 850
28.575 (1½)	11.112 (7/16)	15.875 (5/8)	13	17.4	42.8	25.4	7/ ₁₆ -20UNF	12.7	6.35	0.8	4	3	21	7 250 740	8 350 850
31.750 (11/4)	12.700 (1/2)	19.050 (¾)	16	20.6	52.4	31.8	½-20UNF	15.9	7.94	0.8	6	3	25	11 400 1 160	15 900 1 620
34.925 (1 ³ / ₈)	12.700 (1/2)	19.050 (¾)	16	20.6	52.4	31.8	½-20UNF	15.9	7.94	0.8	6	3	25	11 400 1 160	15 900 1 620
38.100 (1½)	15.875 (5/8)	22.225 (1/8)	20	23.8	61.9	38.1	½-18UNF	19.1	9.53	0.8	6	4	30	13 300 1 360	20 800 2 120
41.275 (1%)	15.875 (5/8)	22.225 (7/8)	20	23.8	61.9	38.1	½-18UNF	19.1	9.53	0.8	6	4	30	13 300 1 360	20 800 2 120
44.450 (1 ³ ⁄ ₄)	19.050 (3/4)	25.400 (1)	25	27	71.4	44.4	³ ⁄ ₄ -16UNF	22.2	11.11	0.8	6	4	36.5	20 700 2 110	33 500 3 450
47.625 (1%)	19.050 (¾)	25.400 (1)	25	27	71.4	44.4	³ ⁄ ₄ -16UNF	22.2	11.11	0.8	6	4	36.5	20 700 2 110	33 500 3 450
50.800 (2)	22.225 (1/8)	31.750 (1 ¹ ⁄ ₄)	30	33.3	84.1	50.8	⁷ ⁄ ₈ -14UNF	25.4	12.7	0.8	8	5	42	28 900 2 950	55 000 5 600
57.150 (2 ¹ ⁄ ₄)	22.225 (%)	31.750 (1 ¹ ⁄ ₄)	30	33.3	84.1	50.8	⅓-14UNF	25.4	12.7	0.8	8	5	42	28 900 2 950	55 000 5 600
Notes 1) 0						5 (1)	aa autar vinaa af		V 10						

Notes 1) $_{-0.025}^{0}$ is the dimensional tolerance of the outside diameter D of the outer rings of the CR··X and CR··XLL types whose outside surface form is cylindrical. 2) The grease port is situated only in the front (in the left side face in the diagram above).

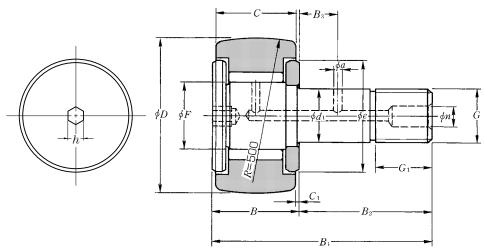
Accessories

Applicable bearing number	Grease nipple number	Plug number	Applicable hexagonal nut
8,8-1	NIP-B3	SEN3	No. 10-32UNF
10,10-1	NIP-B4	SEN4	½-28UNF
12~18	NIP-B4	SEN3. SEN4	³ / ₈ -24UNF∼ ⁷ / ₁₆ -20UNF
20~22	NIP-B6	SEN3. SEN6	½-20UNF
24~30	NIP-B6	SEN4. SEN6	⁵ ⁄ ₈ -18UNF∼ ³ ⁄ ₄ -16UNF
32~36	NIP-B6	SEN5. SEN8	⁷ ⁄ ₈ -14UNF

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

CR··LL type (with cage, sealed)

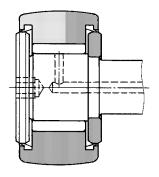
SEN6


 $\frac{1}{2}$ -20UNF

Track load							Mass	Stud dia.		
kgf				torque N·m	Withou			h seal	kg	
Spherical outer rings	Cylindrical outer rings	Grease lubrication	Oil lubrication	kgf·m	Spherical outer rings	Cylindrical outer rings	Spherical outer rings	Cylindrical outer rings	(approx.)	mm
790 81	2 090 213	20 000	28 000	2 0.2	CR8T2	CR8XT2			0.009	4.762 (³ ⁄ ₁₈)
790 81	2 310 235	20 000	28 000	2 0.2	CR8-1T2	CR8-1XT2			0.010	4.762 (³ ⁄ ₁₈)
1 080 110	3 000 310	18 000	25 000	4 0.4	CR10	CR10X			0.020	6.350 (1/4)
1 080 110	3 300 335	*18 000	*25 000	4 0.4	CR10-1	CR10-1X	CR10-1LL/3AS	CR10-1XLL/3AS	0.022	6.350 (1/4)
1 380 140	4 600 470	13 000	*16 000	13 1.3	CR12	CR12X	CR12LL/3AS	CR12XLL/3AS	0.037	9.525 (³ / ₈)
1 710 174	5 350 545	13 000	*16 000	13 1.3	CR14	CR14X	CR14LL/3AS	CR14XLL/3AS	0.048	9.525 (³ / ₈)
2 060 210	7 400 755	12 000	15 000	18 1.9	CR16	CR16X	CRV16LL/3AS	CR16XLL/3AS	0.087	11.112 (½)
2 430 248	8 350 850	12 000	15 000	18 1.9	CR18	CR18X	CR18LL/3AS	CR18XLL/3AS	0.100	11.112 (½)
2 840 290	11 400 1 160	9 000	13 000	24 2.4	CR20	CR20X	CR20LL/3AS	CR20XLL/3AS	0.150	12.700 (½)
3 250 330	12 500 1 280	9 000	13 000	24 2.4	CR22	CR22X	CR22LL/3AS	CR22XLL/3AS	0.166	12.700 (½)
3 600 365	16 300 1 660	7 500	10 000	51 5.2	CR24	CR24X	CR24LL/3AS	CR24XLL/3AS	0.225	15.875 (5/8)
4 050 410	17 600 1 800	7 500	10 000	51 5.2	CR26	CR26X	CR26LL/3AS	CR26XLL/3AS	0.265	15.875 (%)
4 400 450	21 600 2 200	6 000	8 000	92 9.3	CR28	CR28X	CR28LL/3AS	CR28XLL/3AS	0.375	19.050 (¾)
4 850 495	23 200 2 360	6 000	8 000	92 9.3	CR30	CR30X	CR30LL/3AS	CR30XLL/3AS	0.420	19.050 (¾)
5 300 540	31 000 3 150	5 000	6 600	150 15	CR32	CR32X	CR32LL/3AS	CR32XLL/3AS	0.505	22.225 (%)
6 200 635	35 000 3 550	5 000	6 600	150 15	CR36	CR36X	CR36LL/3AS	CR36XLL/3AS	0.750	22.225 (%)

Note: The limiting speed of cam followers incorporating a seal (those marked with an asterisk) is approximately 10,000 min⁻¹.

CRV··H type
CRV··XH type
CRV··LLH type
CRV··XLLH type



D 12.700~152.400mm

CRV··H type (Full-complement roller type)

OD ¹⁾ mm D					Во	oundar	y dimensions mm	6							dynamic	nd ratings static
0 -0.05	$d_1^{+0.025}$	C _0.130	F	В	B_1	B_2	G	G_1	B_3	C_1	n	a	e	h	$C_{ m r}$	$C_{ m or}$
12.700 (1/2)	4.826 (—)	8.731 (11/32)	5.75	10.3	23	12.7	No.10-32UNF	6.4	_	0.8	_	_	10	1/8	3 400 350	3 750 385
12.700 (1/2)	4.826 (—)	9.525 (3/8)	5.75	11.1	27	15.9	No.10-32UNF	6.4	_	0.8	_	_	10	1/8	3 950 405	4 550 465
15.875 (⁵ ⁄ ₈)	6.350 (1/4)	10.319 (¹³ / ₃₂)	8.11	11.9	27.8	15.9	1/ ₄ -28UNF	7.9	_	0.8	_	_	12.5	1/8	5 550 565	7 600 770
15.875 (⁵ ⁄ ₈)	6.350 (1/4)	11.112 (7/16)	8.11	12.7	31.8	19.1	1/ ₄ -28UNF	7.9	_	0.8	_	_	12.5	1/8	6 200 630	8 700 885
19.050 (3/4)	9.525 (3/8)	12.700 (1/2)	11	14.3	36.5	22.2	³ ⁄ ₈ -24UNF	9.5	6.35	0.8	4	3	15.5	³ / ₁₆	8 050 825	13 300 1 360
22.225 (%)	9.525 (3/8)	12.700 (1/2)	11	14.3	36.5	22.2	3/ ₈ -24UNF	9.5	6.35	0.8	4	3	15.5	³ / ₁₆	8 050 825	13 300 1 360
25.400 (1)	11.112 (7/16)	15.875 (⁵ ⁄ ₈)	14	17.6	43	25.4	$\frac{7}{16}$ -20UNF	12.7	6.35	0.8	4	3	19.5	1/4	11 700 1 190	18 900 1 920
28.575 (1½)	11.112 (7/16)	15.875 (⁵ ⁄ ₈)	14	17.6	43	25.4	$\frac{7}{16}$ -20UNF	12.7	6.35	0.8	4	3	19.5	1/4	11 700 1 190	18 900 1 920
31.750 (1 ¹ ⁄ ₄)	12.700 (1/2)	19.050 (¾)	18.47	20.6	52.4	31.8	½-20UNF	15.9	7.94	0.8	6	3	25	1/4	17 700 1 810	35 000 3 600
34.925 (1%)	12.700 (1/2)	19.050 (¾)	18.47	20.6	52.4	31.8	½-20UNF	15.9	7.94	0.8	6	3	25	1/4	17 700 1 810	35 000 3 600
38.100 (1½)	15.875 (⁵ ⁄ ₈)	22.225 (1/8)	21	23.8	61.9	38.1	⁵ ⁄ ₈ -18UNF	19.1	9.53	0.8	6	4	27	⁵ / ₁₆	21 100 2 150	45 500 4 650
41.275 (1%)	15.875 (⁵ ⁄ ₈)	22.225 (1/8)	21	23.8	61.9	38.1	⁵ ⁄ ₈ -18UNF	19.1	9.53	0.8	6	4	27	⁵ / ₁₆	21 100 2 150	45 500 4 650
44.450 (1 ³ ⁄ ₄)	19.050 (3/4)	25.400 (1)	24.65	26.9	71.4	44.5	³ ⁄ ₄ -16UNF	22.2	11.11	0.8	6	4	36.5	5/16	28 400 2 900	60 500 6 150
47.625 (1%)	19.050 (3/4)	25.400 (1)	24.65	26.9	71.4	44.5	³ ⁄ ₄ -16UNF	22.2	11.11	0.8	6	4	36.5	5/16	28 400 2 900	60 500 6 150
50.800 (2)	22.225 (7/8)	31.750 (11/4)	26.71	33.3	84.1	50.8	⅓-14UNF	25.4	12.7	0.8	6	5	36.5	⁵ / ₁₆	41 000 4 200	87 500 8 950
57.150 (2½)	22.225 (7/8)	31.750 (11/4)	26.71	33.3	84.1	50.8	⅓-14UNF	25.4	12.7	0.8	6	5	36.5	⁵ / ₁₆	41 000 4 200	87 500 8 950
63.500 (2½)	25.400 (1)	38.100 (1½)	31.15	39.6	96.8	57.2	1-14UNF	28.6	14.29	0.8	6	5	44	1/2	54 500 5 600	119 000 12 200
69.850 (2 ³ ⁄ ₄)	25.400 (1)	38.100 (1½)	31.15	39.6	96.8	57.2	1-14UNF	28.6	14.29	0.8	6	5	44	1/2	54 500 5 600	119 000 12 200
76.200 (3)	31.750 (11/4)	44.450 (1 ³ ⁄ ₄)	36.85	46	109.5	63.5	1 ¹ / ₄ -12UNF	31.8	15.88	0.8	8	5	53	5/8	76 500 7 800	177 000 18 000
82.550 (3 ¹ ⁄ ₄)	31.750 (11/4)	44.450 (1 ³ ⁄ ₄)	36.85	46	109.5	63.5	1 ¹ / ₄ -12UNF	31.8	15.88	0.8	8	5	53	5/8	76 500 7 800	177 000 18 000
88.900 (3½)	34.925 (1 ³ / ₈)	50.800 (2)	44.5	52.3	122.2	69.9	1 ³ / ₈ -12UNF	34.9	17.46	0.8	8	5	60	5/8	84 500 8 650	214 000 21 800
101.600 (4)	38.100 (1½)	57.150 (2 ¹ ⁄ ₄)	44.5	58.7	147.6	88.9	1½-12UNF	38.1	19.05	0.8	8	5	63	3/4	106 000 10 800	244 000 24 900
127.000 (5)	50.800 (2)	69.850 (2 ³ ⁄ ₄)	68.7	71.4	200	128.6	2-12UNF	65.1	22.23	0.8	8	5	89	<i></i> ⁷ ⁄ ₈	189 000 19 300	520 000 53 000
152.400 (6)	63.500 (2½)	82.550 (31/4)	81.35	84.2	236.6	152.4	2½-12UNF	76.2	25.4	8.0	8	5	110	1	260 000 26 500	675 000 68 500

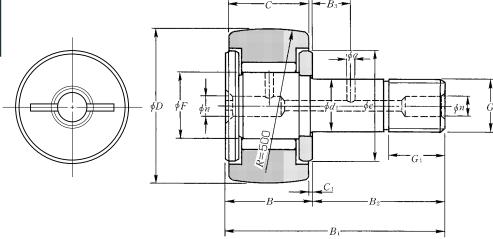
Notes 1) $_{-0.025}^{0}$ is the dimensional tolerance of the outside diameter D of the outer rings of the CR \cdot X and CR \cdot XLL types whose outside surface form is cylindrical.

Accessories

Applicab bearing number	Grease nipple number	Plug number	Applicable hexagonal nut
8~10-1	_	_	No. 10-32UNF~1/4-28UNF
12~18	NIP-B4	SEN3. SEN4	³ / ₈ -24UNF∼ ⁷ / ₁₆ -20UNF
20~22	NIP-B6	SEN3. SEN6	½-20UNF
24~30	NIP-B6	SEN4. SEN6	½-18UNF~¾-16UNF
32~44	NIP-B6	SEN5. SEN6	⁷ ⁄ ₈ -14UNF∼1-14UNF
48~96	NIP-B8	SEN5. SEN8	1½-12UNF~2½-12UNF

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

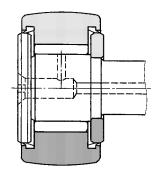
CRV: LLH type (Full-complement roller type, with seal)


SEN6 ½-20UNF

	d capacity		g speed in ⁻¹	Maximum tightening		Cam Foll	lower number		Mass	Stud dia.
-	y gf	1111	111	torque	Witho	ut seal	Witl	n seal	ka	
Spherical outer rings	Cylindrical outer rings	Grease lubrication	Oil lubrication	N·m kgf·m	Spherical outer rings	Cylindrical outer rings	Spherical outer rings	Cylindrical outer rings	kg (approx.)	mm
790 81	2 090 213	*17 000	*22 000	2 0.2	CRV8H/3AS	CRV8XH/3AS	CRV8LLH/3AS	CRV8XLLH/3AS	0.010	4.826 ()
790 81	2 310 235	*17 000	*22 000	2 0.2	CRV8-1H/3AS	CRV8-1XH/3AS	CRV8-1LLH/3AS	CRV8-1XLLH/3AS	0.011	4.826 ()
1 080 110	3 000 310	*12 000	*15 000	4 0.4	CRV10H/3AS	CRV10XH/3AS	CRV10LLH/3AS	CRV10XLLH/3AS	0.020	6.350 (1/4)
1 080 110	3 300 335	*12 000	*15 000	4 0.4	CRV10-1H/3AS	CRV10-1XH/3AS	CRV10-1LLH/3AS	CRV10-1XLLH/3AS	0.022	6.350 (1/4)
1 380 140	4 600 470	9 000	*11 000	13 1.3	CRV12H/3AS	CRV12XH/3AS	CRV12LLH/3AS	CRV12XLLH/3AS	0.038	9.525 (³ / ₈)
1 710 174	5 350 545	9 000	*11 000	13 1.3	CRV14H/3AS	CRV14XH/3AS	CRV14LLH/3AS	CRV14XLLH/3AS	0.048	9.525 (³ / ₈)
2 060 210	7 400 755	7 100	9 200	18 1.9	CRV16H/3AS	CRV16XH/3AS	CRV16LLH/3AS	CRV16XLLH/3AS	0.080	11.112 (½)
2 430 248	8 350 850	7 100	9 200	18 1.9	CRV18H/3AS	CRV18XH/3AS	CRV18LLH/3AS	CRV18XLLH/3AS	0.096	11.112 (½)
2 840 290	11 400 1 160	5 400	7 000	24 2.4	CRV20H/3AS	CRV20XH/3AS	CRV20LLH/3AS	CRV20XLLH/3AS	0.140	12.700 (1/2)
3 250 330	12 500 1 280	5 400	7 000	24 24	CRV22H/3AS	CRV22XH/3AS	CRV22LLH/3AS	CRV22XLLH/3AS	0.165	12.700 (1/2)
3 600 365	16 300 1 660	4 800	6 200	51 5.2	CRV24H/3AS	CRV24XH/3AS	CRV24LLH/3AS	CRV24XLLH/3AS	0.240	15.875 (5/8)
4 050 410	17 600 1 800	4 800	6 200	51 5.2	CRV26H/3AS	CRV26XH/3AS	CRV26LLH/3AS	CRV26XLLH/3AS	0.280	15.875 (⁵ / ₈)
4 400 450	21 600 2 200	4 100	5 300	92 9.3	CRV28H/3AS	CRV28XH/3AS	CRV28LLH/3AS	CRV28XLLH/3AS	0.400	19.050 (¾)
4 850 495	23 200 2 360	4 100	5 300	92 9.3	CRV30H/3AS	CRV30XH/3AS	CRV30LLH/3AS	CRV30XLLH/3AS	0.440	19.050 (¾)
5 300 540	31 000 3 150	3 700	4 800	150 15	CRV32H/3AS	CRV32XH/3AS	CRV32LLH/3AS	CRV32XLLH/3AS	0.650	22.225 (½)
6 200 635	35 000 3 550	3 700	4 800	150 15	CRV36H/3AS	CRV36XH/3AS	CRV36LLH/3AS	CRV36XLLH/3AS	0.780	22.225 (%)
7 200 735	44 500 4 550	3 200	4 100	230 23	CRV40H/3AS	CRV40XH/3AS	CRV40LLH/3AS	CRV40XLLH/3AS	1.20	25.400 (1)
8 250 840	49 000 5 000	3 200	4 100	230 23	CRV44H/3AS	CRV44XH/3AS	CRV44LLH/3AS	CRV44XLLH/3AS	1.34	25.400 (1)
9 150 935	64 000 6 500	2 700	3 500	435 45	CRV48H/3AS	CRV48XH/3AS	CRV48LLH/3AS	CRV48XLLH/3AS	1.92	31.750 (11/4)
10 000 1 020	69 000 7 050	2 700	3 500	435 45	CRV52H/3AS	CRV52XH/3AS	CRV52LLH/3AS	CRV52XLLH/3AS	2.20	31.750 (11/4)
11 100 1 130	86 500 8 800	2 200	2 800	580 60	CRV56H/3AS	CRV56XH/3AS	CRV56LLH/3AS	CRV56XLLH/3AS	2.92	34.925 (1%)
13 200 1 350	113 000 11 500	2 200	2 800	760 78	CRV64H/3AS	CRV64XH/3AS	CRV64LLH/3AS	CRV64XLLH/3AS	4.32	38.100 (1½)
17 900 1 830	165 000 16 900	1 500	1 900	1 820 190	CRV80H/3AS	CRV80XH/3AS	CRV80LLH/3AS	CRV80XLLH/3AS	8.80	50.800 (2)
22 100 2 250	240 000 24 400	1 200	1 500	3 550 360	CRV96H/3AS	CRV96XH/3AS	CRV96LLH/3AS	CRV96XLLH/3AS	15.3	63.500 (2½)

Note: The limiting speed of cam followers incorporating a seal (those marked with an asterisk) is approximately 10,000 min⁻¹.

CRV type
CRV··X type
CRV··LL type
CRV··XLL type



D 12.700~152.400mm

CRV type (Full-complement roller type)

OD ¹⁾ mm					Во		dimensions	\$						Basic loa dynamic	d ratings static
D 0 -0.05	$d_1^{+0.025}$	C _0.130	F	В	B_1	B_2	G	G_1	B_3	C_1	n	a	e	N kç Cr	
12.700 (½)	4.826 (—)	8.731 (11/32)	5.75	10.3	23	12.7	No.10-32UNF	6.4	_	0.8	32)	_	10	3 400 350	3 750 385
12.700 (½)	4.826 (—)	9.525 (3/8)	5.75	11.1	27	15.9	No.10-32UNF	6.4	_	0.8	32)	_	10	3 950 405	4 550 465
15.875 (⁵ / ₈)	6.350 (1/4)	10.319 (¹³ / ₃₂)	8.11	11.9	27.8	15.9	½-28UNF	7.9	_	0.8	42)	_	12.5	5 550 565	7 600 770
15.875 (⁵ / ₈)	6.350 (1/4)	11.112 (1/16)	8.11	12.7	31.8	19.1	½-28UNF	7.9	_	0.8	42)	_	12.5	6 200 630	8 700 885
19.050 (3/4)	9.525 (3/8)	12.700 (1/2)	11	14.3	36.5	22.2	³ ⁄ ₈ -24UNF	9.5	6.35	0.8	4	3	15.5	8 050 825	13 300 1 360
22.225 (%)	9.525 (3/8)	12.700 (1/2)	11	14.3	36.5	22.2	³ ⁄ ₈ -24UNF	9.5	6.35	0.8	4	3	15.5	8 050 825	13 300 1 360
25.400 (1)	11.112 (7/16)	15.875 (5/8)	14	17.6	43	25.4	7/ ₁₆ -20UNF	12.7	6.35	0.8	4	3	19.5	11 700 1 190	18 900 1 920
28.575 (1½)	11.112 (7/16)	15.875 (5/8)	14	17.6	43	25.4	7/ ₁₆ -20UNF	12.7	6.35	0.8	4	3	19.5	11 700 1 190	18 900 1 920
31.750 (1 ¹ ⁄ ₄)	12.700 (1/2)	19.050 (¾)	18.47	20.6	52.4	31.8	½-20UNF	15.9	7.94	0.8	6	3	25	17 700 1 810	35 000 3 600
34.925 (1 ³ / ₈)	12.700 (1/2)	19.050 (¾)	18.47	20.6	52.4	31.8	½-20UNF	15.9	7.94	0.8	6	3	25	17 700 1 810	35 000 3 600
38.100 (1½)	15.875 (⁵ ⁄ ₈)	22.225 (7/8)	21	23.8	61.9	38.1	½-18UNF	19.1	9.53	0.8	6	4	27	21 100 2 150	45 500 4 650
41.275 (1½)	15.875 (⁵ ⁄ ₈)	22.225 (7/8)	21	23.8	61.9	38.1	½-18UNF	19.1	9.53	0.8	6	4	27	21 100 2 150	45 500 4 650
44.450 (1 ³ ⁄ ₄)	19.050 (3/4)	25.400 (1)	24.65	26.9	71.4	44.5	³ / ₄ -16UNF	22.2	11.11	0.8	6	4	36.5	28 400 2 900	60 500 6 150
47.625 (1%)	19.050 (¾)	25.400 (1)	24.65	26.9	71.4	44.5	³ / ₄ -16UNF	22.2	11.11	0.8	6	4	36.5	28 400 2 900	60 500 6 150
50.800 (2)	22.225 (7/8)	31.750 (11/4)	26.71	33.3	84.1	50.8	½-14UNF	25.4	12.7	8.0	6	5	36.5	41 000 4 200	87 500 8 950
57.150 (2 ¹ ⁄ ₄)	22.225 (7/8)	31.750 (11/4)	26.71	33.3	84.1	50.8	½-14UNF	25.4	12.7	8.0	6	5	36.5	41 000 4 200	87 500 8 950
63.500 (2½)	25.400 (1)	38.100 (1½)	31.15	39.6	96.8	57.2	1-14UNF	28.6	14.29	8.0	6	5	44	54 500 5 600	119 000 12 200
69.850 (2 ³ ⁄ ₄)	25.400 (1)	38.100 (1½)	31.15	39.6	96.8	57.2	1-14UNF	28.6	14.29	8.0	6	5	44	54 500 5 600	119 000 12 200
76.200 (3)	31.750 (11/4)	44.450 (1 ³ ⁄ ₄)	36.85	46	109.5	63.5	1 ¹ / ₄ -12UNF	31.8	15.88	8.0	8	5	53	76 500 7 800	177 000 18 000
82.550 (3 ¹ ⁄ ₄)	31.750 (11/4)	44.450 (1¾)	36.85	46	109.5	63.5	1 ¹ / ₄ -12UNF	31.8	15.88	0.8	8	5	53	76 500 7 800	177 000 18 000
88.900 (3½)	34.925 (1%)	50.800 (2)	44.5	52.3	122.2	69.9	1 ³ / ₈ -12UNF	34.9	17.46	0.8	8	5	60	84 500 8 650	214 000 21 800
101.600 (4)	38.100 (1½)	57.150 (2 ¹ ⁄ ₄)	44.5	58.7	147.6	88.9	1½-12UNF	38.1	19.05	0.8	8	5	63	106 000 10 800	244 000 24 900
127.000 (5)	50.800 (2)	69.850 (2 ³ ⁄ ₄)	68.7	71.4	200	128.6	2-12UNF	65.1	22.23	0.8	8	5	89	189 000 19 300	520 000 53 000
152.400 (6)	63.500 (2½)	82.550 (31/4)	81.35	84.2	236.6	152.4	2½-12UNF	76.2	25.4	0.8	8	5	110	260 000 26 500	675 000 68 500

Notes 1) $_{-0.025}^{-0}$ is the dimensional tolerance of the outside diameter D of the outer rings of the CRV··X and CRV··XLL types whose outside surface form is cylindrical. 2) The grease port is situated only in the front (in the left side face in the diagram above).

CRV··LL type (Full-complement roller type, with seal)

Accessories

Applicable bearing number	Grease nipple number	Plug number	Applicable hexagonal nut
8, 8-1	NIP-B3	SEN3	No. 10-32UNF
10, 10-1	NIP-B4	SEN4	½-28UNF
12~18	NIP-B4	SEN3. SEN4	$\frac{3}{8}$ -24UNF $\sim \frac{7}{16}$ -20UNF
20~22	NIP-B6	SEN3. SEN6	½-20UNF
24~30	NIP-B6	SEN4. SEN6	½-18UNF~¾-16UNF
32~44	NIP-B6	SEN5. SEN6	⁷ ⁄ ₈ -14UNF∼1-14UNF
48~96	NIP-B8	SEN5. SEN8	1½-12UNF~2½-12UNF

Note: The boundary dimensions of grease nipples and plugs are listed in **Table 3** on page 179 and **Table 5** on page 180.

-B6 SE

½-20UNF

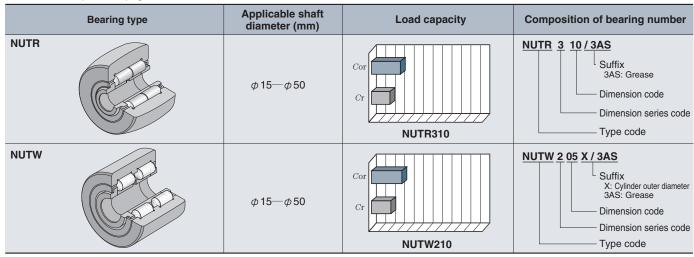
	d capacity		g speed in ⁻¹	Maximum tightening torque		Cam Follower number				Stud dia.
Spherical outer rings	gf Cylindrical outer rings	Grease lubrication	Oil lubrication	N·m kgf·m	Without Spherical outer rings	out seal Cylindrical outer rings	Witl Spherical outer rings	h seal Cylindrical outer rings	kg (approx.)	mm
790 81	2 090 213	*17 000	*22 000	2 0.2	CRV8/3AS	CRV8X/3AS	CRV8LL/3AS	CRV8XLL/3AS	0.010	4.826 (—)
790 81	2 310 235	*17 000	*22 000	2 0.2	CRV8-1/3AS	CRV8-1X/3AS	CRV8-1LL/3AS	CRV8-1XLL/3AS	0.011	4.826 (—)
1 080 110	3 000 310	*12 000	*15 000	4 0.4	CRV10/3AS	CRV10X/3AS	CRV10LL/3AS	CRV10XLL/3AS	0.020	6.350 (1/4)
1 080 110	3 300 335	*12 000	*15 000	4 0.4	CRV10-1/3AS	CRV10-1X/3AS	CRV10-1LL/3AS	CRV10-1XLL/3AS	0.022	6.350 (1/4)
1 380 140	4 600 470	9 000	*11 000	13 1.3	CRV12/3AS	CRV12X/3AS	CRV12LL/3AS	CRV12XLL/3AS	0.038	9.525 (3/8)
1 710 174	5 350 545	9 000	*11 000	13 1.3	CRV14/3AS	CRV14X/3AS	CRV14LL/3AS	CRV14XLL/3AS	0.048	9.525 (3/8)
2 060 210	7 400 755	7 100	9 200	18 1.9	CRV16/3AS	CRV16X/3AS	CRV16LL/3AS	CRV16XLL/3AS	0.080	11.112 (½)
2 430 248	8 350 850	7 100	9 200	18 1.9	CRV18/3AS	CRV18X/3AS	CRV18LL/3AS	CRV18XLL/3AS	0.096	11.112 (½)
2 840 290	11 400 1 160	5 400	7 000	24 2.4	CRV20/3AS	CRV20X/3AS	CRV20LL/3AS	CRV20XLL/3AS	0.140	12.700 (1/2)
3 250 330	12 500 1 280	5 400	7 000	24 2.4	CRV22/3AS	CRV22X/3AS	CRV22LL/3AS	CRV22XLL/3AS	0.165	12.700 (½)
3 600 365	16 300 1 660	4 800	6 200	51 5.2	CRV24/3AS	CRV24X/3AS	CRV24LL/3AS	CRV24XLL/3AS	0.240	15.875 (5/8)
4 050 410	17 600 1 800	4 800	6 200	51 5.2	CRV26/3AS	CRV26X/3AS	CRV26LL/3AS	CRV26XLL/3AS	0.280	15.875 (5/8)
4 400 450	21 600 2 200	4 100	5 300	92 9.3	CRV28/3AS	CRV28X/3AS	CRV28LL/3AS	CRV28XLL/3AS	0.400	19.050 (¾)
4 850 495	23 200 2 360	4 100	5 300	92 9.3	CRV30/3AS	CRV30X/3AS	CRV30LL/3AS	CRV30XLL/3AS	0.440	19.050 (¾)
5 300 540	31 000 3 150	3 700	4 800	150 15	CRV32/3AS	CRV32X/3AS	CRV32LL/3AS	CRV32XLL/3AS	0.650	22.225 (%)
6 200 635	35 000 3 550	3 700	4 800	150 15	CRV36/3AS	CRV36X/3AS	CRV36LL/3AS	CRV36XLL/3AS	0.780	22.225 (%)
7 200 735	44 500 4 550	3 200	4 100	230 23	CRV40/3AS	CRV40X/3AS	CRV40LL/3AS	CRV40XLL/3AS	1.20	25.400 (1)
8 250 840	49 000 5 000	3 200	4 100	230 23	CRV44/3AS	CRV44X/3AS	CRV44LL/3AS	CRV44XLL/3AS	1.34	25.400 (1)
9 150 935	64 000 6 500	2 700	3 500	435 45	CRV48/3AS	CRV48X/3AS	CRV48LL/3AS	CRV48XLL/3AS	1.92	31.750 (11/4)
10 000 1 020	69 000 7 050	2 700	3 500	435 45	CRV52/3AS	CRV52X/3AS	CRV52LL/3AS	CRV52XLL/3AS	2.20	31.750 (1 ¹ ⁄ ₄)
11 100 1 130	86 500 8 800	2 200	2 800	580 60	CRV56/3AS	CRV56X/3AS	CRV56LL/3AS	CRV56XLL/3AS	2.92	34.925 (1 ³ / ₈)
13 200 1 350	113 000 11 500	2 200	2 800	760 78	CRV64/3AS	CRV64X/3AS	CRV64LL/3AS	CRV64XLL/3AS	4.32	38.100 (1½)
17 900 1 830	165 000 16 900	1 500	1 900	1 820 190	CRV80/3AS	CRV80X/3AS	CRV80LL/3AS	CRV80XLL/3AS	8.80	50.800 (2)
22 100 2 250	240 000 24 400	1 200	1 500	3 550 360	CRV96/3AS	CRV96X/3AS	CRV96LL/3AS	CRV96XLL/3AS	15.3	63.500 (2½)

Note: The limiting speed of cam followers incorporating a seal (those marked with an asterisk) is approximately 10,000 min⁻¹.

Roller Followers (Yoke Type Track Rollers)

NTN Yoke Type Track Rollers are the rolling mechanisms whose outer ring rolls on a track. For example, these track rollers are applied to eccentric roller, guide roller, rocker arm roller, cam roller and pressure roller. For that, the outer ring is designed to a wall thickness so as to be resistible to high load and shock

load. Both spherical outer surface (rolling surface) and cylindrical outer surface are available for the outer ring. The spherical outer ring can withstand edge-load acting on the contact surface between the track and the track roller, while the cylindrical outer ring (Tail code: X) has track load capacity greater than the spherical outer ring.


	Bearing type	Applicable shaft diameter (mm)	Load capacity	Composition of bearing number
RNAB2		φ7—φ60	Cor	RNAB 2 02 Dimension code Dimension series code Type code
NAB2		ϕ 6— ϕ 50	NAB210	NAB 2 06 X Suffix Dimension code Dimension series code Type code
RNA22		φ10—φ58	Cor	RNA 22 / 6 LL / 3AS Suffix LL: Seal 3AS: Grease Dimension code Type code
NA22		ϕ 6— ϕ 50	NA2210LL	NA 22 06 X LL / 3AS Suffix X: Cylinder outer diameter LL: Seal 3AS: Grease Dimension code Dimension series code Type code
NATR		φ5—φ50	Cor Cr NATR50	NATR 30 X LL / 3AS Suffix X: Cylinder outer diameter LL: Seal 3AS: Grease Dimension code Type code
NATV		φ5—φ50	Cor Cr NATV50	NATV 25 LL / 3AS Suffix LL: Seal 3AS: Grease Dimension code Type code
NACV		ϕ 6.35 $-\phi$ 57.15	Cor Cr NACV80	NACV 32 X LL / 3AS Suffix X: Cylinder outer diameter LL: Seal 3AS: Grease Dimension code Type code

Listed load capacity values are based on basic bearing bore diameter of ϕ 50 (ϕ 44.45 for Type NACV).

Continued onto next page→

Track roller components	Features
Inscribed circle diameter: φ 20 Type with cage Inner ring: w/o inner ring Outer profile: Spherical	 Inner ring (NAB2 type only) is separable from outer ring, needle rollers, and cage. The cage guides needle rollers. Use a shaft (pin) with a flange or a thrust washer to guide the outer ring.
Inscribed circle diameter: φ 30 Type with cage Inner ring: w/ inner ring Outer profile: Cylindrical	 The accuracy and hardness of the shaft (pin) impact the performance of the RNAB2 type without inner ring. Please refer to the sections "Raceway surface accuracy" and "Material and hardness of raceway surface" (Page A-40).
Inscribed circle diameter: ϕ 6 Type with cage Inner ring: w/o inner ring Outer profile: Spherical Seal: w/ seal Grease: Prefilled	 The needle rollers and the cage are retained in the outer ring by a steel-plate-reinforced synthetic rubber seal. The cage guides needle rollers.
Inscribed circle diameter: \$\phi\$ 30 Type with cage Inner ring: w/ inner ring Outer profile: Cylindrical Seal: w/ seal Grease: Prefilled	 Use a shaft (pin) with a flange or a thrust washer to guide the outer ring. The accuracy and hardness of the shaft (pin) impact the performance of the RNA22 type without inner ring. Please refer to the sections "Raceway surface accuracy" and "Material and hardness of raceway surface" (Page A-40).
Inscribed circle diameter:	 Needle rollers guided by cage. Outer ring is guided in axial direction by thrust washer press-fit into inner ring. Labyrinth is formed between the outer ring and the thrust washer.
Inscribed circle diameter: ϕ 25 Full complement roller type Outer profile: Spherical Seal: w/ seal Grease: Prefilled	 Outer ring is guided in axial direction by thrust washer press-fit into inner ring. High load rating due to the full complement of needle rollers.
Inscribed circle diameter: ϕ 15.875 Full complement roller type Outer profile: Cylindrical Seal: w/ seal Grease: Prefilled	 Lower allowable running speed than bearing with cage. Labyrinth is formed between the outer ring and the thrust washer.

Continued from previous page

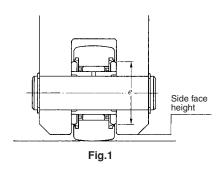
Bearing Tolerances

The dimensional accuracy, and profile accuracy and running accuracy about the bearing bore diameter (d), cylindrical roller outside diameter (D), outer rind width (C), and inner ring width (B) of the **Types NAB2** and **NA22** are as listed in **Table 4.3** in Sec. **4** "Bearing accuracy" (page A-26) (JIS Accuracy Class 0). The accuracies, and tolerances of assembled inner ring width (B), and spherical outside surface diameter (D) of the Type NACV, as well as the dimensional tolerances of roller set bore diameter (Fw) of the **Types RNAB2** and **RNA22** are listed in the relevant dimension table.

Radial internal clearance and bearing fits

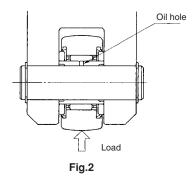
The tolerance class of a shaft to which a bearing having inner ring is installed shall be g6 (h6): when the shaft is directly used as a raceway surface (Types RNAB2 and RNA22), the tolerance class of the shaft shall be k5 (k6). In general, the outer ring is not fitted in a housing. Mounting relations

Table 1 Radial internal clearance


Unit: µm

									7111C. p. 1111			
Nomina			Clearance									
	mm)	C2		Ordinary		C3		C4				
over	Incl.	min	max	min	max	min	max	min	max			
3	6	0	10	3	17	15	30	20	40			
6	10	0	12	5	20	15	30	25	45			
10	18	0	15	5	25	15	35	30	55			
18	30	0	20	10	30	20	40	40	65			
30	50	0	25	10	40	25	55	50	80			
50	80	0	30	15	50	30	65	60	100			
80	100	0	35	20	55	35	75	70	115			

Installation


(1) The side face height in the roller follower mount must be made larger than "e" dimension described in applicable Dimensions Table. (**Fig.1**) In mounting, chamfer the mounting surface at R as small as possible (around $0.5\times45^{\circ}$) and bring the inner ring

and the end face of side plate in precise contact with one another.

(2) Where the roller follower is mounted, locate the inner ring oil hole within the non-load area (load free side). (Fig. 2)

If the oil hole locates within the load area, it would cause shorter life.

(3) The Types RNAB2, NAB2, RNA22 and NA22 feature separable configuration. Their outer ring is guided by a flange or thrust washer mounted onto the shaft (pin). Therefore, the guide surface needs to be finished at quality better than that obtained from turning: also, burrs must be thoroughly removed to achieve much smoother surface. Therefore, the guide surface must be finished more precisely than by latheturning and deburred completely for surface

Track roller components	Features
Inscribed circle diameter: ϕ 50 Double-row cylindrical Full-complement roller type Labyrinth seal Outer profile spherical Grease: Prefilled	 High load rating, best-suited to applications subjected to high load and shock load. A steel plate is press-fit into the outer ring to form a labyrinth with the side plates on both sides of the inner ring, and the side plates are held so as not to separate from one another and make a good seal. The inner ring and the side plates are tightened together in axial direction to prevent axial movement. The outer ring is guided in axial direction by the outer ring ribs and the end faces of cylindrical rollers.
Inscribed circle diameter: ϕ 25 Double-row cylindrical Full-complement roller type with center rib Labyrinth seal Outer profile: spherical Grease: Prefilled	 Type NUTW provides the following additional features. The highest load rating of all roller follower types. Due to the outer ring with inner rib, this type is good for axial and moment loads and runs smoothly depending on actual operating conditions. Good lubrication and longer life can be expected due to increase grease fill volume.

smoothing. In addition, when the guide surface is not hardened the outer ring must be guided at A-dimension shown in **Fig.3**. When it is hardened, even a little smaller guide surface can be used.

During assembly of the **Types RNA22** and **NA22**, be very carefully not to curl the lip of seal or damage the seal.

$$A \ge \frac{1}{2} (D+e)$$
For D and e dimensions refer to applicable Dimensions Table.

$$D = A = e$$
Fig.3

Where any of NTN roller followers was stubmounted, non-uniform load (bias load) could act on the bearing, inversely affected by fitting loose arising from further continued running.

Good care must be exercised of such fitting loose, for stable running of the equipment.

Lubrication

The types having a synthetic rubber seal (suffix LL) and the full complement roller type are prefilled with lithium soap grease, thereby these bearing types can be used in a temperature range of -20 to +120°C or can be continuously used at a temperature of 100°C or lower. When a bearing is always used a temperature of 0°C or lower, use of a bearing prefilled with cold temperature grease. For more information, contact NTN Engineering.

Lubricant feeding and replenishing into the bearing are done through an oil hole provided on the inner ring. In this case, the inner ring must be fitted so the oil hole locates within non-load area. For the full complement roller type roller followers **NATV**, **NACV**, **NUTR** and **NUTW** with no cage, it is necessary to shorten the grease replenishing interval

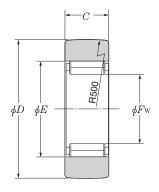
Further, a roller follower with cage and without seal is not filled up with lubrication grease. When needing a follower with grease-filled cage, feel free to contact NTN.

Note that **NTN** offers its unique bearing products prefilled with solid grease: these bearings feature minimized of lubricant leakage.

If low dust-emission characteristics in the atmosphere is necessary, NTN will offer bearings prefilled with low dust-emission grease. For more information, contact NTNEngineering.

The outer ring outer surface of bearing and the track surface must both be lubricated. Lack of lubrication for these surfaces can lead to premature bearing failure.

Track load capacity


Refer to the track load capacity data in page B-181.

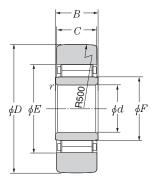
Outer ring strength

Refer to the outer ring strength data in page B-182.

Metric series	Inch series
with cage	Full-complement roller
without inner ring	with inner ring
without seal	with seal

RNAB2 type RNAB2··X type

RNAB2 type


OD ¹⁾		Dimensions		Basic	load ratings	Track loa	ad capacity
mm D		mm		dynamic	static		N
0	$F_{ m w}$	C	E		N kgf	Spherical	kgf Cvlindrical
-0.05	P w	C	Ľ.	$C_{ m r}$	Cor	outer ring	outer ring
16	7 ^{+0.02} +0.01		10	2 820 287	2 520 257	1 080 110	2 320 237
19	10 ^{+0.02} +0.01		13	4 700 480	5 350 550	1 370 140	3 570 364
24	12 ^{+0.02} +0.01		15	5 200 530	6 400 655	1 890 193	4 500 459
30	14 ^{+0.02} +0.01		20	9 700 990	9 550 975	2 600 265	6 910 705
32	16 ^{+0.02} +0.01		22	12 100 1 230	13 100 1 330	2 850 291	7 360 751
35	20 +0.03	33 20 11.8	26	13 300 1 360	15 700 1 610	3 210 327	8 060 822
40	22 +0.03 +0.02		29	19 500 1 980	23 800 2 430	3 820 390	12 700 1 290
47	25 ^{+0.03} +0.02		32	20 300 2 070	25 900 2 640	4 760 485	14 800 1 510
52	30 ^{+0.03} +0.02		37	22 700 2 320	32 000 3 250	5 470 558	16 400 1 670
62	38 ^{+0.04} +0.02		46	35 000 3 550	54 000 5 500	6 920 706	23 500 2 400
72	42 +0.04 +0.02		50	35 000 3 550	56 000 5 700	8 400 857	27 400 2 790
80	50 ^{+0.04} +0.02		58	39 500 4 050	69 500 7 100	9 660 985	28 600 2 920
85	55 +0.04 +0.03		63	40 000 4 100	72 500 7 400	10 600 1 080	30 500 3 110
90	60 +0.03 +0.03		68	41 500 4 250	78 000 8 000	11 400 1 160	32 300 3 290

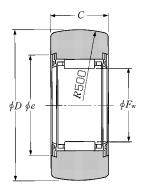
 $Note: 1) \ JIS \ Class \ 0 \ is \ the \ dimensional \ tolerance \ of \ the \ outside \ diameter \ {\it D} \ of \ the \ outer \ rings \ of \ the \ RNAB2 \cdots X \ type \ whose \ outside \ surface \ form \ is \ cylindrical.$

Limitin mi	g speed in ⁻¹	Roller Folio	ower number	Mass	OD ¹⁾ mm <i>D</i>
Grease lubrication	Oil lubrication	Spherical outer ring	Cylindrical outer ring	kg (approx.)	0 -0.05
21 000	27 000	RNAB 2/5T2	RNAB 2/5XT2	0.0085	16
15 000	20 000	RNAB 2/6T2	RNAB 2/6XT2	0.013	19
12 000	16 000	RNAB 2/8	RNAB 2/8X	0.021	24
11 000	14 000	RNAB 200	RNAB 200X	0.042	30
9 500	12 500	RNAB 201	RNAB 201X	0.049	32
7 500	10 000	RNAB 202	RNAB 202X	0.05	35
6 800	9 000	RNAB 203	RNAB 203X	0.088	40
6 000	8 000	RNAB 204	RNAB 204X	0.13	47
5 000	6 500	RNAB 205	RNAB 205X	0.15	52
4 000	5 500	RNAB 206	RNAB 206X	0.255	62
3 500	4 600	RNAB 207	RNAB 207X	0.375	72
3 000	4 000	RNAB 208	RNAB 208X	0.42	80
2 700	3 600	RNAB 209	RNAB 209X	0.435	85
2 500	3 300	RNAB 210	RNAB 210X	0.481	90

Metric series	Inch series
with cage	Full-complement roller
without inner ring	with inner ring
without seal	with seal

NAB2 type NAB2··X type

NAB2 type


						Basic	load ratings	Track loa	d capacity
		mn	n			dynamic	static		N
d	В	C	E	F	$r_{\rm s min}^{2)}$		kgf	Spherical	gf Cylindrical
							Cor	outer ring	outer ring
6	10	9.8	13	10	0.5	4 700 480	5 350 550	1 370 140	3 570 364
8	10	9.8	15	12	0.5	5 200 530	6 400 655	1 890 193	4 500 459
10	12	11.8	20	14	0.5	9 700 990	9 550 975	2 600 265	6 910 705
12	12	11.8	22	16	0.5	12 100 1 230	13 100 1 330	2 850 291	7 360 751
15	12	11.8	26	20	0.5	13 300 1 360	15 700 1 610	3 210 327	8 060 822
17	16	15.8	29	22	0.5	19 500 1 980	23 800 2 430	3 820 390	12 700 1 290
20	16	15.8	32	25	0.5	20 300 2 070	25 900 2 640	4 760 485	14 800 1 510
25	16	15.8	37	30	0.5	22 700 2 320	32 000 3 250	5 470 558	16 400 1 670
30	20	19.8	46	38	1	35 000 3 550	54 000 5 500	6 920 706	23 500 2 400
35	20	19.8	50	42	1	35 000 3 550	56 000 5 700	8 400 857	27 400 2 790
40	20	19.8	58	50	1.5	39 500 4 050	69 500 7 100	9 660 985	28 600 2 920
45	20	19.8	63	55	1.5	40 000 4 100	72 500 7 400	10 600 1080	30 500 3 110
50	20	19.8	68	60	1.5	41 500 4 250	78 000 8 000	11 400 1160	32 300 3 290
	6 8 10 12 15 17 20 25 30 35 40 45	6 10 8 10 10 12 12 12 15 12 17 16 20 16 25 16 30 20 35 20 40 20 45 20	d B C 6 10 9.8 8 10 9.8 10 12 11.8 12 12 11.8 15 12 11.8 17 16 15.8 20 16 15.8 25 16 15.8 30 20 19.8 35 20 19.8 40 20 19.8 45 20 19.8	6 10 9.8 13 8 10 9.8 15 10 12 11.8 20 12 12 11.8 22 15 12 11.8 26 17 16 15.8 29 20 16 15.8 32 25 16 15.8 37 30 20 19.8 46 35 20 19.8 50 40 20 19.8 58 45 20 19.8 63	mm d B C E F 6 10 9.8 13 10 8 10 9.8 15 12 10 12 11.8 20 14 12 12 11.8 22 16 15 12 11.8 26 20 17 16 15.8 29 22 20 16 15.8 32 25 25 16 15.8 37 30 30 20 19.8 46 38 35 20 19.8 50 42 40 20 19.8 58 50 45 20 19.8 63 55	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d B C E F rs min² Cr 6 10 9.8 13 10 0.5 4700 480 8 10 9.8 15 12 0.5 5200 530 10 12 11.8 20 14 0.5 9700 990 12 12 11.8 22 16 0.5 12 100 1230 15 12 11.8 26 20 0.5 13 300 1300 17 16 15.8 29 22 0.5 19 500 1980 20 16 15.8 32 25 0.5 20 300 2070 25 16 15.8 37 30 0.5 22 700 2320 30 20 19.8 46 38 1 35 000 3550 35 20 19.8 50 42 1 35 000 400 40 20 19.8 58 50 1.5 40 000 400 45	dynamic static d B C E F rs min² Cr Cor Cor 6 10 9.8 13 10 0.5 4700 480 5350 550 8 10 9.8 15 12 0.5 5200 530 6400 655 10 12 11.8 20 14 0.5 9700 990 9550 975 12 12 11.8 22 16 0.5 12 100 1 230 13 100 1 330 15 12 11.8 26 20 0.5 13 300 1 360 15 700 1 610 17 16 15.8 29 22 0.5 19 500 1 980 23 800 2 430 20 16 15.8 32 25 0.5 20 300 2 070 25 900 2 640 25 16 15.8 37 30 0.5 22 700 2 320 32 500 30 20 19.8 46 38 <th>dynamic static d B C E F rs min² Cr Kgf Cor Spherical outer ring 6 10 9.8 13 10 0.5 4700 480 5350 1 370 140 8 10 9.8 15 12 0.5 5200 6400 1 890 655 10 12 11.8 20 14 0.5 9700 9550 265 2600 975 265 12 12 11.8 22 16 0.5 12 100 13 100 2850 2850 265 12 12 11.8 22 16 0.5 12 100 13 100 291 2850 291 15 12 11.8 26 20 0.5 13 300 15 700 32 10 32 10 32 7 32 10 32 7 17 16 15.8 29 22 0.5 19 500 23 800 38 20 38 20 32 7 32 00 38 20 38 20 38 20 39 20 38 20 39 20 43 20 39 20 4430 390 390 20 4430 390 20 440 485 20 32 20 30 20 32 20 30 32 20 32</th>	dynamic static d B C E F rs min² Cr Kgf Cor Spherical outer ring 6 10 9.8 13 10 0.5 4700 480 5350 1 370 140 8 10 9.8 15 12 0.5 5200 6400 1 890 655 10 12 11.8 20 14 0.5 9700 9550 265 2600 975 265 12 12 11.8 22 16 0.5 12 100 13 100 2850 2850 265 12 12 11.8 22 16 0.5 12 100 13 100 291 2850 291 15 12 11.8 26 20 0.5 13 300 15 700 32 10 32 10 32 7 32 10 32 7 17 16 15.8 29 22 0.5 19 500 23 800 38 20 38 20 32 7 32 00 38 20 38 20 38 20 39 20 38 20 39 20 43 20 39 20 4430 390 390 20 4430 390 20 440 485 20 32 20 30 20 32 20 30 32 20 32

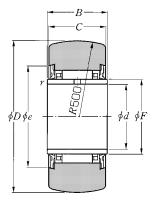
Notes:1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the NAB2 · X type whose outside surface form is cylindrical. 2) The minimum value of chamfer dimension r.

Limitin o mi	g speed n ⁻¹	Roller Folio	ower number	Mass	OD ¹⁾ mm <i>D</i>
Grease lubrication	Oil lubrication	Spherical outer ring	Cylindrical outer ring	kg (approx.)	0 -0.05
15 000	20 000	NAB 2/6T2	NAB 2/6XT2	0.017	19
12 000	16 000	NAB 2/8	NAB 2/8X	0.026	24
11 000	14 000	NAB 200	NAB 200X	0.049	30
9 500	12 500	NAB 201	NAB 201X	0.057	32
7 500	10 000	NAB 202	NAB 202X	0.062	35
6 800	9 000	NAB 203	NAB 203X	0.107	40
6 000	8 000	NAB 204	NAB 204X	0.151	47
5 000	6 500	NAB 205	NAB 205X	0.174	52
4 000	5 500	NAB 206	NAB 206X	0.32	62
3 500	4 600	NAB 207	NAB 207X	0.439	72
3 000	4 000	NAB 208	NAB 208X	0.526	80
2 700	3 600	NAB 209	NAB 209X	0.551	85
2 500	3 300	NAB 210	NAB 210X	0.61	90

Metric series	Inch series
with cage	Full-complement roller
without inner ring	with inner ring
without seal	with seal

RNA22··LL type RNA22··XLL type

RNA22 ·· LL type


OD ¹⁾		Din	nensions		Basic lo	ad ratings	Track load capacity		
mm D			mm		dynamic	static	N		
0		$F_{ m w}$	C	E		N kgf	k Spherical	gf Cvlindrical	
-0.05		1 w	· ·	П	$C_{ m r}$	Cor	outer ring	outer ring	
19	10	+0.022 +0.013	11.8	16	4 550 460	4 250 435	1 380 141	4 400 445	
24	12	+0.027 +0.016	11.8	18	5 150 525	5 250 535	1 900 193	5 500 565	
30	14	$^{+0.027}_{+0.016}$	13.8	20	7 550 770	9 000 915	2 620 267	7 550 770	
32	16	+0.027 +0.016	13.8	22	8 100 830	10 300 1 050	2 860 291	8 050 820	
35	20	$^{+0.033}_{+0.020}$	13.8	26	9 850 1 010	14 100 1 440	3 200 325	8 800 900	
40	22	$^{+0.033}_{+0.020}$	15.8	28	10 400 1 060	15 600 1 590	3 850 390	10 900 1 110	
47	25	$^{+0.033}_{+0.020}$	17.8	33	16 900 1 730	22 900 2 340	4 700 480	14 800 1 510	
52	30	$^{+0.033}_{+0.020}$	17.8	38	17 900 1 820	25 900 2 640	5 550 565	16 400 1 670	
62	35	$^{+0.041}_{+0.025}$	19.8	43	21 400 2 190	34 500 3 500	6 950 710	22 200 2 260	
72	42	$^{+0.041}_{+0.025}$	22.7	50	26 300 2 690	47 500 4 850	8 050 820	28 700 2 930	
80	48	+0.041 +0.025	22.7	57	28 400 2 900	55 000 5 600	9 800 1 000	32 000 3 250	
85	52	$^{+0.049}_{+0.030}$	22.7	62	29 300 2 990	58 500 5 950	10 400 1 060	34 000 3 450	
90	58	$^{+0.049}_{+0.030}$	22.7	68	31 000 3 200	66 000 6 700	11 400 1 160	36 000 3 650	

 $Note: 1) \ JIS \ Class \ 0 \ is \ the \ dimensional \ tolerance \ of \ the \ outside \ diameter \ {\it D} \ of \ the \ outer \ rings \ of \ the \ RNA22 \cdots XLL \ type \ whose \ outside \ surface \ form \ is \ cylindrical.$

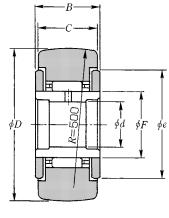
Limiting speed min ⁻¹ Grease lubrication	Roller Folio Spherical outer ring	ower number Cylindrical outer ring	Mass kg (approx.)	OD ¹⁾ mm D 0 -0.05
10 000	RNA22/6LL/3AS	RNA22/6XLL/3AS	0.018	19
10 000	RNA22/8LL/3AS	RNA22/8XLL/3AS	0.027	24
10 000	RNA2200LL/3AS	RNA2200XLL/3AS	0.052	30
9 500	RNA2201LL/3AS	RNA2201XLL/3AS	0.057	32
7 500	RNA2202LL/3AS	RNA2202XLL/3AS	0.060	35
7 000	RNA2203LL/3AS	RNA2203XLL/3AS	0.094	40
6 000	RNA2204LL/3AS	RNA2204XLL/3AS	0.152	47
5 000	RNA2205LL/3AS	RNA2205XLL/3AS	0.179	52
4 300	RNA2206LL/3AS	RNA2206XLL/3AS	0.284	62
3 600	RNA2207LL/3AS	RNA2207XLL/3AS	0.432	72
3 100	RNA2208LL/3AS	RNA2208XLL/3AS	0.530	80
2 900	RNA2209LL/3AS	RNA2209XLL/3AS	0.545	85
2 600	RNA2210LL/3AS	RNA2210XLL/3AS	0.563	90

Metric series	Inch series
with cage	Full-complement roller
without inner ring	with inner ring
without seal	with seal

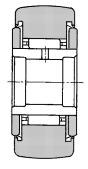
NA22··LL type NA22 · · XLL type

NA22 ·· LL type

D 19∼90mm


OD ¹⁾	Dimensions							load ratings	Track load capacity	
mm D			n	nm			dynamic	static N	N	
0 -0.05	d	В	C	e	F	rs min ²⁾	$C_{ m r}$	kgf $C_{ m or}$	kgf Spherical outer ring	Cylindrical outer ring
19	6	12	11.8	16	10	0.3	4 550 460	4 250 435	1 380 141	4 400 445
24	8	12	11.8	18	12	0.3	5 150 525	5 250 535	1 900 193	5 500 565
30	10	14	13.8	20	14	0.3	7 550 770	9 000 915	2 620 267	7 550 770
32	12	14	13.8	22	16	0.3	8 100 830	10 300 1 050	2 860 291	8 050 820
35	15	14	13.8	26	20	0.3	9 850 1 010	14 100 1 440	3 200 325	8 800 900
40	17	16	15.8	28	22	0.3	10 400 1 060	15 600 1 590	3 850 390	10 900 1 110
47	20	18	17.8	33	25	0.3	16 900 1 730	22 900 2 340	4 700 480	14 800 1 510
52	25	18	17.8	38	30	0.3	17 900 1 820	25 900 2 640	5 550 565	16 400 1 670
62	30	20	19.8	43	35	0.3	21 400 2 190	34 500 3 500	6 950 710	22 200 2 260
72	35	23	22.7	50	42	0.6	26 300 2 690	47 500 4 850	8 050 820	28 700 2 930
80	40	23	22.7	57	48	0.6	28 400 2 900	55 000 5 600	9 800 1 000	32 000 3 250
85	45	23	22.7	62	52	0.6	29 300 2 990	58 500 5 950	10 400 1 060	34 000 3 450
90	50	23	22.7	68	58	0.6	31 000 3 200	66 000 6 700	11 400 1 160	36 000 3 650

Notes:1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the NA22 · XLL type whose outside surface form is cylindrical. 2) The minimum value of chamfering dimension r.


Limiting speed min ⁻¹ Grease lubrication	Roller Folio Spherical outer ring	ower number Cylindrical outer ring	Mass kg (approx.)	OD ¹⁾ mm D 0 -0.05
10 000	NA22/6LL/3AS	NA22/6XLL/3AS	0.023	19
10 000	NA22/8LL/3AS	NA22/8XLL/3AS	0.035	24
10 000	NA2200LL/3AS	NA2200XLL/3AS	0.060	30
9 500	NA2201LL/3AS	NA2201XLL/3AS	0.067	32
7 500	NA2202LL/3AS	NA2202XLL/3AS	0.075	35
7 000	NA2203LL/3AS	NA2203XLL/3AS	0.113	40
6 000	NA2204LL/3AS	NA2204XLL/3AS	0.176	47
5 000	NA2205LL/3AS	NA2205XLL/3AS	0.209	52
4 300	NA2206LL/3AS	NA2206XLL/3AS	0.322	62
3 600	NA2207LL/3AS	NA2207XLL/3AS	0.506	72
3 100	NA2208LL/3AS	NA2208XLL/3AS	0.623	80
2 900	NA2209LL/3AS	NA2209XLL/3AS	0.638	85
2 600	NA2210LL/3AS	NA2210XLL/3AS	0.682	90

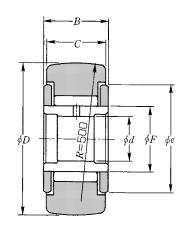
Metric series	Inch series
with cage	Full-complement roller
without inner ring	with inner ring
without seal	with seal

NATR type NATR·X type **NATR**··LL type NATR · · XLL type

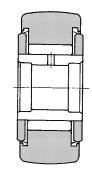
NATR type (with cage)

NATR · · LL type (sealed, with cage)

D 16∼90mm


OD ¹⁾ mm			nsions im			Basic I dynamic	oad ratings static	1	d capacity
0 -0.05	d	В	C	e	F	$C_{ m r}$	kgf $C_{ m or}$	k Spherical outer ring	gf Cylindrical outer ring
16	5	$12 {0 \atop -0.180}$	11	12	8	4 050 415	4 200 430	1 080 110	3 400 350
19	6	12 $\begin{array}{c} 0 \\ -0.180 \end{array}$	11	14	10	4 750 480	5 400 555	1 380 141	4 050 415
24	8	15 $\begin{array}{c} 0 \\ -0.180 \end{array}$	14	19	12	6 900 705	7 700 785	1 900 193	6 650 680
30	10	15 $\begin{array}{c} 0 \\ -0.180 \end{array}$	14	23	15	7 850 800	9 650 985	2 620 267	7 700 785
32	12	15 $\begin{array}{c} 0 \\ -0.180 \end{array}$	14	25	17	8 050 820	10 300 1 050	2 860 291	8 200 835
35	15	19 $\begin{array}{c} 0 \\ -0.210 \end{array}$	18	27	20	13 300 1 360	2 0800 2 120	3 200 325	11 900 1 220
40	17	21 $^{0}_{-0.210}$	20	32	22	14 000 1 430	22 800 2 330	3 850 390	14 500 1 480
47	20	$25 {0 \atop -0.210}$	24	37	25	20 700 2 110	33 500 3 450	4 700 480	21 000 2 150
52	25	$25 {0 \atop -0.210}$	24	42	30	22 800 2 320	40 500 4 100	5 500 565	23 300 2 370
62	30	$\begin{array}{cc} 29 & 0 \\ -0.210 \end{array}$	28	51	38	36 000 3 650	66 000 6 750	6 950 710	33 000 3 350
72	35	$\begin{array}{cc} 29 & 0 \\ -0.210 \end{array}$	28	58	44.5	39 000 3 950	77 000 7 850	8 050 820	37 000 3 750
80	40	$\begin{array}{cc} 32 & 0 \\ -0.250 \end{array}$	30	66	50	49 500 5 050	92 500 9 400	9 800 1 000	44 500 4 500
85	45	$\begin{array}{cc} 32 & 0 \\ -0.250 \end{array}$	30	71	55	51 500 5 250	100 000 10 200	10 400 1 060	47 000 4 800
90	50	$\begin{array}{cc} 32 & 0 \\ -0.250 \end{array}$	30	76	60	53 000 5 450	108 000 11 000	11 400 1 160	50 000 5 100

Note:1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the NATR \cdot X and NATR \cdot XLL types whose outside surface form is cylindrical.

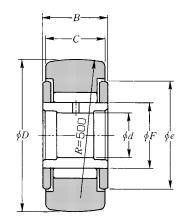

Limitin g	g speed		Rolle	r Follower number		Mass	OD ¹⁾ mm
mı	n '	Withou	ıt seal	With	ı seal	ka	D
Grease lubrication	Oil lubrication	Spherical outer ring	Cylindrical outer ring	Spherical outer ring	Cylindrical outer ring	kg (approx.)	0 -0.05
*19 000	*25 000	NATR5	NATR5X	NATR5LL/3AS	NATR5XLL/3AS	0.018	16
*15 000	*20 000	NATR6	NATR6X	NATR6LL/3AS	NATR6XLL/3AS	0.025	19
*12 000	*16 000	NATR8	NATR8X	NATR8LL/3AS	NATR8XLL/3AS	0.042	24
10 000	*13 000	NATR10	NATR10X	NATR10LL/3AS	NATR10XLL/3AS	0.061	30
9 000	*12 000	NATR12CT	NATR12XCT	NATR12CLLT/3AS	NATR12XCLLT/3AS	0.069	32
7 500	10 000	NATR15	NATR15X	NATR15LL/3AS	NATR15XLL/3AS	0.098	35
7 000	9 000	NATR17	NATR17X	NATR17LL/3AS	NATR17XLL/3AS	0.140	40
6 000	8 000	NATR20	NATR20X	NATR20LL/3AS	NATR20XLL/3AS	0.246	47
5 000	6 500	NATR25	NATR25X	NATR25LL/3AS	NATR25XLL/3AS	0.275	52
4 000	5 500	NATR30	NATR30X	NATR30LL/3AS	NATR30XLL/3AS	0.470	62
3 300	4 500	NATR35	NATR35X	NATR35LL/3AS	NATR35XLL/3AS	0.635	72
3 000	4 000	NATR40	NATR40X	NATR40LL/3AS	NATR40XLL/3AS	0.875	80
2 700	3 600	NATR45	NATR45X	NATR45LL/3AS	NATR45XLL/3AS	0.910	85
2 500	3 300	NATR50	NATR50X	NATR50LL/3AS	NATR50XLL/3AS	0.960	90
Remark: The li	imiting speed o	f roller followers in	ncorporating a sea	I (those marked with an a	sterisk) is approximately 10	0.000 min ⁻¹ .	

Metric series	Inch series
with cage	Full-complement roller
without inner ring	with inner ring
without seal	with seal

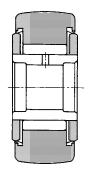
NATV type
NATV··X type
NATV··LL type
NATV··XLL type

NATV type (Full-complement roller type)

NATV··LL type (Full-complement roller type, sealed)


OD ¹⁾ mm <i>D</i>			nsions im			Basic le dynamic	oad ratings static	1	d capacity
0 -0.05	d	В	C	e	F	$C_{ m r}$	kgf $C_{ m or}$	k Spherical outer ring	gf Cylindrical outer ring
16	5	$ \begin{array}{ccc} 12 & 0 \\ -0.180 \end{array} $	11	12	8	6 500 665	9 350 955	1 080 110	3 400 350
19	6	$ \begin{array}{ccc} 12 & 0 \\ -0.180 \end{array} $	11	14	10	7 450 760	11 700 1 190	1 380 141	4 050 415
24	8	15 0 -0.180	14	19	12	10 700 1 090	16 200 1 650	1 900 193	6 650 680
30	10	15 0 -0.180	14	23	15	12 000 1 230	20 300 2 070	2 620 267	7 700 785
32	12	15 0 -0.180	14	25	17	13 000 1 330	23 000 2 350	2 860 291	8 200 835
35	15	$ \begin{array}{ccc} 19 & 0 \\ -0.210 \end{array} $	18	27	20	18 400 1 870	38 000 3 900	3 200 325	11 900 1 220
40	17	21 $\begin{array}{c} 0 \\ -0.210 \end{array}$	20	32	22	19 400 1 980	42 000 4 250	3 850 390	14 500 1 480
47	20	$\begin{array}{cc} 25 & 0 \\ -0.210 \end{array}$	24	37	25	28 800 2 940	61 000 6 250	4 700 480	21 000 2 150
52	25	$\begin{array}{cc} 25 & 0 \\ -0.210 \end{array}$	24	42	30	31 500 3 200	73 500 7 500	5 500 565	23 300 2 370
62	30	$\begin{array}{cc} 29 & 0 \\ -0.210 \end{array}$	28	51	38	47 500 4 850	115 000 11 700	6 950 710	33 000 3 350
72	35	$\begin{array}{cc} 29 & 0 \\ -0.210 \end{array}$	28	58	44.5	52 000 5 300	134 000 13 600	8 050 820	37 000 3 750
80	40	$\begin{array}{cc} 32 & 0 \\ -0.250 \end{array}$	30	66	50	68 500 7 000	171 000 17 500	9 800 1 000	44 500 4 500
90	50	$\begin{array}{cc} 32 & 0 \\ -0.250 \end{array}$	30	76	60	76 000 7 750	205 000 20 900	11 400 1 160	50 000 5 100

Note:1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the NATV \cdot X and NATV \cdot XLL types whose outside surface form is cylindrical.


	g speed		Roller Fo	llower number		Mass	OD¹) mm
mi	n ⁻ '	Witho	out seal	With	n seal	l.a.	D
Grease lubrication	Oil lubrication	Spherical outer ring	Cylindrical outer ring	Spherical outer ring	Cylindrical outer ring	kg (approx.)	0 -0.05
*13 000	*16 000	NATV5/3AS	NATV5X/3AS	NATV5LL/3AS	NATV5XLL/3AS	0.020	16
10 000	*13 000	NATV6/3AS	NATV6X/3AS	NATV6LL/3AS	NATV6XLL/3AS	0.027	19
8 500	*11 000	NATV8/3AS	NATV8X/3AS	NATV8LL/3AS	NATV8XLL/3AS	0.044	24
6 500	8 500	NATV10/3AS	NATV10X/3AS	NATV10LL/3AS	NATV10XLL/3AS	0.065	30
6 000	7 500	NATV12/3AS	NATV12X/3AS	NATV12LL/3AS	NATV12XLL/3AS	0.074	32
5 000	6 500	NATV15/3AS	NATV15X/3AS	NATV15LL/3AS	NATV15XLL/3AS	0.102	35
4 500	6 000	NATV17/3AS	NATV17X/3AS	NATV17LL/3AS	NATV17XLL/3AS	0.145	40
4 000	5 000	NATV20/3AS	NATV20X/3AS	NATV20LL/3AS	NATV20XLL/3AS	0.254	47
3 300	4 500	NATV25/3AS	NATV25X/3AS	NATV25LL/3AS	NATV25XLL/3AS	0.285	52
2 600	3 500	NATV30/3AS	NATV30X/3AS	NATV30LL/3AS	NATV30XLL/3AS	0.481	62
2 200	2 900	NATV35/3AS	NATV35X/3AS	NATV35LL/3AS	NATV35XLL/3AS	0.647	72
2 000	2 600	NATV40/3AS	NATV40X/3AS	NATV40LL/3AS	NATV40XLL/3AS	0.890	80
1 600	2 100	NATV50/3AS	NATV50X/3AS	NATV50LL/3AS	NATV50XLL/3AS	0.990	90
Note: The limit	ing speed of ro	ller followers incorpor	ating a seal (those mark	ked with an asterisk) is ap	oproximately 10,000 min ⁻¹ .		

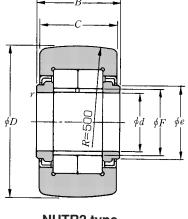
Inch series	Metric series
Full-complement roller	with cage
with inner ring	without inner ring
with seal	without seal

NACV type NACV··X type NACV··LL type NACV··XLL type

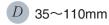
NACV type (Full-complement roller type)

NACV··LL type (Full-complement roller type, sealed)

D 19.050~152.400mm


OD ¹⁾ mm(¹ /25.4mm) D		Dimensic mm (¹ /25.4				dynamic	Basic load ratings dynamic static N		
0 -0.05	d	B 0 -0.250	$C_{-0.130}^{0}$	e	F		\overline{gf} C_{or}		
19.050 (3/4)	6.350 (1/4) +0.005 -0.010	14.288 (⁹ / ₁₆)	12.700 (1/2)	15.5	11	8 050 825	13 300 1 360		
22.225 (½)	6.350 (1/4) +0.005 -0.010	14.288 (%)	12.700 (1/2)	15.5	11	8 050 825	13 300 1 360		
25.400 (1)	7.938 ($^{5}_{16}$) $^{+0.005}_{-0.010}$	17.462 (¹¹ / ₁₆)	15.875 (⁵ / ₈)	19.5	14	11 700 1 190	18 900 1 920		
28.575 (1½)	7.938 ($^{5}_{16}$) $^{+0.005}_{-0.010}$	17.462 (¹¹ / ₁₆)	15.875 (⁵ ⁄ ₈)	19.5	14	11 700 1 190	18 900 1 920		
31.750 (11/4)	$9.525 \left(\frac{3}{8}\right) ^{+0.005}_{-0.010}$	20.638 (13/16)	19.050 (3/4)	25	18.47	17 700 1 810	35 000 3 600		
34.925 (1 ³ / ₈)	$9.525 \left(\frac{3}{8}\right) ^{+0.005}_{-0.010}$	20.638 (13/16)	19.050 (3/4)	25	18.47	17 700 1 810	35 000 3 600		
38.100 (1½)	11.112 (7/16) +0.005 -0.010	23.812 (¹⁵ / ₁₆)	22.225 (7/8)	27	21	21 100 2 150	45 500 4 650		
41.275 (1 ⁵ ⁄ ₈)	11.112 (7/16) +0.005 -0.010	23.812 (¹⁵ / ₁₆)	22.225 (7/8)	27	21	21 100 2 150	45 500 4 650		
44.450 (1 ³ ⁄ ₄)	12.700 (1/2) +0.005 -0.010	26.988 (1 ¹ / ₁₆)	25.400 (1)	27	24.65	28 400 2 900	60 500 6 150		
47.625 (1 ⁷ / ₈)	12.700 (1/2) +0.005 -0.010	26.988 (1 ¹ / ₁₆)	25.400 (1)	27	24.65	28 400 2 900	60 500 6 150		
50.800 (2)	15.875 (5/8) +0.005 -0.010	33.338 (1 ⁵ / ₁₆)	31.750 (1 ¹ ⁄ ₄)	36.5	26.71	41 000 4 200	87 500 8 950		
57.150 (2 ¹ ⁄ ₄)	15.875 (5/8) +0.005 -0.010	33.338 (1 ⁵ / ₁₆)	31.750 (11/4)	36.5	26.71	41 000 4 200	87 500 8 950		
63.500 (2½)	19.050 (3/4) +0.005 -0.010	39.688 (1 ⁹ / ₁₆)	38.100 (1½)	44	31.15	54 500 5 600	119 000 12 200		
69.850 (2 ³ ⁄ ₄)	19.050 (3/4) +0.005 -0.010	39.688 (1 ⁹ / ₁₆)	38.100 (1½)	44	31.15	54 500 5 600	119 000 12 200		
76.200 (3)	25.400 (1) +0.002 -0.013	46.038 (1 ¹³ / ₁₆)	44.450 (1 ³ ⁄ ₄)	53	36.85	76 500 7 800	177 000 18 000		
82.550 (3 ¹ ⁄ ₄)	25.400 (1) +0.002 -0.013	46.038 (1 ¹³ / ₁₆)	44.450 (1 ³ ⁄ ₄)	53	36.85	76 500 7 800	177 000 18 000		
88.900 (3½)	28.575 (1 ¹ / ₈) ^{+0.002} _{-0.013}	52.388 (2 ¹ / ₁₆)	50.800 (2)	60	44.5	84 500 8 650	214 000 21 800		
101.600 (4)	31.750 (11/4) +0.002 -0.013	58.738 (2 ⁵ / ₁₆)	57.150 (2 ¹ ⁄ ₄)	63	44.5	106 000 10 800	244 000 24 900		
127.000 (5)	44.450 (13/4) +0.002 -0.013	73.025 (2 ⁷ / ₈)	69.850 (2 ³ ⁄ ₄)	89	68.7	189 000 19 300	520 000 53 000		
152.400 (6)	57.150 (2 ¹ ⁄ ₄) ^{+0.002} _{-0.013}	85.725 (3 ³ / ₈)	82.550 (31/4)	110	81.35	260 000 26 500	675 000 68 500		

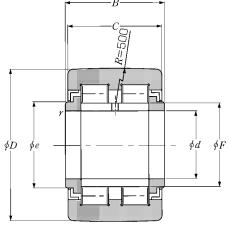
Note: 1. $-\frac{0}{0.025}$ is the dimensional tolerance of the outside diameter D of the outer rings of the NACV··X and NACV··XLL types whose outside surface form is cylindrical


Track loa	d capacity		ig speed			Mass	OD ¹⁾		
	N :gf	m	in ⁻¹	With	out seal	Wit	h seal	ka	mm($^{1/25.4}$ mm)
Spherical outer ring	•	Grease lubrication	Oil lubrication	Spherical outer ring	Cylindrical outer ring	Spherical outer ring	Cylindrical outer ring	kg (approx.)	0 -0.05
1 380 140	4 600 470	9 000	*11 000	NACV12/3AS	NACV12X/3AS	NACV12LL/3AS	NACV12XLL/3AS	0.027	19.050 (¾)
1 710 174	5 350 545	9 000	*11 000	NACV14/3AS	NACV14X/3AS	NACV14LL/3AS	NACV14XLL/3AS	0.036	22.225 (%)
2 060 210	7 400 755	7 100	9 200	NACV16/3AS	NACV16X/3AS	NACV16LL/3AS	NACV16XLL/3AS	0.059	25.400 (1)
2 430 248	8 350 850	7 100	9 200	NACV18/3AS	NACV18X/3AS	NACV18LL/3AS	NACV18XLL/3AS	0.073	28.575 (1½)
2 840 290	11 400 1 160	5 400	7 000	NACV20/3AS	NACV20X/3AS	NACV20LL/3AS	NACV20XLL/3AS	0.109	31.750 (1 ¹ ⁄ ₄)
3 250 330	12 500 1 280	5 400	7 000	NACV22/3AS	NACV22X/3AS	NACV22LL/3AS	NACV22XLL/3AS	0.132	34.925 (1 ³ / ₈)
3 600 365	16 300 1 660	4 800	6 200	NACV24/3AS	NACV24X/3AS	NACV24LL/3AS	NACV24XLL/3AS	0.177	38.100 (1½)
4 050 410	17 600 1 800	4 800	6 200	NACV26/3AS	NACV26X/3AS	NACV26LL/3AS	NACV26XLL/3AS	0.218	41.275 (1 ⁵ / ₈)
4 400 450	21 600 2 200	4 100	5 300	NACV28/3AS	NACV28X/3AS	NACV28LL/3AS	NACV28XLL/3AS	0.281	44.450 (1 ³ ⁄ ₄)
4 850 495	23 200 2 360	4 100	5 300	NACV30/3AS	NACV30X/3AS	NACV30LL/3AS	NACV30XLL/3AS	0.327	47.625 (1 ⁷ / ₈)
5 300 540	31 000 3 150	3 700	4 800	NACV32/3AS	NACV32X/3AS	NACV32LL/3AS	NACV32XLL/3AS	0.454	50.800 (2)
6 200 635	35 000 3 550	3 700	4 800	NACV36/3AS	NACV36X/3AS	NACV36LL/3AS	NACV36XLL/3AS	0.585	57.150 (2 ¹ ⁄ ₄)
7 200 735	44 500 4 550	3 200	4 100	NACV40/3AS	NACV40X/3AS	NACV40LL/3AS	NACV40XLL/3AS	0.902	63.500 (2½)
8 250 840	49 000 5 000	3 200	4 100	NACV44/3AS	NACV44X/3AS	NACV44LL/3AS	NACV44XLL/3AS	1.05	69.850 (2 ³ ⁄ ₄)
9 150 935	64 000 6 500	2 700	3 500	NACV48/3AS	NACV48X/3AS	NACV48LL/3AS	NACV48XLL/3AS	1.39	76.200 (3)
10 000 1 020	69 000 7 050	2 700	3 500	NACV52/3AS	NACV52X/3AS	NACV52LL/3AS	NACV52XLL/3AS	1.66	82.550 (3 ¹ ⁄ ₄)
11 100 1 130	86 000 8 800	2 200	2 800	NACV56/3AS	NACV56X/3AS	NACV56LL/3AS	NACV56XLL/3AS	2.19	88.900 (3½)
13 200 1 350	112 500 11 500	2 200	2 800	NACV64/3AS	NACV64X/3AS	NACV64LL/3AS	NACV64XLL/3AS	3.22	101.600 (4)
17 900 1 830	165 500 16 900	1 500	1 900	NACV80/3AS	NACV80X/3AS	NACV80LL/3AS	NACV80XLL/3AS	6.08	127.000 (5)
22 100 2 250	239 500 24 400	1 200	1 500	NACV96/3AS	NACV96X/3AS	NACV96LL/3AS	NACV96XLL/3AS	10.0	152.400 (6)
10 000 1 020 11 100 1 130 13 200 1 350 17 900 1 830 22 100 2 250	69 000 7 050 86 000 8 800 112 500 11 500 165 500 16 900 239 500 24 400	2 200 2 200 1 500 1 200	2 800 2 800 1 900 1 500	NACV56/3AS NACV64/3AS NACV80/3AS NACV96/3AS	NACV56X/3AS NACV64X/3AS NACV80X/3AS NACV96X/3AS	NACV56LL/3AS NACV64LL/3AS NACV80LL/3AS	NACV56XLL/3AS NACV64XLL/3AS NACV80XLL/3AS NACV96XLL/3AS	2.19 3.22 6.08	88.900 (101.600 (127.000 (

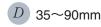
Metric series	Inch series
with cage	Full-complement roller
without inner ring	with inner ring
without shield	with shield

NUTR2 type NUTR2 · · X type NUTR3 type NUTR3 · · X type

NUTR2 type NUTR3 type


OD ¹⁾ mm <i>D</i>		D	imensio mm	ns			dynamic	ad ratings static N	1	d capacity N
0 -0.05	d	В	C	e	F	rs min²)		$c_{ m or}$	Spherical outer ring	Cylindrical outer ring
35	15	19 0 0 0 0	18	20	19	0.3	22 300 2 280	25 700 2 620	3 200 325	11 900 1 220
40	17	21 0 0 0 0	20	22	21.5	0.3	24 100 2 450	29 100 2 970	3 850 390	14 500 1 480
42	15	19 _0_0.210	18	20	19	0.3	22 300 2 280	25 700 2 620	4 100 415	14 300 1 460
47	17	21	20	22	21.5	0.3	24 100 2 450	29 100 2 970	4 700 480	17 000 1 740
	20	25 -0.210	24	27	25.5	0.3	38 500 3 950	48 000 4 900	4 700 480	21 000 2 150
52	20	25 ₀	24	27	25.5	0.3	38 500 3 950	48 000 4 900	5 550 565	23 300 2 370
52	25	25 ^{-0.210}	24	31	30	0.3	42 500 4 350	57 500 5 850	5 550 565	23 300 2 370
	25	25 ₀	24	31	30	0.3	42 500 4 350	57 500 5 850	6 950 710	27 800 2 830
62	30	29 -0.210	28	38	35	0.3	56 500 5 750	72 500 7 400	6 950 710	33 000 3 350
	30	29 0	28	38	35	0.3	56 500 5 750	72 500 7 400	8 050 820	38 500 3 900
72	35	29 -0.210	28	44	41.5	0.6	62 000 6 350	85 500 8 700	8 050 820	37 000 3 750
	35	29 _0_0.210	28	44	41.5	0.6	62 000 6 350	85 500 8 700	9 800 1 000	41 000 4 150
80	40	$32 {}^{0}_{-0.250}$	30	51	47.5	0.6	87 000 8 850	125 000 12 700	9 800 1 000	44 500 4 500
85	45	32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30	55	52.5	0.6	92 000 9 350	137 000 14 000	10 400 1 060	47 000 4 800
	40	32 0	30	51	47.5	0.6	87 000 8 850	125 000 12 700	11 400 1 160	50 000 5 100
90	50	32 -0.250	30	60	57	0.6	96 500 9 800	150 000 15 300	11 400 1 160	50 000 5 100
100	45	32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30	55	52.5	0.6	92 000 9 350	137 000 14 000	13 000 1 330	55 500 5 650
110	50	32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30	60	57	0.6	96 500 9 800	150 000 15 300	14 700 1 500	61 000 6 200

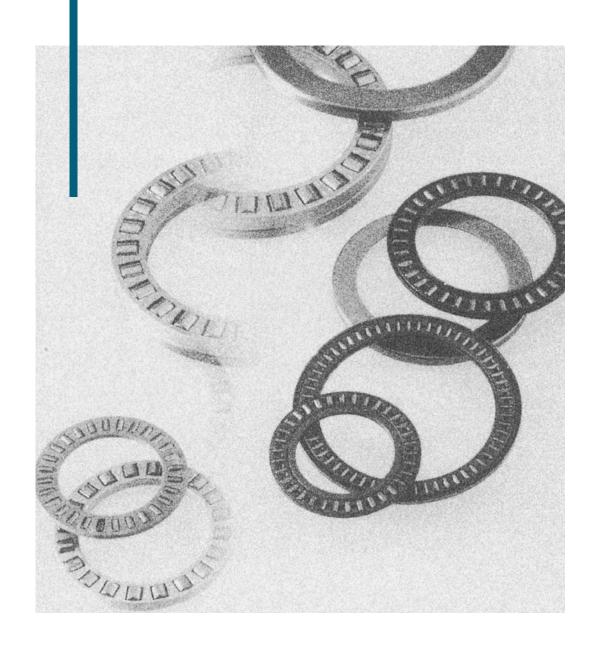
Notes:1) JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the NUTR2 · · X and NUTR3 · · X types whose outside surface form is cylindrical.


Limiting speed min ⁻¹	Roller Follo	wer number	Mass	OD ¹⁾ mm <i>D</i>
Grease lubrication	Spherical outer ring	Cylindrical outer ring	kg (approx.)	0 -0.05
5 500	NUTR202/3AS	NUTR202X/3AS	0.100	35
4 700	NUTR203/3AS	NUTR203X/3AS	0.147	40
5 500	NUTR302/3AS	NUTR302X/3AS	0.160	42
4 700	NUTR303/3AS	NUTR303X/3AS	0.222	47
4 000	NUTR204/3AS	NUTR204X/3AS	0.245	47
4 000	NUTR304/3AS	NUTR304X/3AS	0.321	50
3 300	NUTR205/3AS	NUTR205X/3AS	0.281	52
3 300	NUTR305/3AS	NUTR305X/3AS	0.450	
2 900	NUTR206/3AS	NUTR206X/3AS	0.466	62
2 900	NUTR306/3AS	NUTR306X/3AS	0.697	
2 400	NUTR207/3AS	NUTR207X/3AS	0.630	72
2 400	NUTR307/3AS	NUTR307X/3AS	0.840	
2 100	NUTR208/3AS	NUTR208X/3AS	0.817	80
1 900	NUTR209/3AS	NUTR209X/3AS	0.883	85
2 100	NUTR308/3AS	NUTR308X/3AS	1.13	
1 800	NUTR210/3AS	NUTR210X/3AS	0.950	90
1 900	NUTR309/3AS	NUTR309X/3AS	1.40	100
1 800	NUTR310/3AS	NUTR310X/3AS	1.69	110

Metric series	Inch series
with cage	Full-complement roller
without inner ring	with inner ring
without shield	with shield

NUTW type NUTW · X type

NUTW2 type



OD ¹⁾ mm <i>D</i>	Dimensions mm						Basic lo dynamic	pad ratings static	Track load N kg	1
0 -0.05	d	В	C	e	F	rs min ²⁾	$C_{ m r}$	kgf $C_{ m or}$	Spherical outer ring	Cylindrical outer ring
35	15	$22 {}^{0}_{-0.210}$	21	20	19	0.3	24 100 2 460	28 300 2 880	3 200 325	14 200 1 450
40	17	24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23	22	21.5	0.3	26 000 2 650	32 000 3 250	3 850 390	17 100 1 740
47	20	29 0	28	27	25.5	0.3	40 500 4 150	51 500 5 250	4 700 480	25 100 2 560
52	25	29 0 -0.210	28	31	30	0.3	45 000 4 600	61 500 6 250	5 550 565	27 700 2 830
62	30	35 0 0 0	34	38	35	0.3	59 500 6 050	77 000 7 900	6 950 710	41 000 4 200
72	35	35 0 0 0	34	44	41.5	0.6	65 000 6 650	91 000 9 250	8 050 820	46 000 4 700
80	40	38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36	51	47.5	0.6	90 500 9 250	131 000 13 400	9 800 1 000	54 500 5 550
85	45	38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36	55	52.5	0.6	95 500 9 750	144 000 14 700	10 400 1 060	58 000 5 900
90	50	38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36	60	57	0.6	100 000 10 200	158 000 16 100	11 400 1 160	61 500 6 250

Notes:1) The bearing numbers of bearings whose outer ring surface is cylindrical have the suffix "X" JIS Class 0 is the dimensional tolerance of the outside diameter D of the outer rings of the bearings whose outside surface form is cylindrical. Example: NUTW203X 2) The minimum value of chamfer dimension r.

Limiting speed min ⁻¹	Roller Follo	wer number	Mass	OD ¹⁾ mm <i>D</i>
Grease lubrication	Spherical outer ring	Cylindrical outer ring	kg (approx.)	0 -0.05
5500	NUTW202/3AS	NUTW202X/3AS	0.115	35
4700	NUTW203/3AS	NUTW203X/3AS	0.167	40
4000	NUTW204/3AS	NUTW204X/3AS	0.280	47
3300	NUTW205/3AS	NUTW205X/3AS	0.322	52
2900	NUTW206/3AS	NUTW206X/3AS	0.549	62
2400	NUTW207/3AS	NUTW207X/3AS	0.747	72
2100	NUTW208/3AS	NUTW208X/3AS	0.953	80
1900	NUTW209/3AS	NUTW209X/3AS	1.03	85
1800	NUTW210/3AS	NUTW210X/3AS	1.11	90
l			I	

Thrust Roller Bearings

Thrust Roller Bearings

This thrust roller bearing composed of a thrust roller and cage assembly, wherein needle rollers or cylindrical rollers are configured radially in the cage, and a bearing ring of disc form is intended to support one-directional axial load.

In mounting, it is possible to use a shaft or a housing as the direct raceway surface without using the bearing

ring, whereby design of a low height and lightweight compact construction is enabled.

This type of thrust roller bearing results in slipping on raceway surface because theoretically it can't roll perfectly, but in most cases it is practically trouble-free and can rotates at comparatively high speed.

Bearing type	Bearing type Cage type Applicable shaft diameter (mm)		Composition of bearing number	Bearing number	Remarks
AXK	Pressed steel cage	φ10—φ120	AXK 11 04 Bore diameter code	AXK1104	The type can be used together with theType AS bearing ring with the
	High strength brass cage	φ130—φ160	Dimension series code Type code		lower limit of safety factor S_0 is 3
K811 K812	Standard type Polyamide resin cage	Type K811 ϕ 10— ϕ 120 Type K812 ϕ 30— ϕ 80	K8 11 10 T2 Suffix Bore diameter code	K81110T2	The suffix T2 means that this bearing uses a polyamide resin cage. Therefore, use this bearing at a temperature 120°C or lower; or at 100°C or lower for continuous operation.
	Aluminum alloy cage	Type K811 ϕ 130— ϕ 160 Type K812 ϕ 85— ϕ 140	Dimension series code Type code		Feel free to contact NTN for the detail of the pressed steel cage. Possible to use in combination with GS and WS bearing rings.
	Pressed steel cage	φ10φ90	[Suffix] T2: resin cage JW: Pressed steel cage		K811 conforms to the Dimension Series 11 specified in JIS B 1512. K812 conforms to the Dimension Series 12 specified in JIS B 1512.
K893	Aluminum alloy cage	φ30—φ110	K8 93 10 Bore diameter code Dimension series code Type code	K89310	K893 conforms to the Dimension Series 93 specified in JIS B 1512.
K874	Aluminum alloy cage	φ40—φ90	K8 74 10 Bore diameter code Dimension series code Type code	K87410	K893 conforms to the Dimension Series 93 specified in JIS B 1512.

Bearing	type	Applicable shaft diameter (mm)	Composition of bearing number	Bearing number	Remarks
811 812		φ10φ160	8 11 10 T2 Bore diameter code Dimension series code Type code [Suffix] T2: resin cage J: Punched steel plate cage	81110T2	The suffix T2 means that this bearing uses a polyamide resin cage. Therefore, use this bearing at a temperature 120°C or lower; or at 100°C or lower for continuous operation. WS and GS bearing rings are used in set. 811 conforms to the Dimension Series 11 specified in JIS B 1512. 812 conforms to the Dimension Series 12 specified in JIS B 1512.
893		φ30φ110	8 93 10 Bore diameter code Dimension series code Type code	89310	WS and GS bearing rings are used in set. 893 conforms to the Dimension Series 93 specified in JIS B 1512.
874		φ40φ90	8 74 10 Bore diameter code Dimension series code Type code	87410	WS and GS bearing rings are used in set. 874 conforms to the Dimension Series 74 specified in JIS B 1512.
AS	Pressed steel ring		AS 11 04 Bore diameter code Dimension series code Type code	AS1104	Because of its 1mm thick steel plate ring, this thrust bearing needs adequate rigidity and profile accuracy of machine parts adjacent to the bearing. As an individual, on occasion this thrust bearing results in slight camber, but it is flattened when specific thrust load acts thereon, having no problem in practical use. The lower limit of safety factor So is 3.
WS811 WS893 WS812 WS874			WS8 11 04 Bore diameter code Dimension series code Type code	WS81104	Higher rigidity and higher running accuracy than AS bearing ring .

Bearing type	Applicable shaft diameter (mm)	Composition of bearing number	Bearing number	Remarks
GS811 GS893 GS812 GS874 Machined type, for outer ring land riding	φ10φ160	GS8 11 04 Bore diameter code Dimension series code Type code	GS81104	Higher rigidity and higher running accuracy than AS bearing ring .
ZS (Central washer)	φ10—φ160	ZS 15 34 Outside diameter Dimension series code Type code	ZS1534	The central washer is used as an outer ring or inner ring in a double-direction thrust roller bearing. This washer can be used in combination with needle roller and cage thrust assembly AXK, or cylindrical roller and cage thrust assembly K811, or locking ring (outer ring) GS811 for locking the bearing to a housing or locking ring (inner ring) WS811 for locking the bearing to a shaft.
AXA21	ϕ 10— ϕ 140 (Central washer)	AXA21 04 Bore diameter code Type code	AXA2104	This is a double-direction thrust roller bearing that comprises two needle roller and cage thrust assemblies AXK, two housing-side locking rings (outer rings) GS811 and one central ring ZS.
ARA821	ϕ 10— ϕ 140 (Central washer)	ARA821 04 T2 Suffix Bore diameter code Type code [Suffix] T2: resin cage	ARA82104T2	The suffix T2 means that this bearing uses a polyamide molded cage. Therefore, use this bearing at a temperature 120°C or lower; or at 100°C or lower for continuous operation. This is a double-direction thrust cylindrical roller bearing that comprises two cylindrical roller and cage thrust assemblies K811, two housing-side locking rings (outer rings) GS811 and one central ring ZS.
AXB21	ϕ 15— ϕ 160 (Central washer)	Bore diameter code Type code	AXB2104	This is a double-direction thrust needle roller bearing that comprises two needle roller and cage thrust assemblies AXK, two shaft-side locking rings (inner rings) WS811 and one central ring ZS.
ARB821	ϕ 15— ϕ 160 (Central washer)	ARB821 04 T2 Suffix Bore diameter code Type code [Suffix] T2: resin cage	ARB82104T2	The suffix T2 means that this bearing uses a polyamide molded cage. Therefore, use this bearing at a temperature 120°C or lower; or at 100°C or lower for continuous operation. This is a double-direction thrust cylindrical roller bearing that comprises two cylindrical roller and cage thrust assemblies K811, two shaft-side locking rings (inner rings) WS811 and one central ring ZS.

Bearing accuracy

The dimensional accuracy, profile accuracy and running accuracy of **Types 811**, **812**, **893** and **874** thrust cylindrical roller bearings shall be as specified in **Table 4.4** in Sec. **4.** "**Bearing accuracy**" (page A-28).

The thrust roller and cage assembly **Types AXK**, **K881**, **K812**, **K893** and **K874** are machined to the following dimensional tolerances: E11 (or E12 for bearing marked with T2) for bore diameter ($D_{\rm c1}$); and c12 for outside diameter ($D_{\rm c}$) on **Type AXK**, and a13 for **Types K811**, **K89**, **K893** and **K874**.

Raceway surface requirements:

Where the plane portion of a shaft/a housing is used as the direct raceway surface of thrust roller and cage assembly, the raceway surface must meet the requirements specified as a guideline in **Table 1**.

Table 1 Raceway surface requirements (recommended)

Characteristics	Specified requirements
Perpendicularity (Max)	IT5 (IT4)
Surface roughness	0.2a
Surface hardness	HRC58~64
Effective case depth	Refer to Formula (8.1) on page A-40.

Reference: The parenthesized value shall be applied for high running accuracy.

Cage guiding

To be able to center a running thrust roller and cage assembly (Type **AXK**, **K811**, **K812**, **K893** or **K874**), it is necessary to guide it on its bore (shaft side) or outside surface (housing side).

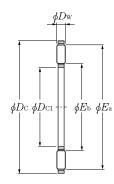
In general, the bore-side guide of low relative speed against the cage is mostly used. It should be used particularly for high speed running. The dimensional tolerances for shaft and housing, when the cage is guided thereby, shall be h8 for shaft diameter (bore guide) and H9 for housing bore diameter (outer surface guide) respectively, which of the guide surface shall be fine-finished by grinding.

Bearing fit in bearing ring

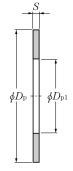
Table 2 shows the tolerances for fitting of the thrust bearing rings (AS, WS and GS) on shaft or in housing.

Table 2 Bearing ring fit in shaft and housing (recommended)

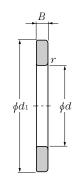
Bea	ring ring	Shaft	Housing		
Type AS	Locking to shaft	h10	Clearance to housing		
Type AS	Locking to housing	Clearance to shaft	H11		
Type WS (in	ner ring)	h6	_		
Type GS (ou	iter ring)	_	H7		
Type ZS	Locking to shaft	h6	_		
(central ring)	Locking to housing	_	H7		

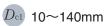

Mounting related dimensions

The mounting dimensions for bearing ring **Types WS**, **GS** and **ZS** relative to a shaft or housing are listed in the relevant dimension table.

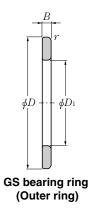

The fitting surface of **AS** bearing ring must be flat and have the rigidity sufficient to support thrust load throughout its entire surface.

The bearing ring has to be installed in correct orientation so that its raceway surface is seated onto the rolling elements. (As shown in the diagram in the relevant dimension table, the narrower chamfering on the bearing ring marks the raceway surface.)

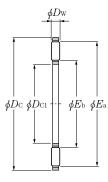

Type AXK11 Type AS11 Type WS811 Type GS811


Type AXK (Thrust needle roller and cage assy)

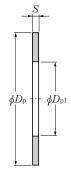
AS bearing ring (washer)



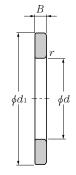
WS bearing ring (Inner ring)


				-) ourse	one di	moreis	20				Poeis Issa	d rotings	
				В	souna	ary di	mensio	ns			dynamic		dynamic	static
$D_{ m c1}$	$D_{\rm c}$	D_{w}	D_{p}	$D_{ m pl}$	S 2)	$\frac{mn}{d}$	n d_1	D	D_1	$B r_{\rm s min}$ 1)		N	k	gf
E11	c12	0 -0.01	e13	E12	0.05		-0.2 -0.5		+0.5 +0.2	, , , , , , , , , , , , , , , , , , ,	$C_{ m a}$	C_{oa}	$C_{ m a}$	C_{oa}
10	24	2	24	10	1	10	24	24	10	$2.75_{-0.060}^{0}~0.3$	9 150	25 300	935	2 580
12	26	2	26	12	1	12	26	26	12	$2.75_{-0.060}^{0}0.3$	9 850	28 900	1 010	2 940
15	28	2	28	15	1	15	28	28	16	$2.75_{-0.060}^{0}\ 0.3$	11 300	36 000	1 150	3 700
17	30	2	30	17	1	17	30	30	18	$2.75_{-0.060}^{0}\ 0.3$	11 900	39 500	1 220	4 050
20	35	2	35	20	1	20	35	35	21	$2.75_{-0.060}^{0}0.3$	13 200	46 500	1 340	4 750
25	42	2	42	25	1	25	42	42	26	$3 {}^{0}_{-0.060} \ 0.6$	14 600	58 000	1 490	5 900
30	47	2	47	30	1	30	47	47	32	$3 {}^{0}_{-0.060} \ 0.6$	16 300	69 500	1 660	7 100
35	52	2	52	35	1	35	52	52	37	$3.5 \begin{array}{c} 0 \\ -0.075 \end{array} 0.6$	17 800	81 500	1 820	8 300
40	60	3	60	40	1	40	60	60	42	$3.5 \begin{array}{c} 0 \\ -0.075 \end{array} 0.6$	27 400	110 000	2 790	11 300
45	65	3	65	45	1	45	65	65	47	$4 {}^{0}_{-0.075} \ 0.6$	29 800	128 000	3 050	13 100
50	70	3	70	50	1	50	70	70	52	$4 {0 \atop -0.075} \ 0.6$	31 500	143 000	3 250	14 500
55	78	3	78	55	1	55	78	78	57	$5 {0 \atop -0.075} 0.6$	38 000	186 000	3 850	19 000
60	85	3	85	60	1	60	85	85	62	$4.75_{-0.075}^{0}$ 1	44 500	234 000	4 550	23 900
65	90	3	90	65	1	65	90	90	67	$5.25_{-0.075}^{0}$ 1	46 500	254 000	4 750	25 900
70	95	4	95	70	1	70	95	95	72	$5.25_{-0.075}^{0}$ 1	53 500	253 000	5 500	25 800
75	100	4	100	75	1	75	100	100	77	$5.75_{-0.075}^{0}$ 1	55 000	266 000	5 650	27 100
80	105	4	105	80	1	80	105	105	82	$5.75_{-0.075}^{0}$ 1	56 500	279 000	5 750	28 400
85	110	4	110	85	1	85	110	110	87	$5.75_{-0.075}^{0}$ 1	57 500	291 000	5 850	29 700
90	120	4	120	90	1	90	120	120	92	6.5 $^{0}_{-0.090}$ 1	70 500	390 000	7 200	39 500
100	135	4	135	100	1	100	135	135	102	7 0 1	90 000	550 000	9 200	56 500
110	145	4	145	110	1	110	145	145	112	7 0 1	93 500	590 000	9 550	60 500
120	155	4	155	120	1	120	155	155	122	7 -0.090 1	99 000	650 000	10 100	66 500
130	170	5	170	130	1	130	170	170	132	9 _0_01	140 000	900 000	14 300	92 000
140	180	5	180	140	1	140	178	180	142	$9.5 \begin{array}{c} 0 \\ -0.090 \end{array} 1$	145 000	960 000	14 800	97 500

Note 1) Allowable minimum chamfer dimension \mathcal{T} . 2) Subject to measured thrust load of 20kg or more.



Limitin	g speeds		Bearing	numbers			erence ensions	Mass			
m	nin ⁻¹					dillie	mm		kg (approx.)		
grease	oil	thrust needle roller and cage assembly	washer	inner ring	outer ring	$E_{ m b}$	$E_{ m a}$	AXK11	AS11	WS811 GS811	
3 500	14 000	AXK1100	AS1100	WS81100	GS81100	12.3	21.7	0.0028	0.003	0.008	
3 300	13 000	AXK1101	AS1101	WS81101	GS81101	14.3	23.7	0.003	0.0033	0.009	
2 800	11 000	AXK1102	AS1102	WS81102	GS81102	17.2	26.5	0.0035	0.0035	0.01	
2 500	10 000	AXK1103	AS1103	WS81103	GS81103	19.2	28.5	0.004	0.0038	0.011	
2 100	8 500	AXK1104	AS1104	WS81104	GS81104	21.3	31.3	0.005	0.0051	0.014	
1 800	7 000	AXK1105	AS1105	WS81105	GS81105	29.5	39.4	0.007	0.007	0.021	
1 500	6 000	AXK1106	AS1106	WS81106	GS81106	34.5	44.4	0.008	0.008	0.025	
1 400	5 500	AXK1107	AS1107	WS81107	GS81107	39.5	49.4	0.01	0.0091	0.033	
1 200	4 700	AXK1108	AS1108	WS81108	GS81108	44.2	56.2	0.0185	0.0123	0.044	
1 100	4 300	AXK1109	AS1109	WS81109	GS81109	50.5	62.4	0.0205	0.0136	0.055	
1 000	3 900	AXK1110	AS1110	WS81110	GS81110	55.5	67.4	0.0235	0.0148	0.06	
900	3 500	AXK1111	AS1111	WS81111	GS81111	61.0	74.9	0.0308	0.0189	0.095	
800	3 200	AXK1112	AS1112	WS81112	GS81112	66.0	81.9	0.0390	0.0223	0.101	
750	3 000	AXK1113	AS1113	WS81113	GS81113	71.0	86.9	0.04	0.0239	0.125	
750	2 900	AXK1114	AS1114	WS81114	GS81114	75.5	91.4	0.06	0.0254	0.134	
700	2 700	AXK1115	AS1115	WS81115	GS81115	80.5	96.4	0.061	0.027	0.155	
650	2 600	AXK1116	AS1116	WS81116	GS81116	84.4	100.3	0.063	0.0284	0.163	
600	2 400	AXK1117	AS1117	WS81117	GS81117	90.5	106.4	0.0668	0.0301	0.175	
600	2 300	AXK1118	AS1118	WS81118	GS81118	96.5	116.4	0.086	0.0388	0.25	
500	2 000	AXK1120	AS1120	WS81120	GS81120	107.5	131.4	0.112	0.0505	0.35	
480	1 900	AXK1122	AS1122	WS81122	GS81122	115.5	139.4	0.122	0.0549	0.385	
430	1 700	AXK1124	AS1124	WS81124	GS81124	125.5	149.4	0.131	0.0592	0.415	
400	1 600	AXK1126	AS1126	WS81126	GS81126	136.0	164.0	0.205	0.074	0.663	
380	1 500	AXK1128	AS1128	WS81128	GS81128	146.0	174.0	0.219	0.079	0.749	

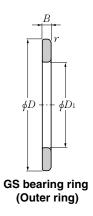

Type AXK11 Type AS11 Type WS811 Type GS811

Type AXK (Thrust needle roller and cage assy)

AS bearing ring (washer)

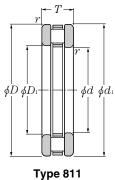
WS bearing ring (Inner ring)

*D*_{c1} 150∼160mm

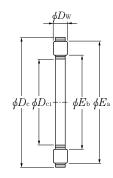

Boundary dimensions											dynami	Basic load	d ratings dynamic	e static
mm											N		kgf	
D_{c1}	$D_{\rm c}$	$D_{\mathbf{w}}$	$D_{\rm p}$	$D_{\rm pl}$	S^2	d	d_1	D	D_1	$B r_{\rm s min}$ 1)				
E11	c12	0 -0.01	e13	E12	0.05	i	-0.2 -0.5		+0.5 +0.2		Ca	Coa	C_{a}	C_{oa}
150	190	5	190	150	1	150	188	190	152	$9.5_{-0.090}^{$	149 000	1 020 000	15 200	104 000
160	200	5	200	160	1	160	198	200	162	$9.5_{-0.090}^{0}$ 1	154 000	1 070 000	15 700	110 000

WS811

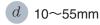
GS811


0.796

0.842


Limiting	speeds		Bearing	numbers		Refe	rence nsions		Mass
mi	n ⁻¹						mm		kg (approx.)
grease	oil	thrust needle roller and cage assembly	washer	inner ring	outer ring	Eb	$E_{ m a}$	AXK11	AS11
350	1 400	AXK1130	AS1130	WS81130	GS81130	156.0	184.2	0.232	0.084
330	1 300	AXK1132	AS1132	WS81132	GS81132	166.0	194.2	0.246	0.089

Type 811 Type 812 Type 893 Type 874



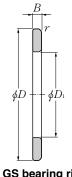
Type 812 (Bearing)

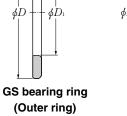
Type 893 (Bearing)

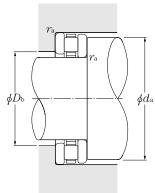
Type 874

Type K811, type K812 (Thrust needle roller and cage assy)

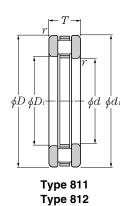
			Bound	dary d	limensi	ons				dynamic	Basic load static	ratings dynamic	static		g speeds
-1	D	al .	D	mı m		D	D	D	$r_{ m smin}$ 1)		N	kg	ıf .		iin ⁻¹
d	D	d_1 -0.2 -0.5	D_1 +0.5 +0.2	T	$D_{ m c1}$ E11	<i>D</i> _c a13	$D_{\rm w}$ 0 -0.010	В h11	Ys min'	$C_{ m a}$	C_{oa}	C_{a}	Coa	grease	oil
10	24	24	10	9	10	24	3.5	2.75	0.3	10 800	21 500	1 110	2 190	3 400	13 000
12	26	26	12	9	12	26	3.5	2.75	0.3	11 500	23 900	1 170	2 430	3 000	12 000
15	28	28	16	9	15	28	3.5	2.75	0.3	12 200	26 800	1 250	2 730	2 800	11 000
17	30	30	18	9	17	30	3.5	2.75	0.3	12 700	29 000	1 300	2 960	2 500	10 000
20	35	35	21	10	20	35	4.5	2.75	0.3	20 200	46 500	2 060	4 700	2 100	8 500
25	42	42	26	11	25	42	5	3	0.6	27 300	68 000	2 790	6 900	1 800	7 000
	47	47	32	11	30	47	5	3	0.6	27 800	72 500	2 840	7 400	1 500	6 000
30	52	52	32	16	30	52	7.5	4.25	0.6	53 000	129 000	5 450	13 100	1 500	6 000
	60	60	32	18	30	60	5.5	6.25	1	54 000	166 000	5 500	16 900	1 300	5 000
	52	52	37	12	35	52	5	3.5	0.6	31 000	87 000	3 150	8 900	1 400	5 500
35	62	62	37	18	35	62	7.5	5.25	1	54 500	139 000	5 550	14 200	1 200	4 900
	68	68	37	20	35	68	6	7	1	66 500	214 000	6 750	21 800	1 200	4 600
	60	60	42	13	40	60	6	3.5	0.6	43 000	121 000	4 350	12 400	1 200	4 800
40	68	68	42	19	40	68	9	5	1	74 500	190 000	7 600	19 400	1 100	4 400
40	78	78	42	22	40	78	7	7.5	1	85 000	277 000	8 700	28 300	1 000	4 000
	90	90	42	23	40	90	6.5	8.25	1.1	111 000	435 000	11 400	44 000	900	3 600
	65	65	47	14	45	65	6	4	0.6	45 500	135 000	4 650	13 800	1 100	4 400
45	73	73	47	20	45	73	9	5.5	1	82 000	222 000	8 400	22 600	1 000	4 100
45	85	85	47	24	45	85	7.5	8.25	1	102 000	345 000	10 400	35 000	900	3 600
	100	100	47	25	45	100	7	9	1.1	128 000	510 000	13 100	52 000	800	3 200
	70	70	52	14	50	70	6	4	0.6	48 500	150 000	4 900	15 300	1 000	4 000
50	78	78	52	22	50	78	9	6.5	1	85 000	238 000	8 650	24 200	950	3 800
50	95	95	52	27	50	95	8	9.5	1.1	125 000	445 000	12 700	45 000	800	3 200
	110	110	52	27	50	110	8	9.5	1.5	168 000	680 000	17 200	69 000	730	2 900
	78	78	57	16	55	78	6	5	0.6	62 500	215 000	6 350	21 900	900	3 600
55	90	90	57	25	55	90	11	7	1	121 000	340 000	12 400	34 500	830	3 300
55	105	105	57	30	55	105	9	10.5	1.1	158 000	570 000	16 100	58 000	730	2 900
	120	120	57	29	55	120	8	10.5	1.5	186 000	800 000	19 000	81 500	650	2 600


Note 1) Allowable minimum chamfer dimension r. 2) The dimensional tolerance for a bearing with a T2 suffix is E12.

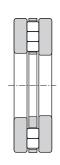


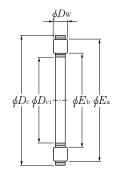


Type K874 WS bearing ring (Inner ring)

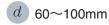


Bearing number	ers	dime	erence ensions		Abutmen limension			Mass kg	
bearing thrust cylindrical roller inne and cage assembly	er ring outer ring		mm $E_{ m a}$	$d_{ m a}$ min	$D_{ m b}$ max	$r_{ m as}$ max	811 812 893 874	K811 K812 K893 K874	WS GS
81100T2 K81100T2 WS	81100 GS81100	13.5	21.3	21	14	0.3	0.0195	0.0035	0.008
81101T2 K81101T2 WS	81101 GS8110 ⁻	15.5	23.3	23	16	0.3	0.022	0.004	0.009
81102T2 K81102T2 WS	81102 GS81102	17.2	25.0	25	18	0.3	0.026	0.006	0.010
81103T2 K81103T2 WS	81103 GS81103	19.2	27.0	27	20	0.3	0.030	0.008	0.011
81104T2 K81104T2 WS	81104 GS81104	22.4	32.3	32	23	0.3	0.040	0.012	0.014
81105T2 K81105T2 WS	81105 GS8110	27.6	38.7	39	28	0.6	0.060	0.018	0.021
81106T2 K81106T2 WS	81106 GS81106	33.1	43.9	44	33	0.6	0.070	0.020	0.025
81206T2 K81206T2 WS	81206 GS81206	32.8	49.0	48	33	0.6	0.140	0.050	0.045
89306 K89306 WS	89306 GS89306	34.0	56.4	56	34	1	0.250	0.046	0.100
81107T2 K81107T2 WS	81107 GS81107	38.0	48.9	49	38	0.6	0.090	0.024	0.033
81207T2 K81207T2 WS8	81207 GS81207	39.8	56.0	56	41	1	0.235	0.065	0.085
89307 K89307 WS	89307 GS89307	40.0	64.4	64	40	1	0.360	0.064	0.150
81108T2 K81108T2 WS	81108 GS81108	43.2	56.4	56	44	0.6	0.135	0.035	0.044
81208T2 K81208T2 WS8	81208 GS81208	43.7	62.9	63	44	1	0.265	0.085	0.090
89308 K89308 WS	89308 GS89308	46.0	74.4	74	46	1	0.520	0.100	0.210
87408 K87408 WS	87408 GS87408	46	87	88	45	1.1	0.78	0.12	0.33
81109T2 K81109T2 WS	81109 GS81109	48.4	61.6	61	49	0.6	0.150	0.040	0.055
81209T2 K81209T2 WS8	81209 GS81209	48.8	68.0	68	49	1	0.310	0.100	0.105
89309 K89309 WS	89309 GS89309	50.9	81.3	81	51	1	0.670	0.140	0.270
87409 K87409 WS	87409 GS87409	53	96	97	52	1.1	1.05	0.17	0.44
81110T2 K81110T2 WS	81110 GS81110	53.2	66.4	66	54	0.6	0.165	0.045	0.060
81210T2 K81210T2 WS8	81210 GS81210	53.7	73.1	73	54	1	0.385	0.105	0.140
89310 K89310 WS8	89310 GS89310	58.0	90.4	90	58	1	0.940	0.180	0.380
87410 K87410 WS	87410 GS87410	56	106	107	55	1.5	1.38	0.26	0.56
81111T2 K81111T2 WS	81111 GS8111 ⁻	57.8	75.2	75	58	0.6	0.250	0.060	0.095
81211T2 K81211T2 WS	81211 GS8121 ⁻	60.1	83.4	83	61	1	0.610	0.190	0.210
89311 K89311 WS	89311 GS8931 ⁻	63.9	100.3	100	64	1	1.270	0.240	0.520
87411 K87411 WS	87411 GS8741 ⁻	66	116	117	65	1.5	1.77	0.3	0.74

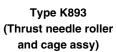

Type 811 Type 812 Type 893 Type 874



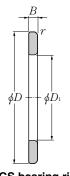
(Bearing)

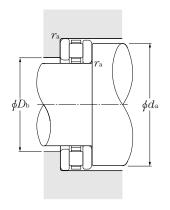

(Bearing)

Type 874

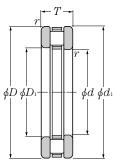

Type K811, type K812 (Thrust needle roller and cage assy)

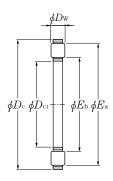
			Bound	dary c	limensi	ons				dynamic	Basic load static	ratings dynamic	c static	Limiting	g speeds
				m	m					aynamo	N	•	gf	mi	in ⁻¹
d	D	d_1	$D_1 + 0.5$	T	$D_{ m cl}$	$D_{\rm c}$	D_{w}	B	$\gamma_{\rm s min}$ 1)	a	a	C	a	grease	oil
		-0.2 -0.5	+0.5 +0.2		E11	a13	-0.010	h11		C_{a}	C_{oa}	C_{a}	C_{oa}		
	85	85	62	17	60	85	7.5	4.75	1	69 000	215 000	7 000	21 900	830	3 300
60	95	95	62	26	60	95	11	7.5	1	126 000	365 000	12 800	37 000	780	3 100
	110	110	62	30	60	110	9	10.5	1.1	162 000	600 000	16 500	61 500	680	2 700
	130	130	62	32	60	130	9	11.5	1.5	223 000	950 000	22 700	97 000	630	2 500
	90	90	67	18	65	90	7.5	5.25	1	73 000	236 000	7 450	24 100	780	3 100
65	100	100	67	27	65	100	11	8	1	130 000	385 000	13 300	39 500	730	2 900
05	115	115	67	30	65	115	9	10.5	1.1	167 000	635 000	17 000	64 500	650	2 600
	140	140	68	34	65	140	10	12	2	258000	1 090 000	26 300	111 000	580	2 300
	95	95	72	18	70	95	7.5	5.25	1	76 500	257 000	7 800	26 200	730	2 900
	105	105	72	27	70	105	11	8	1	134 000	410 000	13 700	42 000	680	2 700
70	125	125	72	34	70	125	10	12	1.1	205 000	790 000	20 900	81 000	600	2 400
	150	150	73	36	70	150	11	12.5	2	315 000	1 330 000	32 000	136 000	550	2 200
	100	100	77	19	75	100	7.5	5.75	1	78 000	268 000	7 950	27 300	680	2 700
	110	110	77	27	75	110	11	8	1	138 000	435 000	14 100	44 500	650	2 600
75	135	135	77	36	75	135	11	12.5	1.5	239 000	920 000	24 400	94 000	550	2 200
	160	160	78	38	75	160	12	13	2	370 000	1 600 000		163 000	500	2 000
	105	105	82	19	80	105	7.5	5.75	1	79 500	279 000	8 100	28 400	650	2 600
	115	115	82	28	80	115	11	8.5	1	143 000	460 000	14 500	47 000	630	2 500
80	140	140	82	36	80	140	11	12.5	1.5	246 000	970 000	25 100	98 500	530	2 100
	170	170	83	41	80	170	12	14.5	2.1	390 000	1 740 000	40 000	178 000	480	1 900
	110	110	87	19	85	110	7.5	5.75	1	83 000	300 000	8 450	30 500	630	2 500
85	125	125	88	31	85	125	12	9.5	1	169 000	550 000	17 200	56 500	580	2 300
	150	150	88	39	85	150	12	13.5	1.5	281 000	1 100 000		113 000	500	2 000
	180	180	88	42	85	180	13	14.5	2.1	430 000	1 890 000	44 000	192 000	450	1 800
	120	120	92	22	90	120	9	6.5	1	112 000	395 000	11 400	40 500	580	2 300
90	135	135	93	35	90	135	14	10.5	1.1	213 000	680 000	21 700	69 500	530	2 100
00	155	155	93	39	90	155	12	13.5	1.5	289 000	1 160 000	29 500	118 000	480	1 900
	190	190	93	45	90	190	13	16	2.1	450 000	2 060 000	46 000	210 000	430	1 700
100	135	135	102	25	100	135	11	7	1	158 000	555 000	16 100	57 000	500	2 000


Note 1) Allowable minimum chamfer dimension r. 2) The dimensional tolerance for a bearing with a T2 suffix is E12.



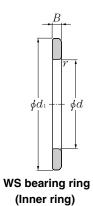
Type K874 WS bearing ring (Inner ring)

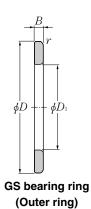


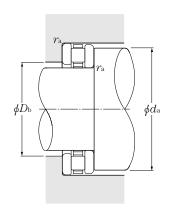


	Bearing r	numbers		Refer dimen	sions		Abutmen imensior mm		811	Mass kg K811 K812	
· ·	rust cylindrical roller and cage assembly	inner ring	outer ring	$E_{ m b}$	$E_{ m a}$	$d_{ m a}$ min	$D_{ m b}$ max	$r_{ m as}$ max	812 893 874	K812 K893 K874	WS GS
81112T2	K81112T2	WS81112	GS81112	63.7	80.1	80	65	1	0.285	0.083	0.101
81212T2	K81212T2	WS81212	GS81212	64.9	88.4	88	66	1	0.660	0.200	0.230
89312	K89312	WS89312	GS89312	68.9	105.3	105	69	1	1.350	0.250	0.550
87412	K87412	WS87412	GS87412	70	126	127	69	1.5	2.27	0.38	0.94
81113T2	K81113T2	WS81113	GS81113	68.8	85.2	85	70	1	0.340	0.090	0.125
81213T2	K81213T2	WS81213	GS81213	69.9	93.3	93	71	1	0.775	0.215	0.280
89313	K89313	WS89313	GS89313	73.9	110.3	110	74	1	1.430	0.260	0.580
87413	K87413	WS87413	GS87413	74	136	137	73	2	2.75	0.47	1.14
81114T2	K81114T2	WS81114	GS81114	73.7	90.1	90	74	1	0.365	0.097	0.135
81214T2	K81214T2	WS81214	GS81214	75.0	98.4	98	76	1	0.815	0.225	0.295
89314	K89314	WS89314	GS89314	79.8	120.2	120	80	1	1.930	0.340	0.800
87414	K87414	WS87414	GS87414	77	145	146	76	2	3.37	0.65	1.36
81115T2	K81115T2	WS81115	GS81115	78.7	95.1	95	80	1	0.425	0.115	0.155
81215T2	K81215T2	WS81215	GS81215	80.1	103.7	103	81	1	0.860	0.240	0.310
89315	K89315	WS89315	GS89315	84.7	129.2	129	85	1.5	2.410	0.470	0.970
87415	K87415	WS87415	GS87415	81	155	156	80	2	4.02	0.8	1.61
81116T2	K81116T2	WS81116	GS81116	83.7	100.1	100	85	1	0.445	0.119	0.165
81216T2	K81216T2	WS81216	GS81216	84.8	108.4	106	86	1	0.950	0.250	0.350
89316	K89316	WS89316	GS89316	89.8	134.2	134	90	1.5	2.530	0.490	1.020
87416	K87416	WS87416	GS87416	91	165	166	90	2.1	5.32	0.88	2.02
81117T2	K81117T2	WS81117	GS81117	88.7	105.3	105	89	1	0.475	0.125	0.175
81217	K81217	WS81217	GS81217	92.2	116.9	116	92	1	1.280	0.300	0.490
89317	K89317	WS89317	GS89317	95.8	144.2	144	96	1.5	3.140	0.590	1.280
87417	K87417	WS87417	GS87417	94	174	175	93	2.1	5.53	1.03	2.25
81118T2	K81118T2	WS81118	GS81118	94.7	114.3	114	95	1	0.670	0.170	0.250
81218J	K81218J	WS81218	GS81218	97.9	126.7	126	97	1	1.820	0.540	0.640
89318	K89318	WS89318	GS89318	100.8	149.2	149	101	1.5	3.280	0.620	1.330
87418	K87418	WS87418	GS87418	104	183	184	103	2.1	6.65	1.13	2.76
81120T2	K81120T2	WS81120	GS81120	105.1	128.7	128	106	1	1.000	0.300	0.350

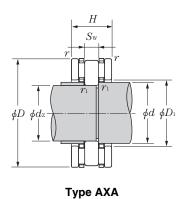
Type 811 Type 812

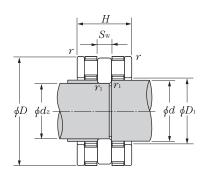

Type 811 Type 812 (Bearing)

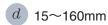



Type K811, type K812 (Thrust needle roller and cage assy)

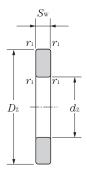
			Bound	dary d	limensi	ons				dynamic	Basic load	ratings dynamic	e static	Limiting	speeds
d	D	d_1 -0.2 -0.5	D ₁ +0.5 +0.2	mı T	m $D_{ m c1}$ E11	$D_{ m c}$ a13	<i>D</i> _w −0.010	<i>В</i> h11	γ _{s min} 1)	$C_{ m a}$	N Coa	kı Ca		mi grease	n ⁻¹ oil
100	150 170	150 170	103	38 42	100 100	150 170	15 13	11.5 14.5	1.1 1.5	243 000 335 000	795 000 1 370 000	24 800 34 500	81 000 140 000	480 430	1 900 1 700
110	145 160 190	145 160 190	112 113 113	25 38 48	110 110 110	145 160 190	11 15 15	7 11.5 16.5	1 1.1 2	165 000 258 000 430 000	605 000 885 000 1 770 000	16 800 26 400 44 000	61 500 90 000 180 000	480 450 400	1 900 1 800 1 600
120	155 170	155 170	122 123	25 39	120 120	155 170	11 15	7 12	1 1.1	172 000 264 000	655 000 930 000	17 500 26 900	66 500 94 500	450 430	1 800 1 700
130	170 190	170 187	132 133	30 45	130 130	170 190	12 19	9 13	1 1.5	197 000 360 000	755 000 1 210 000	20 100 36 500	77 000 123 000	400 380	1 600 1 500
140	180 200	178 197	142 143	31 46	140 140	180 200	12 19	9.5 13.5	1 1.5	206 000 370 000	815 000 1 280 000	21 000 38 000	83 000 130 000	380 350	1 500 1 400
150	190	188	152	31	150	190	12	9.5	1	214 000	870 000	21 800	89 000	350	1 400
160	200	198	162	31	160	200	12	9.5	1	221 000	930 000	22 600	95 000	330	1 300






В	earing numbers		dimer	rence isions m		Abutmen limensior mm		811	Mass kg K811	
bearing thrust cyling and cage	•	outer ring	$E_{ m b}$	$E_{ m a}$	$d_{ m a}$ min	$D_{ m b}$ max	$r_{ m as}$ max	812 893 874	K812 K893 K874	WS GS
81220 K812	220 WS81220	GS81220	109.2	140.0	139	109	1	2.240	0.620	0.810
89320 K893	20 WS89320	GS89320	110.6	163.0	163	110	1.5	4.190	0.810	1.690
81122T2 K811	22T2 WS81122	GS81122	115.0	138.8	138	116	1	1.100	0.325	0.385
81222 K812	22 WS81222	GS81222	119.2	150.0	149	119	1	2.450	0.685	0.880
89322 K893	22 WS89322	GS89322	122.5	183.0	183	122	2	6.030	1.150	2.440
81124T2 K811	24T2 WS81124	GS81124	125.0	148.8	148	126	1	1.170	0.340	0.415
81224 K812	24 WS81224	GS81224	129.2	160.0	159	129	1	2.690	0.730	0.980
81126 K811	26 WS81126	GS81126	137.7	162.4	162	137	1	1.740	0.415	0.663
81226 K812	226 WS81226	GS81226	140.1	179.0	178	140	1.5	4.200	1.140	1.530
81128 K811	28 WS81128	GS81128	147.8	172.5	172	147	1	1.950	0.450	0.750
81228 K812	28 WS81228	GS81228	150.1	189.0	188	150	1.5	4.570	1.200	1.690
81130 K811	30 WS81130	GS81130	157.7	182.4	182	157	1	2.070	0.470	0.800
81132 K811	32 WS81132	GS81132	167.8	192.5	192	167	1	2.190	0.500	0.840

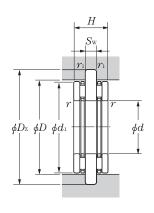
Type AXA21 Type ARA821

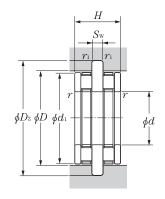


Type ARA

Shaft dia.			Bou	ndary (dimensi	ions				dynamic	Type Basic load	AXA ¹⁾ d ratings dynamic	e static		ARA ²⁾ ad ratings static
	d _z	D _z	D_1	D	Н	101		√s min ³)	γ1s min 4)	1	N	ا	kgf		N
mm	+0.5 +0.3	-0.1 -0.2	+0.5 +0.2		ype AXA T		h11			Ca	C_{oa}	Ca	Coa	Ca	Coa
15	10	27	16	28	15	18	5.5	0.3	0.3	11 300	36 000	1 150	3 700	12 200	26 800
17	12	29	18	30	15	18	5.5	0.3	0.3	11 900	39 500	1 220	4 050	12 700	29 000
20	15	34	21	35	15	20	5.5	0.3	0.3	13 200	46 500	1 340	4 750	20 200	46 500
25	20	41	26	42	16	22	6	0.6	0.3	14 600	58 000	1 490	5 900	27 300	68 000
30	25	46	32	47	17	23	7	0.6	0.3	16 300	69 500	1 660	7 100	27 800	72 500
35	30	51	37	52	19	25	8	0.6	0.3	17 800	81 500	1 820	8 300	31 000	87 000
40	30	59	42	60	21	27	8	0.6	0.6	27 400	110 000	2 790	11 300	43 000	121 000
45	35	64	47	65	23	29	9	0.6	0.6	29 800	128 000	3 050	13 100	45 500	135 000
50	40	69	52	70	24	30	10	0.6	0.6	31 500	143 000	3 250	14 500	48 500	150 000
55	45	77	57	78	26	32	10	0.6	0.6	38 000	186 000	3 850	19 000	62 500	215 000
60	50	84	62	85	27	36	11.5	1	0.6	44 500	234 000	4 550	23 900	69 000	215 000
65	55	89	67	90	28.5	37.5	12	1	0.6	46 500	254 000	4 750	25 900	73 000	236 000
70	55	94	72	95	31	38	12.5	1	1	53 500	253 000	5 500	25 800	76 500	257 000
75	60	99	77	100	32	39	12.5	1	1	55 000	266 000	5 650	27 100	78 000	268 000
80	65	104	82	105	32	39	12.5	1	1	56 500	279 000	5 750	28 400	79 500	279 000
85	70	109	87	110	34	41	14.5	1	1	57 500	291 000	5 850	29 700	83 000	300 000
90	75	119	92	120	37	47	16	1	1	70 500	390 000	7 200	39 500	112 000	395 000
100	85	134	102	135	40	54	18	1	1	90 000	550 000	9 200	56 500	158 000	555 000
110	95	144	112	145	42	56	20	1	1	93 500	590 000	9 550	60 500	165 000	605 000
120	100	154	122	155	44	58	22	1	1	99 000	650 000	10 100	66 500	172 000	655 000
130	110	169	132	170	50	64	22	1	1	140 000	900 000	14 300	92 000	197 000	755 000
140	120	179	142	180	52	66	23	1	1	145 000	960 000	14 800	97 500	206 000	815 000
150	130	189	152	190	53	67	24	1	1	149 000	1 020 000	15 200	104 000	214 000	870 000
160	140	199	162	200	54	68	25	1	1	154 000	1 070 000	15 700	110 000	221 000	930 000
Note d	AXA2	1 _		AXK11			GS811		ZS	ARA2	21	K811		GS811 ,	ZS

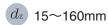
Note 1) $\frac{\text{AXA21}}{\text{Arrangement bearing}} = \frac{\text{AXK11}}{\text{Thrust needle roller bearing with cage (2)}} + \frac{\text{GS811}}{\text{Outer ring (2)}} + \frac{\text{ZS}}{\text{Central washer (1)}} - 2) \frac{\text{ARA21}}{\text{Arrangement bearing}} = \frac{\text{K811}}{\text{Thrust cylindlical roller bearing with cage (2)}} + \frac{\text{GS811}}{\text{Outer ring (2)}} + \frac{\text{ZS}}{\text{Central washer (1)}}$

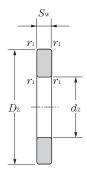



Type ZS

Basic loa	Type ARA ²⁾ Limiting speeds Basic load ratings dynamic static min ⁻¹				Bearing numbers			Mass kg (approx.)	
•	C_{oa}	grease	oil	Type AXA ¹⁾	Type ARA ²⁾	Central washer Type ZS	Type AXA	,	Central washer Type ZS
1 250	2 730	2 800	11 000	AXA 2102	ARA 82102T2	ZS 1027	0.047	0.053	0.021
1 300	2 960	2 500	10 000	AXA 2103	ARA 82103T2	ZS 1229	0.052	0.061	0.023
2 060	4 700	2 100	8 500	AXA 2104	ARA 82104T2	ZS 1534	0.069	0.083	0.031
2 790	6 900	1 800	7 000	AXA 2105	ARA 82105T2	ZS 2041	0.102	0.124	0.046
2 840	7 400	1 500	6 000	AXA 2106	ARA 82106T2	ZS 2546	0.126	0.152	0.062
3 150	8 900	1 400	5 500	AXA 2107	ARA 82107T2	ZS 3051	0.165	0.195	0.081
4 350	12 400	1 200	4 700	AXA 2108	ARA 82108T2	ZS 3059	0.248	0.307	0.125
4 650	13 800	1 100	4 300	AXA 2109	ARA 82109T2	ZS 3564	0.305	0.346	0.156
4 900	15 300	1 000	3 900	AXA 2110	ARA 82110T2	ZS 4069	0.356	0.4	0.19
6 350	21 900	900	3 500	AXA 2111	ARA 82111T2	ZS 4577	0.485	0.545	0.235
7 000	21 900	800	3 200	AXA 2112	ARA 82112T2	ZS 5084	0.596	0.684	0.316
7 450	24 100	750	3 000	AXA 2113	ARA 82113T2	ZS 5589	0.692	0.79	0.36
7 800	26 200	750	2 900	AXA 2114	ARA 82114T2	ZS 5594	0.828	0.9	0.44
7 950	27 300	700	2 700	AXA 2115	ARA 82115T2	ZS 6099	0.902	1.01	0.47
8 100	28 400	650	2 600	AXA 2116	ARA 82116T2	ZS 65104	0.992	1.06	0.5
8 450	30 500	600	2 400	AXA 2117	ARA 82117T2	ZS 70109	1.09	1.21	0.612
11 400	40 500	600	2 300	AXA 2118	ARA 82118T2	ZS 75119	1.5	1.67	0.828
16 100	57 000	500	2 000	AXA 2120	ARA 82120T2	ZS 85134	2.11	2.48	1.18
16 800	61 500	480	1 900	AXA 2122	ARA 82122T2	ZS 95144	2.44	2.85	1.43
17 500	66 500	430	1 700	AXA 2124	ARA 82124T2	ZS 100154	2.92	3.34	1.83
20 100	77 000	400	1 600	AXA 2126	ARA 82126	ZS 110169	3.95	4.37	2.21
21 000	83 000	380	1 500	AXA 2128	ARA 82128	ZS 120179	4.4	4.85	2.46
21 800	89 000	350	1 400	AXA 2130	ARA 82130	ZS 130189	4.79	5.08	2.74
22 600	95 000	330	1 300	AXA 2132	ARA 82132	ZS 140199	5.21	5.72	3.03

Note 3) Allowable minimum chamfer dimension $\mathcal V$. 4) Allowable minimum chamfer dimension $\mathcal V_1$.

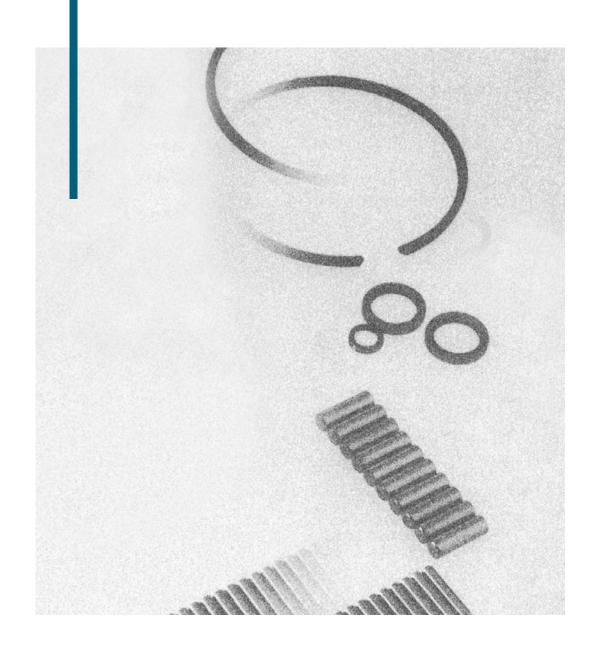

Type AXB21 Type ARA821


Type AXB

Type ARB

Shaft dia.	d_z	D_{z}	Bou	undary	dimens		$S_{ m w}$	$r_{ m smin}$ 3) r	4)	dynamic	Type and Basic load static	d ratings dynamic	static	Basic loa	ARA ²⁾ ad ratings static
mm	+0.5 +0.3	-0.1 -0.2	a_1		Type AXB 1		h11	7's min ' 7	'Is min'	C_{a}	Coa	$C_{ m a}$	C_{oa}	Ca	C_{oa}
15	15	34	15	28	15	18	5.5	0.3	0.3	11 300	36 000	1 150	3 700	12 200	26 800
20	20	41	20	35	15.5	20.5	6	0.3	0.3	13 200	46 500	1 340	4 750	20 200	46 500
25	25	46	25	42	17	23	7	0.6	0.3	14 600	58 000	1 490	5 900	27 300	68 000
30	30	51	30	47	18	24	8	0.6	0.3	16 300	69 500	1 660	7 100	27 800	72 500
35	35	64	35	52	20	26	9	0.6	0.6	17 800	81 500	1 820	8 300	31 000	87 000
40	40	69	40	60	23	29	10	0.6	0.6	27 400	110 000	2 790	11 300	43 000	121 000
45	45	77	45	65	24	30	10	0.6	0.6	29 800	128 000	3 050	13 100	45 500	135 000
50	50	84	50	70	25.5	31.5	11.5	0.6	0.6	31 500	143 000	3 250	14 500	48 500	150 000
55	55	89	55	78	28	34	12	0.6	0.6	38 000	186 000	3 850	19 000	62 500	215 000
60	60	99	60	85	28	37	12.5	1	1	44 500	234 000	4 550	23 900	69 000	215 000
65	65	104	65	90	29	38	12.5	1	1	46 500	254 000	4 750	25 900	73 000	236 000
70	70	109	70	95	33	40	14.5	1	1	53 500	253 000	5 500	25 800	76 500	257 000
75	75	119	75	100	35.5	42.5	16	1	1	55 000	266 000	5 650	27 100	78 000	268 000
85	85	134	85	110	37.5	44.5	18	1	1	57 500	291 000	5 850	29 700	83 000	300 000
100	100	154	100	135	44	58	22	1	1	90 000	550 000	9 200	56 500	158 000	555 000
110	110	169	110	145	44	58	22	1	1	93 500	590 000	9 550	60 500	165 000	605 000
120	120	179	120	155	45	59	23	1	1	99 000	650 000	10 100	66 500	172 000	655 000
130	130	189	130	170	52	66	24	1	1	140 000	900 000	14 300	92 000	197 000	755 000
140	140	199	140	178	54	68	25	1	1	145 000	960 000	14 800	97 500	206 000	815 000
150	150	214	150	188	56	70	27	1	1	149 000	1 020 000	15 200	104 000	214 000	870 000
160	160	224	160	198	58	72	29	1	1	154 000	1 070 000	15 700	110 000	221 000	930 000

Note 1) $\frac{\mathsf{AXB21}}{\mathsf{Arrangement bearing}} = \frac{\mathsf{AXK11}}{\mathsf{Thrust needle roller bearing with cage (2)}} + \frac{\mathsf{WS811}}{\mathsf{Inner ring (2)}} + \frac{\mathsf{ZS}}{\mathsf{Central washer (1)}} - 2) \\ \frac{\mathsf{ARB21}}{\mathsf{Arrangement bearing}} = \frac{\mathsf{K811}}{\mathsf{Thrust cylindlical roller bearing with cage (2)}} + \frac{\mathsf{WS811}}{\mathsf{Inner ring (1)}} + \frac{\mathsf{ZS}}{\mathsf{Central washer (1)}}$



Type ZS

	ARA ²⁾ ad ratings static		g speeds		Bearing numbers	5	Abutment dimensions Shaft dia.		Mass kg (approx.)	
C _a	C_{oa}	grease	oil	Type AXB ¹⁾	Type ARB ²⁾	Central washer Type ZS	D min	Type AXB	Type ARB	Central washer Type ZS
1 250	2 730	2 800	11 000	AXB 2102	ARB 82102T2	ZS 1534	28.5	0.057	0.063	0.031
2 060	4 700	2 100	8 500	AXB 2104	ARB 82104T2	ZS 2041	35.5	0.084	0.098	0.046
2 790	6 900	1 800	7 000	AXB 2105	ARB 82105T2	ZS 2546	42.5	0.118	0.14	0.062
2 840	7 400	1 500	6 000	AXB 2106	ARB 82106T2	ZS 3051	47.5	0.145	0.171	0.081
3 150	8 900	1 400	5 500	AXB 2107	ARB 82107T2	ZS 3564	53	0.24	0.27	0.156
4 350	12 400	1 200	4 700	AXB 2108	ARB 82108T2	ZS 4069	61	0.314	0.373	0.191
4 650	13 800	1 100	4 300	AXB 2109	ARB 82109T2	ZS 4577	66	0.384	0.425	0.235
4 900	15 300	1 000	3 900	AXB 2110	ARB 82110T2	ZS 5084	71	0.481	0.526	0.316
6 350	21 900	900	3 500	AXB 2111	ARB 82111T2	ZS 5589	79	0.61	0.67	0.36
7 000	21 900	800	3 200	AXB 2112	ARB 82112T2	ZS 6099	86	0.75	0.838	0.47
7 450	24 100	750	3 000	AXB 2113	ARB 82113T2	ZS 65104	91	0.832	0.93	0.5
7 800	26 200	750	2 900	AXB 2114	ARB 82114T2	ZS 70109	96	1	1.07	0.612
7 950	27 300	700	2 700	AXB 2115	ARB 82115T2	ZS 75119	101	1.26	1.37	0.828
8 450	30 500	600	2 400	AXB 2117	ARB 82117T2	ZS 85134	111	1.66	1.78	1.18
16 100	57 000	500	2 000	AXB 2120	ARB 82120T2	ZS 100154	136	2.76	3.13	1.83
16 800	61 500	480	1 900	AXB 2122	ARB 82122T2	ZS 110169	146	3.22	3.63	2.21
17 500	66 500	430	1 700	AXB 2124	ARB 82124T2	ZS 120179	156	3.55	3.97	2.46
20 100	77 000	400	1 600	AXB 2126	ARB 82126	ZS 130189	171	4.48	4.9	2.74
21 000	83 000	380	1 500	AXB 2128	ARB 82128	ZS 140199	181	4.97	5.42	3.03
21 800	89 000	350	1 400	AXB 2130	ARB 82130	ZS 150214	191	5.88	6.37	3.83
22 600	95 000	330	1 300	AXB 2132	ARB 82132	ZS 160224	202	6.53	7.04	4.35

Note 3) Allowable minimum chamfer dimension $\mathcal V$. 4) Allowable minimum chamfer dimension $\mathcal V_1$.

COMPONENTS Needle Rollers/Snap Rings/Seals

Needle rollers

Needle Rollers

NTN needle rollers are all made of high carbon chrome bearing steel, fine-finished by grinding and polishing after heat-treated, and the hardness thereof ranges from HRC60 to 65. These needle rollers are supplied as not only rolling element but also pin and shaft individuals.

End face profile of needle roller

F-type needle roller bearing with flat end face is standard type, while A-type with round end face is semi-standard type. In addition to these two types, another needle roller type (nominal number with (suffix E) capable of damping edge load is also available. Feel free to contact **NTN** for the detail thereof.

Table 1 End face profile

Type	Name	Profile
F	Flat	
Α	Round	

Composition of needle roller number

The needle roller number comprises type code (end face profile), dimension code [diameter $(D_w) \times \text{length } (L_w)$] and a suffix.

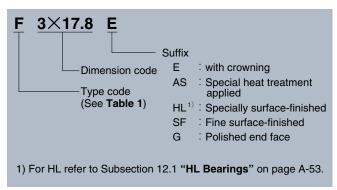


Fig. 1

Needle roller tolerances

The NTN needle rollers are manufactured per the dimensional accuracy and profile accuracy specified in JIS B 1506 "Rollers for roller bearings". (Refer to **Table 2** in this page.)

Table 2 Needle roller tolerances

Unit: μm

Characteristics	Tolerance and allowable value		
Tolerance for mean value of diameter $D_{\rm W}$	0~-10		
Mutual deviation of diameter D_{W}	2		
Roundness of diameter $D_{\rm w}$, Diameter variation in a single radial plane	1.0 (<i>L</i> w/ <i>D</i> w≤6) 1.5 (<i>L</i> w/ <i>D</i> w>6)		
Tolerance for length $L_{ m w}$	h13		
Accuracy class	Class-2		

The needle rollers are delivered contained in same package after the mutual deviation of diameter $D_{\rm W}$ was assorted to $2\,\mu{\rm m}$ and less. Before being delivered, the needle rollers are identified by label colors such as red, dark blue, blue, etc. according to the respective dimensional tolerances.

Further, mixed use of needle rollers contained in packages of different label colors is prohibited.

Table 3 Discrimination of needle rollers

Label color	Dimensional tolerance range μπ	Discrimination
Red Dark blue Blue Black White	$0 \sim -2$ $-1 \sim -3$ $-2 \sim -4$ $-3 \sim -5$ $-4 \sim -6$	Standard
Gray Green Brown Yellow	-5~- 7 -6~- 8 -7~- 9 -8~-10	Semi- standard

Needle rollers NTN

Application of needle rollers

When configuring a full complement needle roller bearing using standard needle rollers, the shaft diameter ((d), housing bore diameter (D), circumferential clearance (ΔC) and radial internal clearance (Δr) can be determined based on the needle roller diameter ($D_{\rm w}$) and number of rollers (Z) by using the formula below (refer to **Fig. 2**).

Determine the minimum value of circumferential clearance (ΔC) using **formula (1)**. The radial internal clearance (Δr) of an intended needle roller bearing can be determined based on the shaft diameter and projected bearing operating conditions by referring to **Table 5.1** in Sec. **5.1** "Bearing radial internal clearance" (page A-30). Generally, any full complement roller bearing needs a greater radial internal clearance compared with a needle roller and cage assembly.

$$\Delta C = (0.005 \sim 0.020) \times Z \text{ mm (minimum value)}$$
 (1)

Then, determine the minimum value of housing bore diameter (D) and the maximum value of shaft diameter (d) using the **formulas (2)** and **(3)**.

$$D = \frac{1}{\sin\left(\frac{\pi}{Z}\right)} \cdot (D_{\rm w} + \frac{\Delta C}{Z}) + D_{\rm w} \quad \text{mm (minimum value)}$$

$$d=D-2D_{\rm W}-\Delta r$$
 mm (maximum value)......(3)

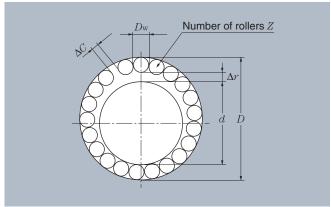
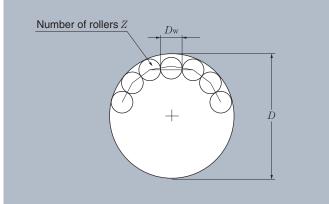
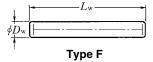
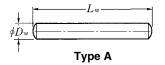


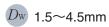
Fig. 2

The maximum value of housing bore diameter (D) required to retain needle rollers in a housing by a keystone can be determined from the minimum diameter value $(D_{\text{w min}})$ of the roller and the number of rollers using **formula (4)**. The coefficient K to be used in that time is as shown in **Table 4**.

$$D=K \cdot D_{\text{W min}} \text{ mm (max.)} \dots (4)$$


Fig. 3


Table 4 Coefficient K value

Z	K	Z	K
8	3.6763333	17	6.4536463
9	3.9709394	18	6.7689303
10	4.2727719	19	7.0846088
11	4.5789545	20	7.4006100
12	4.8879667	21	7.7168786
13	5.1989251	22	8.0333713
14	5.5112799	23	8.3500534
15	5.8246707	24	8.6668970
16	6.1388508	25	8.9838796

Type F Type A

Boundary		Bearing numbers		Mass	Boundary		•	Bearing numbers		Mass
	ensions mm			kg		dimensions mm				kg
				per						per
D_{W}	L_{W}	flat type	disk type	1 000 pcs		Dw	L_{W}	flat type	disk type	1 000 pcs
	5.8	F1.5× 5.8	A1.5× 5.8	0.080			23.8	F3 ×23.8	A3 ×23.8	1.34
	6.8	F1.5× 6.8	A1.5× 6.8	0.090		3	25.8	F3 ×25.8	A3 ×25.8	1.45
1.5	7.8	F1.5× 7.8	A1.5× 7.8	0.104			27.8	F3 ×27.8	A3 ×27.8	1.56
	9.8	F1.5× 9.8	A1.5× 9.8	0.131			11.8	F3.5×11.8	A3.5×11.8	0.849
	11.8	F1.5×11.8	A1.5×11.8	0.159			13.8	F3.5×13.8	A3.5×13.8	1.00
	13.8	F1.5×13.8	A1.5×13.8	0.186			15.8	F3.5×15.8	A3.5×15.8	1.15
	6.8	F2 × 6.8	A2 × 6.8	0.158			17.8	F3.5×17.8	A3.5×17.8	1.30
	7.8	F2 × 7.8	A2 × 7.8	0.183			19.8	F3.5×19.8	A3.5×19.8	1.45
	9.8	F2 × 9.8	A2 × 9.8	0.232		3.5	21.8	F3.5×21.8	A3.5×21.8	1.60
2	11.8	F2 ×11.8	A2 ×11.8	0.281			23.8	F3.5×23.8	A3.5×23.8	1.75
2	13.8	F2 ×13.8	A2 ×13.8	0.330			25.8	F3.5×25.8	A3.5×25.8	1.90
	15.8	F2 ×15.8	A2 ×15.8	0.379			29.8	F3.5×29.8	A3.5×29.8	2.20
	17.8	F2 ×17.8	A2 ×17.8	0.428			31.8	F3.5×31.8	A3.5×31.8	2.35
	19.8	F2 ×19.8	A2 ×19.8	0.477			34.8	F3.5×34.8	A3.5×34.8	2.58
	7.8	F2.5× 7.8	A2.5× 7.8	0.284			13.8	F4 ×13.8	A4 ×13.8	1.27
	9.8	F2.5× 9.8	A2.5× 9.8	0.351	4		15.8	F4 ×15.8	A4 ×15.8	1.50
	11.8	F2.5×11.8	A2.5×11.8	0.438			17.8	F4 ×17.8	A4 ×17.8	1.70
	13.8	F2.5×13.8	A2.5×13.8	0.514			19.8	F4 ×19.8	A4 ×19.8	1.89
2.5	15.8	F2.5×15.8	A2.5×15.8	0.591			21.8	F4 ×21.8	A4 ×21.8	2.09
	17.8	F2.5×17.8	A2.5×17.8	0.668		23.8	F4 ×23.8	A4 ×23.8	2.26	
	19.8	F2.5×19.8	A2.5×19.8	0.745		25.8	F4 ×25.8	A4 ×25.8	2.48	
	21.8	F2.5×21.8	A2.5×21.8	0.821			27.8	F4 ×27.8	A4 ×27.8	2.68
	23.8	F2.5×23.8	A2.5×23.8	0.898			29.8	F4 ×29.8	A4 ×29.8	2.87
	9.8	F3 × 9.8	A3 × 9.8	0.556			31.8	F4 ×31.8	A4 ×31.8	3.07
	11.8	F3 ×11.8	A3 ×11.8	0.671	4.5		34.8	F4 ×34.8	A4 ×34.8	3.31
	13.8	F3 ×13.8	A3 ×13.8	0.784			37.8	F4 ×37.8	A4 ×37.8	3.62
3	15.8	F3 ×15.8	A3 ×15.8	0.897			39.8	F4 ×39.8	A4 ×39.8	3.82
	17.8	F3 ×17.8	A3 ×17.8	1.01			17.8	F4.5×17.8	A4.5×17.8	2.11
	19.8	F3 ×19.8	A3 ×19.8	1.12		4.5	19.8	F4.5×19.8	A4.5×19.8	2.36
	21.8	F3 ×21.8	A3 ×21.8	1.23			21.8	F4.5×21.8	A4.5×21.8	2.61

*D*w 4.5∼5mm

	ndary nsions	Bearing I	numbers	Mass
	nm			kg
				per
D_{W}	$L_{\rm W}$	flat type	disk type	1 000 pcs
	23.8	F4.5×23.8	A4.5×23.8	2.86
	25.8	F4.5×25.8	A4.5×25.8	3.11
	29.8	F4.5×29.8	A4.5×29.8	3.62
4.5	31.8	F4.5×31.8	A4.5×31.8	3.87
4.5	34.8	F4.5×34.8	A4.5×34.8	4.25
	37.8	F4.5×37.8	A4.5×37.8	4.63
	39.8	F4.5×39.8	A4.5×39.8	4.88
	44.8	F4.5×44.8	A4.5×44.8	5.51
	19.8	F5 ×19.8	A5 ×19.8	2.89
	21.8	F5 ×21.8	A5 ×21.8	3.20
	23.8	F5 ×23.8	A5 ×23.8	3.52
	25.8	F5 ×25.8	A5 ×25.8	3.82
5	29.8	F5 ×29.8	A5 ×29.8	4.45
3	31.8	F5 ×31.8	A5 ×31.8	4.74
	34.8	F5 ×34.8	A5 ×34.8	5.11
	37.8	F5 ×37.8	A5 ×37.8	5.55
	39.8	F5 ×39.8	A5 ×39.8	5.85
	49.8	F5 ×49.8	A5 ×49.8	7.33

Snap Rings

These snap rings are used exclusively for fixing or guiding a needle roller bearing ring or cage in axial direction. Furthermore, these snap rings have the profile identical to C-type concentric snap ring specified in JIS B 2806 and, in addition, snap rings with smaller section height (b) and also available in smaller dimension range are manufactured according to application of needle roller bearings. These snap rings are manufactured using hard steel wire rod and, after manufactured, chemical conversion treatment is applied to the surface thereof.

Types of snap ring

Two types of snap ring are available; one is **Type WR** designed for application to shaft and another is **Type BR** for application to bearing housing.

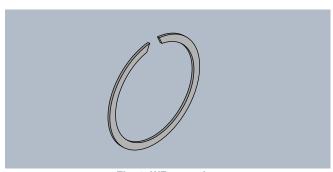


Fig. 1 WR snap ring

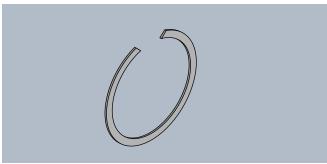


Fig. 2 BR snap ring

Table 1 Cut section angle of snap ring (α)

Туре	Nominal number	Cut section angle(α)
Type WR	WR4, WR5	40°
Type WH	Type WR6 up to	60°
Type BR	All nominal numbers	90°

Composition of snap ring number

The snap ring number is composed of type code (**WR** or **BR**) and dimension code. The dimension code represents applicable shaft diameter in **Type WR** and applicable housing bore diameter in **Type BR**.

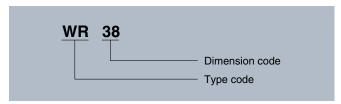


Fig. 3

Allowable running speed

The allowable running speed for **Type WR** for shaft application is as described in applicable Dimensions Table. This means the running speed when snap ring begins to get loose with opening of its cut ends.

Mounting relation

It is recommended to insert a spacer between snap ring and cage for guiding the cage in axial direction (Refer to **Fig. 4**.). On occasion, snap ring is difficult to remove, but limited to a portion in which a pull-out tool can not be inserted easily. In such a case, consider the cross-sectional height of the needle roller bearing in question, and then judge whether or not an ordinary retaining ring (JIS B 2804 "Retaining rings-C type") can be used.

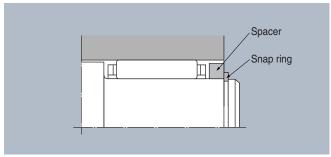
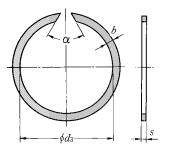
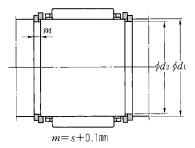
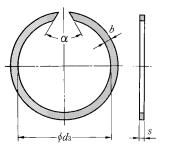
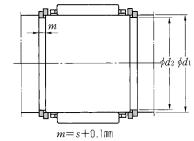




Fig. 4

For shaft

Type WR

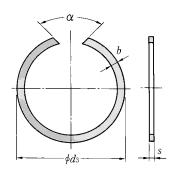


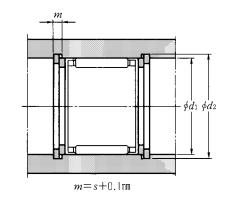

Bearing numbers	d.		ndary di mn	n			Limiting speeds min ⁻¹
	d_1	d_3 max	О	<i>S</i> ±0.06	d_2		
WR 4	4	3.7	8.0	0.5	3.8		275 000
WR 5	5	4.7	1	0.5	4.8		192 000
WR 6	6	5.6	1.1	0.7	5.7		141 000
WR 7	7	6.5	1.2	0.7	6.7	-0.09	134 000
WR 8	8	7.4	1.3	1	7.6		108 000
WR 9	9	8.4	1.3	1	8.6		80 000
WR10	10	9.4	1.3	1	9.6		68 000
WR11	11	10.2	1.3	1	10.5		64 500
WR12	12	11.2	1.3	1	11.5		53 000
WR13	13	12.2	1.3	1	12.5		49 600
WR14	14	13.1	1.5	1.2	13.5	0	45 900
WR15	15	14	1.75	1.2	14.4	-0.11	44 500
WR16	16	15	1.75	1.2	15.4		38 000
WR17	17	16	1.75	1.2	16.4		34 500
WR18	18	17	1.75	1.2	17.4		30 000
WR19	19	17.9	1.75	1.2	18.4		28 900
WR20	20	18.7	1.75	1.2	19.2		26 200
WR21	21	19.7	1.75	1.2	20.2		23 400
WR22	22	20.7	1.75	1.2	21.2		20 800
WR23	23	21.7	1.75	1.2	22.2		19 500
WR24	24	22.5	1.75	1.2	23	-0.13	18 100
WR25	25	23.5	1.75	1.2	24		16 400
WR26	26	24.5	1.75	1.2	25		14 800
WR28	28	26.5	2.3	1.5	27		15 400
WR29	29	27.5	2.3	1.5	28		14 400
WR30	30	28.5	2.3	1.5	29		13 200
WR32	32	30.2	2.3	1.5	30.8	0	13 300
WR35	35	33.2	2.3	1.5	33.8	-0.16	10 700

Bearing numbers	Boundary dimensions						Limiting speeds
	,	,	mı		,		min ⁻¹
	d_1	d_3 max	b	<i>S</i> ±0.06	d_2		
WD 07	07		0.0		05.0		0.000
WR 37	37	35.2	2.3	1.5	35.8		9 200
WR 38	38	36.2	2.3	1.5	36.8		8 700
WR 40	40	37.8	2.3	1.5	38.5		8 100
WR 42	42	39.8	2.3	1.5	40.5	0	7 000
WR 43	43	40.8	2.3	1.5	41.5	-0.16	6 800
WR 45	45	42.8	2.3	1.5	43.5		5 800
WR 47	47	44.8	2.3	1.5	45.5		5 500
WR 48	48	45.8	2.3	1.5	46.5		5 300
WR 50	50	47.8	2.3	1.5	48.5		4 800
WR 52	52	49.8	2.3	1.5	50.5		4 300
WR 55	55	52.6	2.3	1.5	53.5		4 400
WR 58	58	55.6	2.3	1.5	56.5		3 900
WR 60	60	57.6	2.3	1.5	58.5		3 500
WR 61	61	58.6	2.3	1.5	59.5		3 300
WR 62	62	59.6	2.3	1.5	60.5		3 200
WR 63	63	60.6	2.3	1.5	61.5		3 100
WR 64	64	61.6	2.3	1.5	62.5	0 0.19	2 900
WR 65	65	62.6	2.3	1.5	63.5		2 800
WR 68	68	65.4	2.8	2	66.2		2 900
WR 70	70	67.4	2.8	2	68.2		2 700
WR 72	72	69.4	2.8	2	70.2		2 600
WR 73	73	70.4	2.8	2	71.2		2 500
WR 75	75	72.4	2.8	2	73.2		2 300
WR 80	80	77.4	2.8	2	78.2		1 950
WR 85	85	82	3.4	2.5	83		2 300
WR 90	90	87	3.4	2.5	88	0	2 000
WR 95	95	92	3.4	2.5	93	-0.22	1 750
WR100	100	97	3.4	2.5	98		1 560

For shaft

Type WR

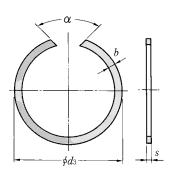


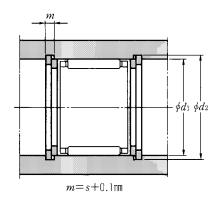

Bearing numbers		Boun	dary c	limensi	ons		Limiting speeds
	d_1	d_3	m		d_2		r/min
	a_1	max	b	<i>S</i> ±0.06	a_2		
WR105	105	101.7	3.4	2.5	102.7		1 390
WR110	110	106.7	3.4	2.5	107.7	0	1 240
WR115	115	111.7	3.4	2.5	112.7	-0.22	1 100
WR120	120	116.7	3.4	2.5	117.7		1 000
WR125	125	121.7	3.4	2.5	122.7		920
WR130	130	126.7	3.4	2.5	127.7		830
WR135	135	131.6	4	2.5	132.4		830
WR140	140	136.6	4	2.5	137.4		760
WR145	145	141.6	4	2.5	142.4		690
WR150	150	146.6	4	2.5	147.4	0	640
WR155	155	151.6	4	2.5	152.4	-0.25	590
WR160	160	156.6	4	2.5	157.4		550
WR165	165	161.6	4	2.5	162.4		500
WR170	170	166.6	4	2.5	167.4		470
WR175	175	171.6	4	2.5	172.4		440
WR180	180	175.6	5	3	177		430
WR185	185	180.6	5	3	182		590
WR190	190	185.6	5	3	187		540
WR195	195	190.6	5	3	192		510
WR200	200	195.6	5	3	197		480
WR210	210	205.6	5	3	207	0	420
WR220	220	215.6	5	3	217	-0.29	380
WR225	225	220.6	5	3	222		360
WR230	230	225.6	5	3	227		350
WR240	240	235.6	5	3	237		310
WR250	250	245.6	5	3	247		270
WR260	260	253	7.5	4	255	0	430
WR265	265	258	7.5	4	260	-0.32	410

Bearing numbers		Limiting speeds					
nambers			m	m			r/min
	d_1	d_3	b	S	d_2		
		max		±0.06			
WR270	270	263	7.5	4	265		380
WR280	280	273	7.5	4	275		360
WR285	285	278	7.5	4	280	_	350
WR290	290	283	7.5	4	285	0 -0.32	340
WR300	300	293	7.5	4	295	0.02	300
WR305	305	298	7.5	4	300	_	290
WR310	310	303	7.5	4	305		280
WR320	320	313	7.5	4	315		260
WR330	330	323	7.5	4	325	_	240
WR340	340	333	7.5	4	335		220
WR350	350	343	7.5	4	345		210
WR360	360	353	7.5	4	355	0	190
WR370	370	363	7.5	4	365	-0.36	180
WR380	380	373	7.5	4	375		170
WR390	390	383	7.5	4	385		160
WR400	400	393	7.5	4	395		150

For housing

Type BR




Bearing numbers	Boundary dimensions					
	d_1	d_3 min	mm b	<i>S</i> ±0.06	d_2	
BR 7	7	7.5	1	0.8	7.3	
BR 8	8	8.5	1	0.8	8.3	$^{+0.09}_{0}$
BR 9	9	9.5	1.1	0.8	9.3	
BR10	10	10.6	1.2	0.8	10.4	
BR11	11	11.6	1.3	1	11.4	
BR12	12	12.7	1.3	1	12.4	
BR13	13	13.8	1.3	1	13.5	+0.11
BR14	14	14.8	1.3	1	14.5	0
BR15	15	15.8	1.3	1	15.5	_
BR16	16	16.8	1.6	1.2	16.5	
BR17	17	17.8	1.6	1.2	17.5	
BR18	18	18.9	1.75	1.2	18.5	
BR19	19	19.9	1.75	1.2	19.6	
BR20	20	21	1.75	1.2	20.6	
BR21	21	22	1.75	1.2	21.6	_
BR22	22	23	1.75	1.2	22.6	
BR23	23	24	1.75	1.2	23.6	+0.13
BR24	24	25.2	1.75	1.2	24.8	0
BR25	25	26.2	1.75	1.2	25.8	
BR26	26	27.2	1.75	1.2	26.8	
BR27	27	28.2	1.75	1.2	27.8	_
BR28	28	29.2	1.75	1.2	28.8	
BR29	29	30.2	1.75	1.2	29.8	
BR30	30	31.4	2.3	1.5	31	
BR31	31	32.4	2.3	1.5	32	
BR32	32	33.4	2.3	1.5	33	$^{+0.16}_{0}$
BR33	33	34.4	2.3	1.5	34	
BR34	34	35.4	2.3	1.5	35	

Bearing numbers	Boundary dimensions					
			mm	1		
	d_1	d ₃	b	S	d_2	
		min		±0.06		
BR35	35	36.4	2.3	1.5	36	
BR36	36	37.8	2.3	1.5	37.2	_
BR37	37	38.8	2.3	1.5	38.2	
BR38	38	39.8	2.3	1.5	39.2	
BR39	39	40.8	2.3	1.5	40.2	_
BR40	40	41.8	2.3	1.5	41.2	
BR41	41	42.8	2.3	1.5	42.2	+0.16
BR42	42	43.8	2.3	1.5	43.2	0
BR43	43	44.8	2.3	1.5	44.2	
BR44	44	45.8	2.3	1.5	45.2	
BR45	45	46.8	2.3	1.5	46.2	
BR46	46	47.8	2.3	1.5	47.2	_
BR47	47	48.8	2.3	1.5	48.2	
BR48	48	49.8	2.3	1.5	49.2	
BR49	49	50.8	2.3	1.5	50.2	
BR50	50	51.8	2.3	1.5	51.2	
BR52	52	54.3	2.3	1.5	53.5	_
BR53	53	55.3	2.3	1.5	54.5	
BR54	54	56.3	2.3	1.5	55.5	
BR55	55	57.3	2.3	1.5	56.5	_
BR57	57	59.3	2.3	1.5	58.5	+0.19
BR58	58	60.3	2.3	1.5	59.5	0
BR60	60	62.3	2.3	1.5	61.5	_
BR61	61	63.3	2.3	1.5	62.5	
BR62	62	64.3	2.3	1.5	63.5	
BR63	63	65.3	2.3	1.5	64.5	_
BR64	64	66.3	2.3	1.5	65.5	
BR65	65	67.3	2.3	1.5	66.5	

For housing

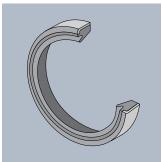
Type BR

Bearing numbers	Boundary dimensions					
			mn	า		
	d_1	d_3 min	b	<i>S</i> ±0.06	d_2	
DD 66	00		0.0		07.5	
BR 66	66	68.3	2.3	1.5	67.5	_
BR 68	68	70.3	2.3	1.5	69.5	
BR 70	70	72.3	2.3	1.5	71.5	
BR 72	72	74.6	2.8	2	73.8	_
BR 73	73	75.6	2.8	2	74.8	+0.19 0
BR 74	74	76.6	2.8	2	75.8	U
BR 75	75	77.6	2.8	2	76.8	_
BR 76	76	78.6	2.8	2	77.8	
BR 77	77	79.6	2.8	2	78.8	
BR 78	78	80.6	2.8	2	79.8	
BR 79	79	81.6	2.8	2	80.8	
BR 81	81	83.6	2.8	2	82.8	
BR 82	82	84.6	2.8	2	83.8	
BR 83	83	85.6	2.8	2	84.8	
BR 85	85	87.6	2.8	2	86.8	
BR 86	86	88.6	2.8	2	87.8	_
BR 88	88	91	3.4	2.5	90	
BR 90	90	93	3.4	2.5	92	
BR 92	92	95	3.4	2.5	94	+0.22
BR 93	93	96	3.4	2.5	95	0
BR 95	95	98	3.4	2.5	97	
BR 97	97	100	3.4	2.5	99	
BR 98	98	101	3.4	2.5	100	_
BR100	100	103	3.4	2.5	102	
BR102	102	105.3	3.4	2.5	104.3	_
BR103	103	106.3	3.4	2.5	105.3	_
BR105	105	108.3	3.4	2.5	107.3	
BR107	107	110.3	3.4	2.5	109.3	

Bearing numbers	Boundary dimensions					
	,	7	mm		7	
	d_1	d_3 min	b	<i>S</i> ±0.06	d_2	
BR108	108	111.3	3.4	2.5	110.3	
BR110	110	113.3	3.4	2.5	112.3	
BR112	112	115.3	3.4	2.5	114.3	+0.22
BR113	113	116.3	3.4	2.5	115.3	0
BR115	115	118.3	3.4	2.5	117.3	
BR117	117	120.3	3.4	2.5	119.3	
BR118	118	121.3	3.4	2.5	120.3	
BR120	120	123.3	3.4	2.5	122.3	
BR123	123	126.3	3.4	2.5	125.3	_
BR125	125	128.3	3.4	2.5	127.3	
BR127	127	130.3	3.4	2.5	129.3	
BR130	130	133.3	3.4	2.5	132.3	_
BR133	133	136.3	3.4	2.5	135.3	
BR135	135	138.3	3.4	2.5	137.3	
BR137	137	140.3	3.4	2.5	139.3	_
BR140	140	143.6	4	2.5	142.6	+0.25
BR143	143	146.6	4	2.5	145.6	0
BR150	150	153.6	4	2.5	152.6	_
BR153	153	156.6	4	2.5	155.6	
BR160	160	163.6	4	2.5	162.6	
BR163	163	166.6	4	2.5	165.6	_
BR165	165	168.6	4	2.5	167.6	
BR170	170	173.6	4	2.5	172.6	
BR173	173	176.6	4	2.5	175.6	_
BR175	175	178.6	4	2.5	177.6	
BR180	180	183.6	4	2.5	182.6	
BR183	183	186.6	4	2.5	185.6	+0.29
BR190	190	194.5	5	3	193	0

Bearing numbers		Bou	ndary di	mension	s	
numbers			mm	1		
	d_1	d3	b	S	d_2	
		min		±0.06		
BR195	195	199.5	5	3	198	
BR200	200	204.5	5	3	203	
BR205	205	209.5	5	3	208	
BR210	210	214.5	5	3	213	+0.29
BR215	215	219.5	5	3	218	0
BR220	220	224.5	5	3	223	
BR225	225	229.5	5	3	228	
BR230	230	234.5	5	3	233	
BR240	240	244.5	5	3	243	
BR250	250	254.5	5	3	253	
BR260	260	267	7.5	4	265	_+0.32
BR270	270	277	7.5	4	275	0
BR280	280	287	7.5	4	285	
BR300	300	307	7.5	4	305	
BR320	320	327	7.5	4	325	
BR325	325	332	7.5	4	330	
BR350	350	357	7.5	4	355	_
BR355	355	362	7.5	4	360	
BR360	360	367	7.5	4	365	+0.36
BR375	375	382	7.5	4	380	0
BR380	380	387	7.5	4	385	
BR385	385	392	7.5	4	390	
BR395	395	402	7.5	4	400	_
BR400	400	407	7.5	4	405	
BR415	415	422	7.5	4	420	
BR420	420	427	7.5	4	425	+0.40
BR440	440	447	7.5	4	445	U

Seals NTN


Seals

Seals

These are the special-purposed seals for needle roller bearings whose cross sectional height is designed so small as to match applicable needle roller bearings. These contact seals are made of synthetic rubber reinforced with steel plate, being then used in operating temperature range of -25 to +120°C and, under continuous running, at 100°C and less. Further, feel free to contact NTN for the use of these seals under special operating condition, e.g. operating temperature of over 120°C.

Types of seal

Two different seal types are available; one is **Type G** with one lip and another is **Type GD** with two lips. In addition to these two, sliding rubber seals (**LEG**, **LEGD**), wherein lubrication property was assigned to a rubber material fulfilling low torque under an non-lubrication environment, are also manufactured. Feel free to contact **NTN** for the detail of these seal types.

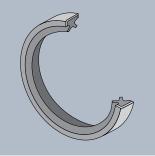


Fig. 1 Type G (LEG)

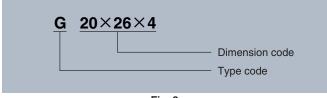
Fig. 2 Type GD (LEGD)

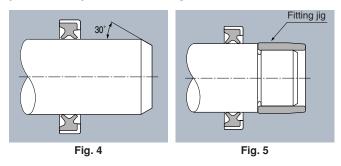
Where seal contact surface and lubricating condition are good, **Type G** with one lip can be used up to 10m/s maximum at peripheral speed and **Type GD** with two lips used up to 6m/s maximum.

This seal is intended to hold grease and to prevent dust invasion from outside. It has no function to hold lubrication oil, etc. unlike oil seal.

Composition of seal number

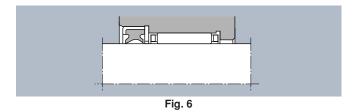
The seal number is composed of type code (G, GD) and dimension code (bore dia. \times outer dia. \times width).




Fig. 3

Fitting relations

The seal contact surface must be finished by grinding, after hardened, to get its good sealing performance. In addition, harmful flaw and indent are not allowed to exist on the seal contact surface. Where the inner ring raceway surface is used as seal contact surface, a wide inner ring must be used.


When fitting a seal in a bearing, it is desirable to taper the shaft end face or the housing end face so as to protect the seal lip and outer surface from damaging, as illustrated in **Fig. 4**. Where shaft end is not tapered or chamfered (rounded), it is recommended to a fitting jig as illustrated in **Fig.5**. Regarding the seal to housing interference, a adequate interference can be got in the usual housing tolerance range of G7 toR7.

Furthermore, it is recommended to apply pre-coat of a lubricant to the seal lip before fitting seals G and GD, for better lubrication. Further, when fitting a seal and inserting it through a shaft, take good care to protect its lip from deforming.

Seal application examples

Figs.6 to 8 illustrate design examples using these seals.

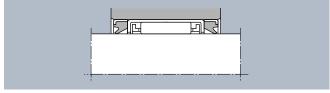


Fig. 7

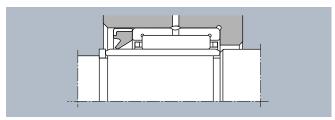
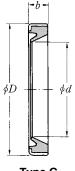
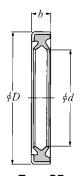
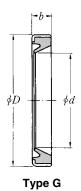
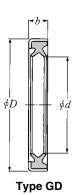




Fig. 8

Type G Type GD

ı	У	pe	G

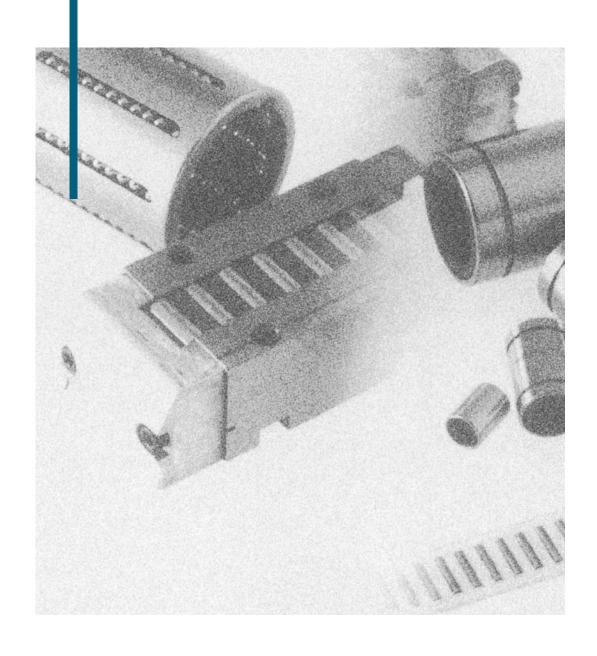

Type GD


Bearing	numbers		Boundary limensions mm	,	M a × 10	ss -3 kg
Type G	Type GD	d	D ¹⁾ +	<i>b</i> 0.2 0	G	GD
G 4× 8×2	-	4	8	2	0.18	_
G $5 \times 9 \times 2$	_	5	$9_{+0.081}$	2	0.19	_
G 5×10×2	_	5	10 +0.023	2	0.22	_
G 6×10×2	_	6	10	2	0.21	_
G $6\times12\times2$	-	6	12	2	0.38	_
G 7×11×2	_	7	11	2	0.25	
G 7×14×2	-	7	14	2	0.52	_
G $8\times12\times3$	_	8	12	3	0.41	_
G 8×15×3	_	8	15	3	0.74	
G 9×13×3	_	9	$13^{+0.098}_{+0.028}$	3	0.44	_
G 9×16×3	_	9	16	3	0.69	_
$G10\times14\times3$	_	10	14	3	0.50	_
G10×17×3	_	10	17	3	0.87	_
G12×16×3	_	12	16	3	0.56	_
G12×18×3	_	12	18	3	0.86	
G12×19×3	_	12	19	3	0.94	_
G13×19×3	_	13	19	3	0.87	_
G14×20×3	GD14×20×3	14	20	3	0.96	0.99
G14×21×3	$GD14 \times 21 \times 3$	14	21	3	1.1	1.1
$G14 \times 22 \times 3$	$GD14 \times 22 \times 3$	14	22	3	1.3	1.2
G15×21×3	$GD15 \times 21 \times 3$	15	21	3	1.0	1.0
G15×23×3	$\text{GD15}{\times}\text{23}{\times}\text{3}$	15	$23^{+0.119}_{+0.035}$	3	1.3	1.3
G16×22×3	$GD16 \times 22 \times 3$	16	22	3	1.3	1.1
G16×24×3	GD16×24×3	16	24	3	1.3	1.3
G16×25×3	GD16×25×3	16	25	3	1.6	1.6
G17×23×3	$GD17 \times 23 \times 3$	17	23	3	1.3	1.1
G17×25×3	$GD17 \times 25 \times 3$	17	25	3	1.5	1.4
G18×24×3	$GD18{\times}24{\times}3$	18	24	3	1.2	1.2

Bearing	numbers		Boundary limensions mm	.		1 ss)-3 kg
		d	$D^{1)}$	b		
Type G	Type GD			+0.2	G	GD
$\text{G18}{\times}\text{26}{\times}\text{4}$	$GD18{\times}26{\times}4$	18	26	4	1.8	1.8
G19×27×4	GD19×27×4	19	27	4	2.0	1.9
G20×26×4	$GD20 \times 26 \times 4$	20	26	4	1.8	1.8
$\text{G20}{\times}\text{28}{\times}\text{4}$	GD20×28×4	20	$28^{+0.119}_{+0.035}$	4	2.1	2.1
G21×29×4	$GD21{\times}29{\times}4$	21	29	4	2.2	2.1
G22×28×4	GD22×28×4	22	28	4	1.8	1.9
G22×30×4	$GD22\times30\times4$	22	30	4	2.2	2.3
$G24 \times 32 \times 4$	$GD24 \times 32 \times 4$	24	32	4	2.5	2.4
$\text{G25}{\times}32{\times}4$	$GD25 \times 32 \times 4$	25	32	4	2.3	2.2
G25×33×4	GD25×33×4	25	33	4	2.5	2.5
$G25 \times 35 \times 4$	$GD25 \times 35 \times 4$	25	35	4	2.6	2.6
$G26 \times 34 \times 4$	GD26×34×4	26	34	4	2.6	2.6
$G28 \times 35 \times 4$	$GD28 \times 35 \times 4$	28	35	4	2.4	2.5
$G28 \times 37 \times 4$	$GD28 \times 37 \times 4$	28	37	4	3.1	2.8
$\text{G29}{\times}37{\times}4$	GD29×37×4	29	37	4	2.7	2.7
G29×38×4	GD29×38×4	29	38	4	3.2	2.9
$G30 \times 37 \times 4$	$GD30 \times 37 \times 4$	30	$37^{+0.143}_{+0.043}$	4	2.7	2.6
$\mathbf{G30}{\times}40{\times}4$	GD30×40×4	30	40	4	3.6	3.3
$G32\times42\times4$	$GD32\times42\times4$	32	42	4	3.7	3.9
$G32\times45\times4$	$GD32 \times 45 \times 4$	32	45	4	5.1	5.2
$G35 \times 42 \times 4$	$GD35 \times 42 \times 4$	35	42	4	3.0	2.9
$G35 \times 45 \times 4$	$GD35 \times 45 \times 4$	35	45	4	4.1	3.6
$G37 \times 47 \times 4$	GD37×47×4	37	47	4	4.0	3.8
$\mathbf{G38}{\times}48{\times}4$	$GD38 \times 48 \times 4$	38	48	4	4.4	4.0
$G40\times47\times4$	$GD40 \times 47 \times 4$	40	47	4	3.3	3.5
G40×50×4	GD40×50×4	40	50	4	4.6	4.0
$\mathbf{G40}{\times}52{\times}5$	$GD40 \times 52 \times 5$	40	52 _{+0.173}	5	4.8	4.7
G42×52×4	GD42×52×4	42	52 ^{+0.053}	4	4.7	4.2

Note 1) The outer diameter tolerance is the mean value of the measured values at two measuring points.

Type G Type GD


Bearing	numbers	c	Boundary limensions	Mass			
		d	mm D ¹⁾	b	×10	0-3 kg	
Type G	Type GD			+0.2 0	G	GD	
G43×53×4	$GD43 \times 53 \times 4$	43	53	4	4.8	4.3	
$G45 \times 52 \times 4$	$GD45 \times 52 \times 4$	45	52	4	3.8	3.8	
$G45 \times 55 \times 4$	$GD45 \times 55 \times 4$	45	$55^{+0.173}_{+0.053}$	4	5.2	5.5	
G50×58×4	GD50×58×4	50	58	4	4.5	5.2	
$G50 \times 62 \times 5$	$GD50 \times 62 \times 5$	50	62	5	10.4	10	

Note 1) The outer diameter tolerance is the mean value of the measured values at two measuring points.

LINEAR BEARINGS

LINEAR BALL BEARINGS:

Drawn Cup, Solid, Stroke, Linear Flat Roller, and Linear Roller Bearing Types

Linear Ball Bearings

Туре		Applicable shaft diameter (mm)	Composition of bearing number
KH	This type is composed of an outer ring, steel balls and a cage and the outer ring is cylindrical similarly to that of Type KLM and drawn from a steel plate by precision deep drawing, then enabling to design a compact bearing construction of low section and lightweight. This type also ensures precise and smooth infinite linear motion similarly to other types.	ϕ 6— ϕ 50 With seal ϕ 10— ϕ 50	KH 20 30 LL/3AS Suffix LL: Seal 3AS: Grease code Width Roller set bore diameter Type code
KLM	This type composed of an outer ring, steel balls and a cage is a cylindrical bearing for the most universal applications, which ensures precise and smooth infinite linear motion due to its outer ring of high rigidity.	φ3—φ40	KLM 06 LL/3AS Suffix LL: Seal 3AS: Grease code Roller set bore diameter Type code
KLM··S	his type is composed of an outer ring, steel balls and a cage. And both of the outer ring and the cage have an axial slit, as illustrated, so as to enable to shrink the inscribed circle diameter of the cage by pressing the outer ring in radial direction from the housing and to thereby adjust radial clearance from shaft. Thus, this type also ensures precise and smooth infinite linear motion.	φ16—φ40	Suffix S: Clearance- adjustable Roller set bore diameter Type code
KLM··P	This type is composed of an outer ring, steel balls and a cage. And the outer ring and the cage are of arc sectional shape, from which one row of balls (equivalent to 50° to 60° degree spacing) is removed. Thus, the arc cross-sectional ring and cage with 50° to 60° degree opening allows the bearing assy to pass through a shaft support truss or a shaft support stand on midway of the shaft stroke. This type also ensures precise and smooth infinite linear motion, similarly to other types. The bearing radial clearance can be also adjusted.	φ16—φ40	Suffix P: Open configuration LL: Seal 3AS: Grease code Roller set bore diameter Type code

Components	Infinite motion	Finite motion	Rotating motion	Remarks
Roller set bore diameter: ϕ 20 Width: 30 Seal: Double-side seal Grease: Prefilled	0	0	×	
Roller set bore diameter: φ6 Seal: Double-side seal Grease: Prefilled	0	0	×	The cages of the bearing types KLM, KLM, S, KLM,P and KH are all molded from polyamide resin and, therefore, these bearing types shall be used at allowable temperature 120°C and, under continuous running, at 100°C and less.
Roller set bore diameter: ϕ 30 Type: Clearance-adjustable type	0	0	×	To avoid deterioration of seal and grease, use a bearing in a temperature range of -20 to 120°C. For continuous machine operation, limit the maximum permissible operating temperature to 100°C. These bearing types can't rotate.
Roller set bore diameter: φ30 Type: Open type Seal: Double-side seal Grease: Prefilled	0	0	×	

Туре		Applicable shaft diameter (mm)	Composition of bearing number
KD	This type composed of an outer ring, steel balls and a cage is a cylindrical bearing for the most universal applications, which ensures precise and smooth infinite linear motion due to its outer ring of high rigidity.	Shaft diameter ϕ 10— ϕ 80	KD 20 32 45 LL/3AS Suffix LL: Seal 3AS: Grease Width Outer diameter Roller set bore diameter Type code
FF FF··ZW	This type composed of a cage and needle rollers ensures smooth reciprocating motion of less friction actor by being inserted between two planes in relative position. The cage made of polyamide resin is provided with grooved joint at its both ends so several cages can be jointed together into one unit.	Roller diameter ϕ 2— ϕ 3.5	FF 25 18 ZW Suffix ZW: Double row Width Roller diameter × 10 Type code
BF (RF)	This type composed of a cage and needle rollers ensures smooth reciprocating motion of less friction factor by being inserted between two planes in relative position. Press-formed steel plate cage (BF) and polyamde resin cage (RF) are selectively available. However, in the case of this bearing type several bearings can't not be jointed together into one unit.	Roller diameter ϕ 3— ϕ 7	BF 30 20 / 1000 Cage overall length Width Roller diameter ×10 Type code
RLM	This type is composed of a track frame, a separator and rollers. This type has the function enabling cylindrical rollers to circulate within the track frame and ensures infinite linear motion on a plane.	Section height 16—38	RLM 26 × 86 Bearing overall length Section height Type code

Components	Infinite motion	Finite motion	Rotating motion	Remarks
Roller set bore diameter: ϕ 20 Outer diameter: f32 Width: 45 Seal: Double-side seal Grease: Prefilled	×	0	0	To avoid deterioration of seal and grease, use a bearing in a temperature range of -20 to 120°C. For continuous machine operation, limit the maximum permissible operating temperature to 100°C.
Roller diameter: ϕ 2.5 Width: 18 ZW: Double-row type Number of rows: Two	0	0	×	Due to its resin cage, this bearing shall be used at allowable temperature 90°C and, under continuous running, at 80°C and less. The double-row type has an elastic joint on the cage center so double rows of flat rollers can be bent to any optional angle along the elastic joint by heating them in oil of 70 to 90°C. By cooling down the double-row rollers with the bent angle held unchanged for several seconds after having bent them to any optional angle, the bent shape of the double rows can be held unchanged so that the double-row rollers can be mounted on a V-shaped surface as illustrated.
Roller diameter: φ3 Width: 20 Cage length: 1000	0	0	×	Where the resin cage RF is used, the bearing shall be used at allowable temperature 90°C and, under continuous running, at 80°C and less. The standard length of the bearing unit with BF cage is 1000 mm. The standard length of the bearing unit with RF cage is 705 mm. Two or more bearings of this type can't be jointed with each other, but it can be supplied at any desired length on request.
Section height: 26 Bearing overall length: 86	0	0	×	

Linear Ball Bearings, Drawn Cup and Solid Types

Four to nine rows of balls are configured equally in the outer ring (outer cylinder). The ball rows circulate in axial direction while being guided by the cage. Thus, these bearing types move infinitely on a shaft in axial direction. However, these bearing types can't rotate.

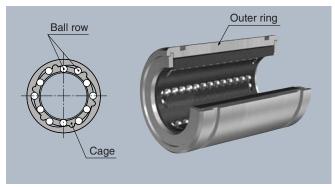


Fig. 1

Dimensional accuracy

Because of its thin-walled outer ring, the **Type KH** (drawn cup type) unavoidably develops certain degree of deformation in various manufacturing steps, in particular in the heat treatment process. Nevertheless, this bearing type has been designed so that when press-fitted into a housing of accurate dimensions, its deformation is corrected and it can restore its original accuracy to fully develop its design functions. For a method for determining dimensional accuracy of this bearing, contact **NTN** Engineering for technical assistance.

The dimensional accuracies in boundary dimensions, ball set bore diameter $(F_{\rm w})$, outside diameter (D) and width (C) of the **Type KLM** (solid type) are listed in the relevant dimension table. Upon request, **NTN** will supply linear ball bearing products for higher accuracy. For details, contact **NTN** Engineering.

Bearing fit

By employing a shaft or housing featuring dimensional tolerance in **Table 1** in this page, an appropriate radial internal clearance can be provided in the installed bearing. When a further smaller radial internal clearance is needed, achieve selective fit to obtain an intended radial internal clearance by selecting a relevant bearing-shaft or bearing-housing combination.

Table 1 Bearing fit

Туре	Shaft	Housing
series HK Drawn-cup type	h6 (j5)	H7 (H6) - steel series - K7 (K6) - light metal alloy series -
series KLM Solid type	g6 (g5)	H7 (H6)

Note) The parenthesized data is applied to shaft/housing subjected to higher accuracy or of vertical construction.

Shaft and housing requirements

Any shaft /housing on/in which these bearing types are fitted must meet the requirements specified in **Table 2**.

Table 2 Shaft and housing requirements (recommended)

Characteristics	Shaft	Housing
Roundness (max)	IT3	IT4
Cylindricity (max)	IT2	IT4
Surface roughness (max.)	0.4a	1.6a
Surface hardness	HRC58∼64	_
Case depth (min)	0.4mm	_

How to mount

The Type KH (drawn cup) bearing is press-fitted into the housing in interference fit mode: therefore this type of bearing does not need axial positioning with a means such as a snap ring. For press-fitting, force the marking side on the outer ring with a mandrel illustrated in Fig. 2.

The **Type KLM** (solid type) cannot be locked to the housing by interference alone. This type of bearing needs to be axially located with a snap ring.

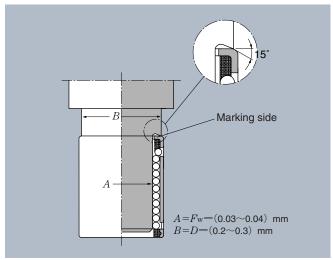
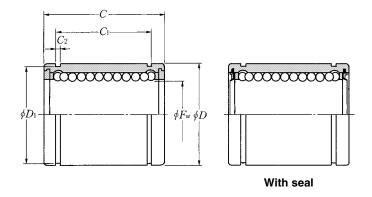


Fig. 2 Series KH

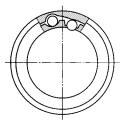
Accessories

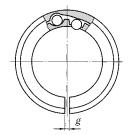
Shafts, shaft support stands and housings exclusive for NTN linear ball bearings are also offerable. Feel free to contact NTN for the detailed information.

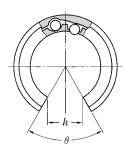
Type KH Type KH··LL



	Boundary of	dimensio	ns	Bearing numbers	dynamic	Basic load static	dynamic	static	Number of ball rows	Mass
	m	m				N	k	gf		kg
$F_{ m W}$	D	C	a ¹⁾		C_{r}	Cor	$C_{ m r}$	$C_{ m or}$		(approx.)
6	12	22	4	KH0622 ²⁾	380	225	39	23	4	0.007
8	15	24	5	KH0824 ²⁾	420	255	43	26	4	0.012
10	17	26	5	KH1026 ²⁾	480	325	49	33	4	0.015
12	19	28	6	KH1228	605	495	62	51	5	0.018
	19	28	6	KH1228LL/3AS	605	495	62	51	5	0.018
14	21	28	6	KH1428	600	505	61	51	5	0.021
16	24	30	7	KH1630	775	600	79	61	5	0.027
	24	30	7	KH1630LL/3AS	775	600	79	61	5	0.027
20	28	30	7	KH2030	1 050	880	107	90	6	0.033
	28	30	7	KH2030LL/3AS	1 050	880	107	90	6	0.033
25	35	40	8	KH2540	1 930	1 560	196	159	6	0.066
	35	40	8	KH2540LL/3AS	1 930	1 560	196	159	6	0.066
30	40	50	8	KH3050	2 700	2 450	275	250	7	0.095
	40	50	8	KH3050LL/3AS	2 700	2 450	275	250	7	0.095
40	52	60	9	KH4060	4 250	4 000	435	410	8	0.18
50	62	70	9	KH5070	5 300	5 700	540	580	9	0.24


Type KLM · · S Type KLM · · SLL


Type KLM · · P Type KLM · · PLL



		Bound	mm						dynamic	asic load static N	•	•	Bearing numbers	Number of ball rows	Mass kg
$F_{ m W}$	D	C :	C_1 \pm 0.240	C_2	D_1	g	h	θ	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor			(approx.)
$3\ ^{0}_{-0.008}$	$7_{-0.010}^{0}10$	$^{0}_{-0.120}$	_	_	_	_	_	_	51	40	5	4	KLM03	4	0.002
4 $_{-0.008}^{0}$	$8_{-0.010}^{-0}$ 12	$\begin{array}{c} 0 \\ -0.120 \end{array}$	_	_	_	_	_	_	71	52	7	5	KLM04	4	0.003
5 $^{0}_{-0.009}$	$10_{-0.010}^{-0} 15$	0 -0.120	_	_	_	_	_	_	118	90	12	9	KLM05	4	0.005
	$12_{-0.010}^{0}19$			1.1	11.5	_	_	_	130	107	13	11	KLM06	4	0.009
o 0	$15 {}^{0}_{-0.010} 17$, 0 -0.120	11.3	1.1	14.3	_	_	_	115	94	12	9	KLM08	4	0.012
6 -0.009	$15 = 0.010 \ 17$ $15 = 0.010 \ 24$	-0.120	17.3	1.1	14.3	_	_	_	234	188	24	19	KLM08-1	4	0.017
10 $_{-0.009}^{0}$	$19_{-0.012}^{0}29$	0 - 0.120	21.7	1.3	18	-	_	_	440	297	45	30	KLM10	4	0.028
12 $_{-0.009}^{0}$	$22_{-0.012}^{0}32$	-0 -0.120	22.7	1.3	21	_	_	_	545	455	55	46	KLM12	5	0.042
13 $^{0}_{-0.009}$	$23_{-0.012}^{0}32$	0 -0.120	22.7	1.3	22	-	_	_	540	455	55	46	KLM13	5	0.045
	28 37		26.5	1.6	27	_	_	_	995	805	102	82	KLM16	5	0.075
16 $_{-0.009}^{0}$	$28 {0 \atop -0.012} 37$, 0 -0.120	26.5	1.6	27	0.6	_	_	995	805	102	82	KLM16S	5	0.075
	28 37	,	26.5	1.6	27	_	8.2	60°	995	805	102	82	KLM16P	4	0.062
	32 42		30.3	1.6	30.5	_	_	_	1 320	1 150	135	117	KLM20	6	0.10
	$32_{-0.014}^{0}42$			1.6	30.5	0.6	_	_	1 320	1 150	135	117	KLM20S	6	0.10
	32 42	2	30.3	1.6	30.5		8.6	50°	1 320	1 150	135	117	KLM20P	5	0.085
	40 59		40.7	1.85	38	_	_	_	2 560	2 340	261	238	KLM25	6	0.22
	$40_{-0.014}^{0}59$			1.85	38	0.6	_	-	2 560	2 340	261	238	KLM25S	6	0.22
	40 59)	40.7	1.85	38	_	10.8	50°	2 560	2 340	261	238	KLM25P	5	0.19
	45 64		44.2	1.85	43	_	_	_	2 540	2 370	259	241	KLM30	6	0.26
	$45_{-0.014}^{0}64$			1.85	43	0.6	_	_	2 540	2 370	259	241	KLM30S	6	0.26
	45 64		44.2	1.85	43	_	13.0	50°	2 540	2 370	259	241	KLM30P	5	0.22
	52 70		49.2	2.2	49	_	_	_	3 650	3 350	375	340	KLM35	6	0.40
	$52_{-0.017}^{0}70$			2.2	49	1.2	_	_	3 650	3 350	375	340	KLM35S	6	0.40
	52 70)	49.2	2.2	49	_	15.1	50°	3 650	3 350	375	340	KLM35P	5	0.34

Type KLM (Standard type)

Type KLM··S (Clearance-adjustable type)

Type KLM · · P (Open type)

			Bounda	ry dime	nsions					B dynamic N			static	Bearing numbers	Number of ball rows	Mass kg
	F_{W}	D	C	$C_1 \pm 0.300$	C_2	D_1	g	h	θ	$C_{ m r}$	Cor	C_{r}	$C_{ m or}$			(approx.)
		$60_{-0.017}^{$	$80_{-0.120}^{0}$	60.3	2.1	57	_	_	_	3 950	3 750	400	380	KLM40	6	0.62
40	0 -0.012	60 _0.017	$80_{-0.120}^{0}$	60.3	2.1	57	1.2	_	_	3 950	3 750	400	380	KLM40S	6	0.62
		$60_{-0.017}^{0}$	$80_{-0.120}^{0}$	60.3	2.1	57	_	17.2	50°	3 950	3 750	400	380	KLM40P	5	0.53

Linear Ball Bearings, Stroke Type

The bearing cage with multiple ball rows (several balls per row) configured circumferentially therein can move within the outer ring in both circumferential and axial directions. Thus, this bearing type can rotate and reciprocate (but at a limited stroke) on a shaft.

Bearing construction

Maximum available length of the reciprocal stroke is two times as long as the stroke at which the cage can reciprocate within the outer ring. The outer ring is provided at its both ends with a snap ring acting as a stopper and a wave spring is provided between the snap ring and the cage to damp a shock acting on the cage as well as to prevent wear of the cage.

In addition to the standard type, a special type with synthetic rubber seal (Tail code: **LL**) on the both ends of its outer ring is also available.

Dimensional accuracy of Bearing

Table 1 the bearing tolerance.

Table 1 Dimensional accuracy

Characteristics	Dimensional tolerance
Ball inscribed circle diameter (F_w)	F6
Outer ring outer diameter (D)	h5

Bearing fit and radial internal clearance

Linear ball bearings need to be used with minimum possible radial internal clearance. In particular, when a linear bearing is used on a vertical shaft or higher accuracy is needed, it is desirable to combine a bearing with a selected shaft and use the bearing-shaft combination with a radial internal clearance in a range of 0 to -5 mm (guideline).

Table 2 shows the bearing fits on shaft and in housing.

Table 2 Bearing fits (recommended)

Operating conditions	Shaft	Housing
Usual operating conditions	k5 (m5)	H6 (H7)
Vertical shaft and high accuracy applications	n5 (p5) ●	J6 (J7)

Selective fit

Shaft and housing requirements

Table 3 specifies the requirements for shaft and housing which of the outer surfaces are used as the direct raceway.

Table 3 Shaft and housing requirements (recommended)

Characteristics	Shaft	Housing
Roundness (max)	IT2	IT4
Cylindricality (max)	IT2	IT4
Surface roughness (max)	0.2a	1.6a
Surface hardness	HRC58~64	_
Hardened layer depth (min)	0.4mm	_

How to mount

This bearing type can't be fixed perfectly to a housing with interference only and, therefore, it is fixed in axial direction using a snap ring. (Refer to **Fig. 1**)

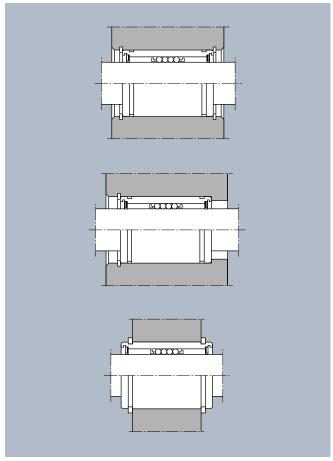


Fig. 1 Axial fixing of bearing

For adjusting the cage so it locates at the outer ring center after a shaft was mounted, push the cage in the arrow direction in **Fig. 2** by inserting the shaft into the outer ring that was press-fitted in the housing. (**Fig. 2**)

In this condition, insert slowly the shaft up to the center point of the reciprocating stroke and, thereafter, further push-in the shaft by 1/2 of the stroke. (**Fig. 3**) Then, return the shaft by 1/2 of the stroke to thereby locate the cage at the outer ring center and the shaft at the center point of the reciprocating stroke. (**Fig. 4**)

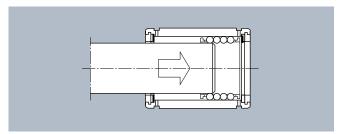


Fig. 2

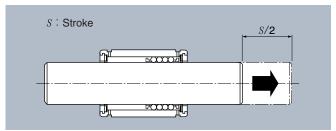
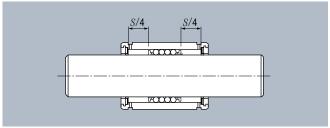
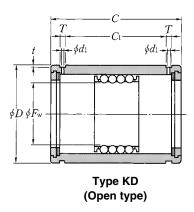
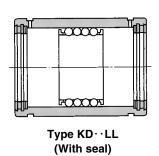


Fig. 3


Fig. 4

The outer ring must be press-fitted so its grease feed hole locates at load non-acting side.

Where moment load acts on a bearing due to use of a vertical shaft, the load could act on the grease feed hole. Caution it.

Type KD Type KD··LL

Fw 10∼80mm

			Βοι			ension	S			Bearin	g numbers		asic load	·		1	ass
					mm	Туре	e KD	Type ł	(D··LL			dynamic	Static		c static gf		rox.) g
	<i>D</i> h5	C ¹⁾	T	t	d_1	C_1	Max. stroke		Max. stroke	Type KD	Type KD··LL	$C_{ m r}$	Cor	$C_{ m r}$	Cor	Type KD	Type KD…LL
10	19	30	1.7	0.4	1.5	22.7	27	15.5	19	KD101930	KD101930LL/3AS	720	535	74	55	0.028	0.030
12	23	32	1.7	0.4	1.5	24.5	30	17.1	22	KD122332	KD122332LL/3AS	920	725	94	74	0.052	0.055
16	28	37	1.7	0.5	1.5	29.1	33	21.1	26	KD162837	KD162837LL/3AS	1 480	1 070	151	109	0.073	0.078
20	32	45	2.2	0.5	2	35.8	55	26.8	46	KD203245	KD203245LL/3AS	1 670	1 230	171	125	0.100	0.105
25	37	45	2.2	0.6	2	35.8	55	26.8	46	KD253745	KD253745LL/3AS	1 890	1 410	192	144	0.115	0.120
30	45	65	2.7	0.7	2.5	53.5	81	45.1	73	KD304565	KD304565LL/3AS	3 800	3 100	390	315	0.265	0.265
35	52	70	2.7	0.7	2.5	58.5	90	50.1	79	KD355270	KD355270LL/3AS	4 200	3 500	430	355	0.405	0.405
40	60	80	2.7	0.7	2.5	68.3	103	59.9	93	KD406080	KD406080LL/3AS	5 900	4 750	600	485	0.635	0.635
45	65	80	2.7	0.7	2.5	68.3	103	59.9	93	KD456580	KD456580LL/3AS	6 400	5 300	655	540	0.675	0.680
50	72	100	3.2	1	3	86.4	136	77.4	125	KD5072100	KD5072100LL/3AS	8 500	6 850	870	695	1.00	1.02
55	80	100	3.2	1	3	86.4	136	77.4	125	KD5580100	KD5580100LL/3AS	9 200	7 550	940	770	1.34	1.36
60	85	100	3.2	1	3	86.4	136	77.4	122	KD6085100	KD6085100LL/3AS	9 900	8 250	1 010	840	1.41	1.43
70	95	100	3.2	1	3	86.4	136	77.4	122	KD7095100	KD7095100LL/3AS	10 600	9 000	1 080	920	1.61	1.63
80	110	100	3.2	1.2	3	86	129	77	116	KD80110100	KD80110100LL/3AS	13 300	10 900	1 350	1 110	2.37	2.40

Note 1) The tolerance for dimension-C is 0, -0.120 mm against $F_w \le$ 50 mm and 0, -0.150 mm against $F_w >$ 50 mm.

Linear flat rollers

Linear Flat Rollers

Linear Flat Rollers

This bearing type composed of a needle roller and flat cage assembly (needle rollers are configured in the flat cage) ensures smooth reciprocating motion with less friction coefficient.

Types

For **Type FF**, the polyamide resin cage has a dovetail joint groove on its both ends so that several cages can be jointed together into one unit.

For **Type FF··ZW**, two rows of needle rollers are configured in the cage and the cage has an elastic joint on its center so as to enable to bend two rows of flat rollers to any optional angle at the elastic joint by heating them in oil of 70 to 90°C. The two roller rows bent to any optional angle can hold the bent shape unchanged, even under normal operating temperature, by being cooled down for several seconds, with the bending angle held unchanged.

For **Type BF**, the cage is press-formed from steel plate and the standard length of the bearing unit is 1000 mm. For **Type RF**, the cage is of polyamide resin and the standard length of the bearing unit is 705 mm. The both are unavailable for cage to cage inter-jointing, but a bearing unit of any desired length is offerable upon request. Feel free to contact **NTN** for the detailed information.

Needle roller tolerance

The needle rollers contained in the flat roller cage are manufactured within the dimensional tolerance range of 0 to -2 mm against the nominal diameter (D_w) .

Raceway surface requirements

Table 1 shows the requirements for raceway surface applied to the linear flat roller bearings.

Table 1 Raceway surface requirements (recommended)

Characteristics	Tolerance
Surface roughness (max)	0.2a
Surface hardness ●	HRC58~64
Effective hardened layer depth (min)	0.4mm
Mounting accuracy (max) ²	0.1 mm per 1000 mm

- Where raceway surface hardening not allowed, a quenched spring plate may be used.
- 2 Mounting accuracy is expressed with an inclination value in Fig. 1.

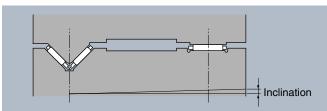


Fig. 1

How to mount

Theoretically the linear flat roller bearing moves by 1/2 of table moving stroke in same direction as the table moving direction. The relationship of bed length (L) - stroke (S) - cage length (L_1) can be expressed in **formula** (1). (Fig. 2)

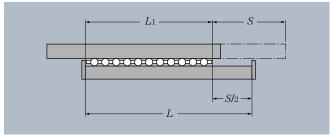


Fig. 2

The linear flat roller bearing results in moving deviation due to profile deviation of raceway surface, uneven load or vibration. Therefore, the table or the bed must be equipped with a stopper at its end portion to prevent overrun of the flat roller bearing. (**Fig. 5**)

Figs. 3 and 4 illustrate application examples of the linear flat roller bearing unit.

If a separate raceway surface having undergone heat treatment and grinding is installed to a machine main body, be careful to avoid deformation of the bearing that can result from tightening.

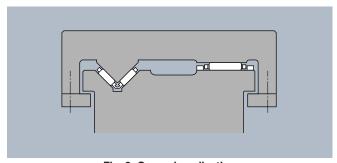


Fig. 3 General application

Fig. 4 When overhung load acts on

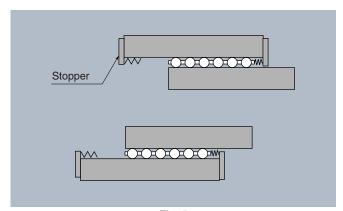
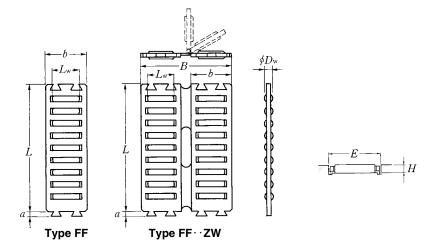
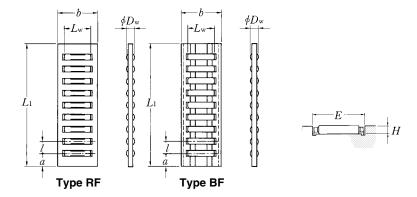



Fig. 5

Type FF Type FF · · ZW


*D*w 2∼3.5mm

		Воц	undary	dime	nsions		dynamic	Basic load	dynamic	static	Bearing numbers	Number of rolls	Abutm dimens		Mass
				mm				N	k	gf		10113	mm	1	kg
	$D_{\rm w}^{1)}$	b	В	L	$L_{\rm W}$	a	$C_{ m r}$	Cor	$C_{\rm r}$	Cor			E	Н	(approx.)
	2	10	_	32	6.8	2	8 500	19 700	865	2 010	FF2010	7	10.3 +0.1	0.2	0.0020
_	2	10	25	32	6.8	2	15 500	39 500	1 580	4 000	FF2025ZW	14	25.3 ^{+0.1} ₀	$1.7_{-0.2}^{0}$	
_	2.5	15	_	45	9.8	2.4	17 100	41 400	1 740	4 200	FF2515	8	15.3 ^{+0.1} ₀	$2.2_{-0.2}^{0}$	
_	2.5	15	35	45	9.8	2.4	29 300	82 500	2 980	8 450	FF2535ZW	16	35.3 ^{+0.1} ₀	$2.2_{-0.2}^{0}$	
	3	20	_	60	13.8	3	31 000	79 500	3 150	8 100	FF3020	9	20.4 +0.1	$2.7_{-0.2}^{0}$	0.0089
_	3	20	45	60	13.8	3	53 500	159 000	5 450	16 200	FF3045ZW	18	45.4 ^{+0.1} ₀	$2.7_{-0.2}^{0}$	
	3.5	25	_	75	17.8	3.2	50 000	132 000	5 100	13 500	FF3525	10	25.4 ^{+0.1} ₀	$3.2_{-0.2}^{0}$	0.017
	3.5	25	55	75	17.8	3.2	86 000	265 000	8 800	27 000	FF3555ZW	20	55.4 ^{+0.1} ₀	$3.2_{-0.2}^{0}$	0.035

Note 1) The dimensional tolerance for needle roller diameter $D {\rm w}$ is 0 to -2 $\,\mu{\rm m}.$

Linear flat rollers NTN

Type BF Type RF

		В	Soundary n	dimensio nm	ons		dynamic	Basic load static	ratings ³⁾ dynamic kg	static f	Bearing numbers	Abutr dimen	sions	Mass ⁴⁾
D	_w 1)	b	L1 ²⁾	$L_{ m w}$	l	a	$C_{ m r}$	Cor	$C_{ m r}$	Cor		E	Н	(approx.)
;	3	20	705	13.8	6	4.5	34 000	88 500	3 450	9 000	RF3020/705	20.4 +0.1	$2.7_{-0.2}^{0}$	0.015
-;	3	20	1 000	15.8	6	5	38 000	102 000	3 850	10 400	BF3020/1000	20.4 +0.1 0	$2.7_{-0.2}^{0}$	0.037
į	5	23	1 000	19.8	8	8	87 000	211 000	8 850	21 500	BF5023/1000	23.4 +0.1	$4.7_{-0.2}^{0}$	0.054
į	5	32	1 000	27.8	8	8	114 000	299 000	11 600	30 500	BF5032/1000	32.4 ^{+0.1} ₀	$4.7_{-0.2}^{0}$	0.073
-	7	28	1 000	24	11	10.5	138 000	305 000	14 000	31 000	BF7028/1000	28.5 ^{+0.1} ₀	$6.7_{-0.2}^{0}$	0.091
7	7	35	1 000	30	11	10.5	185 000	445 000	18 900	45 500	BF7035/1000	35.5 ^{+0.1}	$6.7_{-0.2}^{0}$	0.110

Note 1) The dimensional tolerance for needle roller diameter $D_{\rm W}$ is 0 to -2 $\,\mu$ m.

2) The standard length L_1 of the cage shall be 1000 mm for Type BF and 705 mm for Type RF. Where special cage length is required, the nominal bearing number is followed by the numerical length value as exemplified below. Ex. Where $L_1 = 500$ mm is required for **BF3020**, **BF302/500**

3) The listed basic load ratings are subject to use of 10 flat rollers. Calculate the basic load ratings for any optional cage length L_1 by the following formula.

 $C = f_1^{7/9} \cdot C_r$

 $C_0 = f_1 \cdot C_{0r}$

Herein, f_1 =0.1 (L_1+l-2a) / l

4) The listed weights are subject to L_1 = 100 mm.

Remarks: For Type BF

- 1. On occasion, the length of an ordered unit could be shorter by l dimension shown in each Dimensions Table because the roller and cage assy is cut at the minimum unit of each pocket so as to match the required length.
- 2. Where this bearing unit is used frequently at various lengths, it is more economical to cut the standard bearing of 1000 mm length to each desired length at your side.

Linear Roller Bearings

This roller bearing with cylindrical rollers having the function capable of circulating within the raceway block ensures smooth infinite linear motion on a flat surface. The cylindrical rollers are retained and guided by the cage and the ribs of the raceway block.

The cage is of such a construction as not allow adjacent rollers to contact with one another. Hence, the friction coefficient is low.

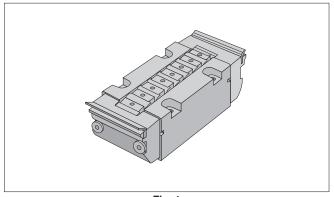


Fig. 1

Bearing accuracy

All the linear roller bearings are manufactured within the dimensional tolerance range of 0 to -2.5 μ m for bearing height (H). And these bearings are delivered classified into 5-stepped tolerance classes. (See **Table 1**)

Table 1 Classification of bearing height ${\cal H}$ by accuracy class

 Unit : μm

 Class code
 Tolerance for height (H)

 1H
 $0 \sim -5$

 2H
 $-5 \sim -10$

 3H
 $-10 \sim -15$

 4H
 $-15 \sim -20$

 5H
 $-20 \sim -25$

Requirements and tolerances for raceway surface and mounting surface

Table 2 shows the requirements and tolerances for the raceway surface, on which linear roller bearing rolls, and the bearing mounting surface. Where adhesion of a hard foreign matter to the raceway surface is forecast, the raceway surface must be protected with a proper protective cover.

The reference surface for mounting is the back face and opposite face to **NTN** mark.

Table 2 Requirements for raceway surface and mounting surface (recommended)

Characteristics	Allowable value or tolerance range			
Raceway surface roughness (max)	0.2a			
Raceway surface hardness	HRC58∼64			
Effective hardened layer depth of raceway surface (min)	as described in applicable Dimensions Table			
Parallelism of mounting surface				
Δx (See Fig. 2)	0.05 mm per 100 mm			
Δy (See Fig. 3)	0.01 mm per 100 mm			

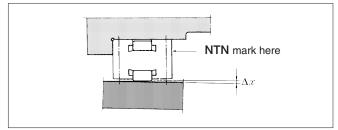


Fig. 2

Fig. 3

How to mount

Fix linear roller bearing using the tapped holes which are provided on the mounting reference surface. (See Fig. 4)

If a plurality of bearing units are installed on a same plane, select the units that belong to a same bearing height H dimensional accuracy class (**Table 1**) so that the load is uniformly distributed onto them.

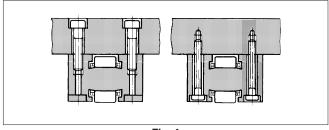
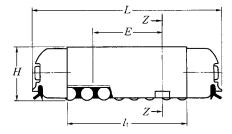
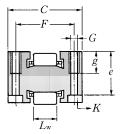




Fig. 4

Type RLM

Section Z-Z

H 16∼38mm

				В	Sounda		ensio	ns				Bearin numbe		dynamic	static	ad ratings dynamic	static	Required case depth on track	Mass
						mm									N	k	cgf		kg
	Н	C	L	$L_{\rm W}$	E	F	G	Lt	e	g	K			$C_{ m r}$	Cor	$C_{ m r}$	Cor	(min.) mm	(approx.
	16	25	62	8	17	19	M4	35.5	12.5	6	φ 3.2	RLM16×	62A	15 400	34 000	1 570	3 450	0.3	0.11
	19	27	69	10	25.5	20.6	M4	43.4	15.5	6	φ 3.2	RLM19×	69B	26 100	58 000	2 660	5 900	0.3	0.16
ĺ,	26	40	86	14	28	30	M6	52.4	21	10	φ 4.5	RLM26×	86A	50 000	106 000	5 100	10 800	0.4	0.41
	26	40	102	14	44	30	M6	67.9	21	10	φ 4.5	RLM26×	102A	62 500	142 000	6 350	14 400	0.4	0.53
	26	40	126	14	68	30	M6	91.8	21	10	φ 4.5	RLM26×	126A	80 000	195 000	8 150	19 900	0.4	0.70

One-way Clutches Tension Pulleys, Bottom Roller Bearings

One-way Clutches

This is a compact and roller type one-way clutch which formed a cam face on its outer ring. (Available shaft diameter range: 6 to 35 mm) When the outer ring begins to turn in the counterclockwise direction (direction marked on the outer ring width surface) relative to the shaft, the force of spring causes the rollers to advance to the engagement positions on the outer ring cam face, thereby the wedge action taking place between the outer ring cam face and the shaft drives the shaft. (See Fig. 1) When the outer ring rotates clockwise against the shaft, the shaft rotates counterclockwise relatively to the outer ring and, as the result, the rollers get away from the outer ring cam face and simultaneously the outer ring idles against the shaft. (See Fig. 2)

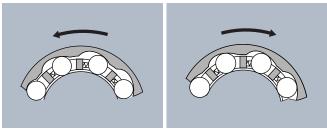


Fig. 1
One-way clutch in engagement

Fig. 2
One-way clutch in idling

	Туре	Applied shaft diameter (mm)	Composition of nominal clutch number	Remarks
Type HF		φ6—φ35	HF 10 12 Width Bore diameter Type code	One-way clutch HF composed of an outer ring drawn from a thin steel plate by precision drawing has the clutching function only. In order for a oneway clutch to be able to carry a radial load and smoothly rotate, its both ends each need to be supported by a radial load carrying bearing.
Type HFL		φ8—φ35	HFL 10 22 Width Bore diameter Type code	One-way clutch HFL has an outer ring drawn from thin steel plate by precision drawing, a clutching function, and an integral needle roller and cage assembly capable of supporting radial load at its both ends respectively. Thus, this HFL can function as clutch and, in addition, support radial load.

Both of Type HF and HFL use a polyamide resin cage and press the needle rollers to a wedge, which is formed between the outer ring cam face and the shaft, by action of a plate spring supported with the cage.

Clutch fit

Table 1 shows the one-way clutch fits on shaft and in housing. Both of Type HF and HFL are only press-fitted in a housing, needing no axial fixing by use of a snap ring, etc.

However, due to the outer ring drawn from thin steel by precision drawing, the performance of the both is directly affected by the dimensional and profile deviations of the shaft/housing. To avoid such an inverse affect, shaft and housing accuracy must be controlled with good care. Any housing is required to have the wall thickness of a specified value or more. **Table 2** shows the recommended value.

Table 1 Clutch fits (recommended)

Type	Shaft	Housing				
Type	Shart	Iron series	Light metal alloy			
HF	h5 (h6)	NG (NZ)	D6 (D7)			
HFL	115 (116)	N6 (N7)	R6 (R7)			

Table 2 Recommended housing wall thickness (recommended)

Housing material	Housing wall thickness
Iron-based	0.75 (<i>D</i> - <i>F</i> _w) and over
Light metal alloy	1.5 $(D-F_{\rm w})$ and over

For values of D and F_{w} , refer to the relevant dimension table.

Shaft and housing requirements

Table 3 shows the shaft and housing requirements.

Table 3 Shaft and housing requirements (recommended)

Characteristics	Sh	naft	Housing		
Characteristics	Type HF Type HFL		Type HF	Type HFL	
Roundness (max)	IT3	(IT4)	IT4 (IT5)		
Cylindricality (max)	IT3	(IT4)	IT4 (IT5)		
Surface roughness	0.:	2a	1.6a		
Surface hardness	HRC5	864	_		
Effective hardened layer depth (min)	0.4	mm	-		

Lubrication

Oil lubrication is optimum for these one-way clutches, but generally grease lubrication is mostly applied to this type of one-way clutch. **NTN** one-way clutches are filled up with a suitable grease. These clutches need no further grease replenishment, but subject to general applications.

In replenishing, good care must be exercised of too much grease filling. Too much filling could cause interference with smooth clutching.

For selection of an appropriate lubricant, contact **NTN** Engineering for technical assistance.

Allowable operating temperature

For **Type HF** and **HFL**···Oil lubrication : -10 to 120°C Grease lubrication : -10 to 70°C

When intending to use the oneway clutch at the upper or lower limit for its allowable operating temperature range, contact **NTN** Engineering for technical assistance.

How to mount

It is convenient to use a press-fitting mandrel as illustrated in **Fig. 3** for assembling and mounting these one-way clutches. In that case, press-fit the outer ring, with its stamped mark side kept in contact with the mandrel shoulder.

In assembling, be careful to prevent the outer ring from twisting. Avoid to hammer directly the outer ring and, in press-fitting, bring a proper jig in contact with the outer ring side face without fail. Furthermore, when press-fitting in an housing with shoulder, good care must be exercised to prevent the bearing side face from coming into contact with the housing shoulder and to thereby avoid deformation of the bearing.

Also, shaft can be easily assembled by turning it in clutch idling direction. Where impossible to do so, provide the shaft end with a tapered (chamfered) guide to facilitate assembling-in.

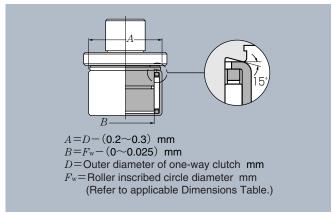
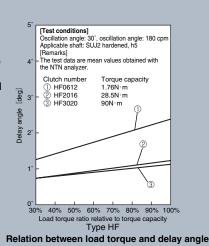


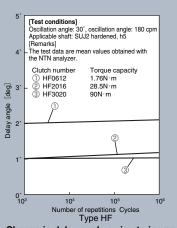
Fig. 3

Precautions in selecting

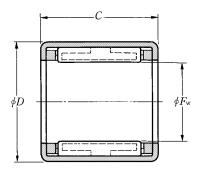
NTN is verifying the functions of its oneway clutch products under various test conditions. However, if an NTN oneway clutch is used under a higher load torque, in high oscillation cycles and fine oscillation mode, or when a greater radial load acts on the oneway clutch, or if the hardness of the mating shaft is low, the life of oneway clutch can become shorter.


Furthermore, lock failure could occur in the cases of fast idling speed, frequent use in idling, and application incurring vibration.

When using these one-way clutches under the special conditions stated above, feel free to contact **NTN** for further instructions.

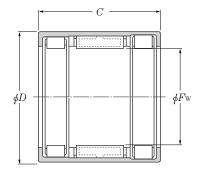

If loss of the clutching function of oneway clutch (slipping occurs during engagement motion) can impose severe damage to personnel or equipment, a positive safety device needs to be separately provided for the machine.

■Delay angle


"Delay angle" means the difference ($\theta_{l} - \theta_{0}$) between the angle of rotation of the input shaft (θ_t) and the angle of rotation of the output shaft (θ_0). The delay angle of NTN oneway clutch can vary depending on the oneway clutch designation and the magnitude of torque the oneway clutch carries. The chart in the right graphically illustrates the trend in relation between load torque and delay angle (data measured with an NTN analyzer).

NTN has verified that even if a torque as high as the torque capacity of NTN oneway clutch products is exerted, and when the number of engagement cycles exceeds 10⁶, change in the delay angle on NTNoneway clutches is small (data obtained from the NTN analyzer).

Type HF


Type HF

F_W 6∼35mm

Boundary dimensions		Torque capacity		Bearing	Mass	Part number by radial load		
mm		$M_{ extsf{d}}$ N·m kgf·m		numbers	kg	(appro	orov)	
$F_{ m W}$	D	C	IN THE	Kgi*iii		, ky	needle roller	oil retaining
		0 -0.25				(approx.)	bearing	bearing
6	10	12	1.76	0.18	HF0612	0.003	HK0609T2	B-S6-22
8	12	12	3.15	0.32	HF0812	0.0035	HK0810	B-S8-25
10	14	12	5.30	0.54	HF1012	0.004	HK1010	B-S10-21
12	18	16	12.2	1.24	HF1216	0.0116	HK1212	B-S12-32
14	20	16	17.3	1.76	HF1416	0.013	HK1412	B-S14-13
16	22	16	20.5	2.09	HF1616	0.014	HK1612	B-S16-13
18	24	16	24.1	2.46	HF1816	0.0155	HK1812	B-S18-8
20	26	16	28.5	2.91	HF2016	0.017	HK2012	B-S20-19
25	32	20	66	6.73	HF2520	0.0309	HK2512	B-S25-11
30	37	20	90	9.18	HF3020	0.036	HK3012	B-S30-19
35	42	20	121	12.3	HF3520	0.040	HK3512	B-S35-7

Type HFL

Type HFL

d 8∼35mm

Shaft dia.	dia. Boundary dimensions				nd ratings		Bearing	Torque o	capacity	Mass	
mm		mm		dynamic N	static	dynamic	static cgf	numbers	N∙mm	kgf∙m	kg
d	F_{W}	D	C 0	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$			Ü	(approx.)
8	8	12	-0.25 22	4 050	413	4 150	423	HFL0822	3.15	0.32	0.0063
10	10	14	22	4 300	438	4 650	474	HFL1022	5.30	0.54	0.0074
12	12	18	26	6 300	642	6 500	663	HFL1226	12.2	1.24	0.018
14	14	20	26	7 100	724	7 700	785	HFL1426	17.3	1.76	0.020
16	16	22	26	7 300	744	8 400	857	HFL1626	20.5	2.09	0.022
18	18	24	26	8 300	846	10 300	1 050	HFL1826	24.1	2.46	0.024
20	20	26	26	8 200	836	10 400	1 060	HFL2026	28.5	2.91	0.027
25	25	32	30	10 900	1 110	14 100	1 440	HFL2530	66.0	6.73	0.044
30	30	37	30	12 600	1 280	17 600	1 790	HFL3030	90.0	9.18	0.051
35	35	42	30	13 000	1 330	19 300	1 970	HFL3530	121	12.3	0.058

Bottom Roller Bearings for Textile Machinery

These are needle roller bearings that support the bottom rollers (fluted rollers) on fine spinning machines, roving frames or drawing frames. **Type FRIS** is applied to a fine spinning machine and a roving frame, and **Type FR** applied to a drawing frame.

Types and construction

Bottom roller bearing **FRIS** is used to support the bottom rollers of a fine spinning machine and a roving frame. The outer ring outer profile of this bearing type is spherical, which can allow, to some extent, mounting error in the bottom rollers. On the other hand, the inner ring is provided with a rib at its both ends and a clearance between the outer ring and each inner ring rib is minimized. Furthermore, the rib outer surface is knurled to prevent invasion of cotton pieces into the bearing.

These bottom roller bearings are classified into internationally interchangeable **A-series** bearings with bearing fixing saddle (to fix a bearing to a support stand) and **B-series** bearings adaptable to the dimensions of JIS Fluted Rollers.

A-series bearings are further classified into one bearing type (suffix **SA**) wherein inner ring and outer ring are separable from one another according to saddle type and another bearing type (suffix **SB**) wherein inner ring and outer ring are non-separable. Of course, these bearings can also be supplied without saddle.

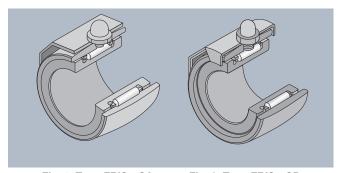


Fig. 1 Type FRIS··SA

Fig. 2 Type FRIS··SB

On the other hand, **B-series** bearings are further classified into bearing type with grease nipple (suffix **N**), bearing type with knock pin on its outer ring (suffix **P**) and bearing type with knock hole on its outer ring (suffix **W**) (latter two types-classified by the fixing method applied).

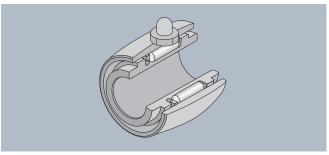


Fig.3 Type FRIS

These bearings can be supplied with saddle thereon on request, similarly to **A-series**.

Type **FR** is used to support the rollers of a drawing frame. This bearing type is composed of two drawn cup type needle roller bearings which are configured in a housing. These have no inner ring and use a shaft as the direct raceway surface. Synthetic rubber seal is fitted in the both ends of the housing. This bearing type is fixed to a support stand with knock pins press-fitted in the housing. The knock pin is provided with an grease hole to enable grease replenishing.

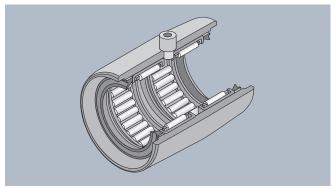


Fig. 4 Type FR

Composition of bearing number

The bearing number comprises type code, dimension code [diameter (d or $F_{\rm w}$)] and a suffix.

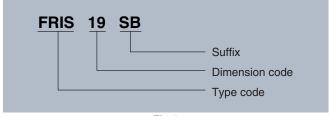


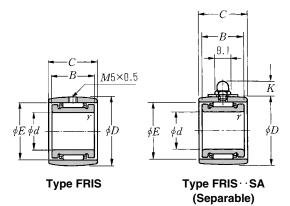
Fig.5

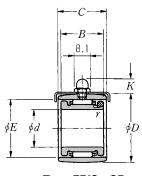
Bearing fits

Table 1 shows bearing fits on/in shaft and housing.

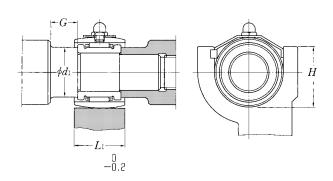
Table 1 Bearing fits

Bearing type	Sh	Llousing (stand)	
	Screwed joint	Spline joint	Housing (stand)
FRIS	g5 (g6)	H10	
FR	h5 (H10	

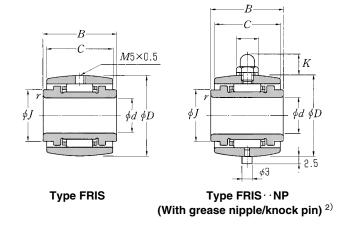

Precautions for mounting


- (1) For the shaft shoulder dimensions of the Type FRIS, refer to the dimensions d_1 and G in the relevant dimension table. To be able to prevent entanglement with fly and avoid adverse effect onto spinning quality, it is necessary to promptly remove entangling fly without stopping the machine. In this context, the conditions that must be satisfied to allow the bearing to fully develop its functions and maintain spinning quality by provide sufficiently deep and wide shaft shoulder.
- (2) To axially position the bottom roller connected to the machine, use a thrust bearing on the gear end side so that axial movement of the bottom roller is positively prevented.
- (3) When rinsing the bottom roller with cleaning liquid such as light oil, be careful not to allow the cleaning liquid to enter the bearing.
- (4) When installing the bearing to a stand, position the outer ring to the middle of the inner ring width.
- (5) Carefully install the bottom roller so that its runout is not greater than 0.05 mm.

Type FRIS Series A (For fine spinning machine/ roving frame)

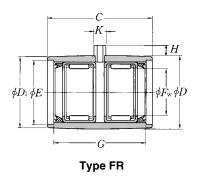


Type FRIS · · SB (Non-separable)


d 16.5~25mm

		В	oundary din	nensions					Basic load	d ratings	
								dynamic	static	dynamic	static
			mm					1	1	k	gf
d	D	B	C	E	$r_{ m s~min}$ 1)	L	K				
-0.010		-0.050	-0.120					$C_{\rm r}$	Cor	$C_{\rm r}$	Cor
16.5	$28 \begin{array}{c} 0 \\ -0.020 \end{array}$	19	22	23.5	0.3	22.2	7.7	10 200	14 600	1 040	1 480
10	32 ₀	20	23	27	0.3	22.2	7.7	11 800	18 500	1 200	1 880
19	36 ^{-0.025}	22	25	29	0.3	22.2	9.8	12 700	17 600	1 300	1 800
22	$42 \begin{array}{c} 0 \\ -0.025 \end{array}$	25	29	35	0.3	26.4	10.2	19 500	25 300	1 980	2 580
25	$45 \begin{array}{c} 0 \\ -0.025 \end{array}$	25	29	37	0.3	26.4	10.2	21 300	29 100	2 170	2 970

	Bearing number	s	A	Abutmei	nt dimer	nsions	Mass
bearing	bearing w	ith saddle			mm		kg bearing with saddle
	Type SA	Type SB	L_1	d_1	G	Н	(approx.)
FRIS16.5	FRIS16.5SA	FRIS16.5SB	22	21	13	24~26	0.059
FRIS19	FRIS19SA	FRIS19SB	22	24	15	27~29	0.081
FRIS19-5	FRIS19-5SA	FRIS19-5SB	22	26	15	30~32	0.120
FRIS22-2	FRIS22-2SA	_	26	30	15	35~37	0.208
FRIS25	FRIS25SA		26	33	15	37~39	0.226


Type FRIS Series B (For fine spinning machine/ roving frame)

		Boundary	dimens	sions				В	asic load			Bearin	g numbers	Mass
			mm					dynamic		dynamic k	static gf			(approx.) kg
d 0 -0.010		D	B 0 -0.050	C 0 -0.120	J	rs min ¹⁾	K	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	Type FRIS	Type FRIS··NP	Type FRIS··NP
15	28	0 -0.020	24	22	22	0.3	7.7	10 200	14 600	1 040	1 480	FRIS15	_	0.070
15.875	30	0 -0.020	25.4	22	22	0.3	7.1	10 200	14 600	1 040	1 480	FRIS15.87	FRIS15.87NP	0.082
16	28 30	0 -0.020	26 26	22 22	22 22	0.3	7.7 7.1	10 200 10 200	14 600 14 600		1 480 1 480	FRIS16 FRIS16-2	FRIS16NP FRIS16-2NP	0.083 0.098
18	31.7 32	750 ₀ -0.025	24 26	23 23	24 24	0.3	7.7 7.7	11 800 11 800	18 500 18 500		1 880 1 880	FRIS18 FRIS18-2	FRIS18NP FRIS18-2NP	0.083 0.088
19.050	31.7	750 ₀ -0.025	23.81 25.4	23 23	24 26	0.3	7.7 7.7	11 800 12 700	18 500 17 600	1 200	1 880 1 800	FRIS19.05	— FRIS19.05-1NP	0.078
20	34 34 36	0 -0.025	24 26 26	23 23 23	26 26 26	0.3 0.3 0.3	7.7 7.7 7.1	12 700 12 700 12 700	17 600 17 600 17 600	1 300 1 300	1 800 1 800 1 800	FRIS20-2 — —	FRIS20-2NP FRIS20-4NP FRIS20-7NP	0.089 0.097 0.125
22	40	0 -0.025	26	24	30	0.6	7.1	16 200	22 300	1 650	2 280	FRIS22-1	FRIS22-1NP	0.154
22.225	40	0 0.025	25.4	24	30	0.6	7.1	16 200	22 300	1 650	2 280	FRIS22.22	FRIS22.22NP	0.145
25	42 44	0 -0.025	26 26	24 24	32 34	0.6 0.6	7.1 7.1	16 000 17 200	22 500 25 100		2 290 2 560	FRIS25-1 FRIS25-2	FRIS25-1NP FRIS25-2NP	0.154 0.174

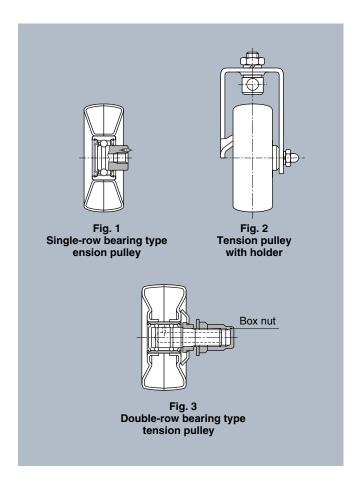
Type FR (Drawing frame)

$F_{\rm W}$ 17.462 \sim 22mm

ı			R	oundary (dimanci	one					Basic load	d ratings		Bearing	Mass
				ouridary (ullilelisi	UIIS				dynamic	static	dynamic	static	numbers	IVIASS
	ה		D	C	nm E	G	Н	K	D	١	1	kg	ıf		kg
	$F_{ m W}$		0 -0.050	0 -0.20	Ŀ	G	П	Λ	D_1	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$		(approx.)
			26.5	46	24	31	5	5	26	10 200	16 600	1 040	1 690	FR17.46P	0.066
	17.462	+0.053	26.5	47.6	24.6	42.86	4.76	4.76	26	14 400	25 900		2 640	FR17.46-1P	0.075
		+0.010	26.5	52.38	24.6	42.86	4.76	4.76	26	14 400	25 900		2 640	FR17.46-2P	0.082
_			26.988	41.28	24	31	5	5	26.5	10 200	16 600	1 040	1 690	FR17.46-3P	0.068
	19.050		31.750	52.38	28	42.86	4.76	4.76	31.2	16 700	25 800	1 700	2 630	FR19.05P	0.134
	22	+0.053 +0.020	34	46	28	43	4.76	4.76	33.5	23 400	44 000	2 380	4 500	FR22P	0.150

Tensioner Pulleys for Textile Machinery

These pulleys are used to guide and tension the tapes and belts driving the spindles of a fine spinning machine, a roving frame, a false twister, etc.


A pulley drawn precisely from steel plate by precision deep drawing is press-fitted in the outer ring of shaft bearing in in place of inner ring.

Types and construction

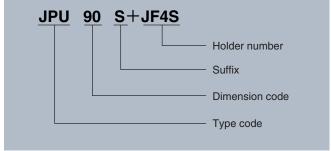
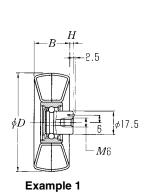
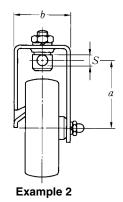
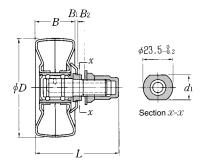
Single-row or double-row ball bearing is built in this pulley, which is internally prefilled with lithium soap base grease. Grease is replenished through a grease hole which is internally provided in the stud. Two different mounting methods are available as follows for these pulleys; one method is to bolt a pulley to the roller carrier of machine with holder bolt using a special-purposed holder (Type code: $\mathbf{JF} \cdot \cdot \mathbf{S}$) and another method is to bolt directly a pulley to machine frame using the bolting hole drilled in the stud and a corresponding hexagon head bolt. A knock pin press-fitted in the stud end face is to lock the bolt after tightened.

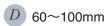
When a pulley is directly bolted to machine frame, provide the hexagon head bolt center with a grease through-hole for grease replenishing and screw a grease nipple in its end face.

In mounting a double-row ball bearing type tension pulley, insert the stud directly into machine frame and tighten it with nut, without using the special-purposed holder. Replenish grease using the box nut.

Composition of pulley number

The pulley number of a given **NTN** tension pulley consists of a type code (**JPU··S**), dimension code [pulley outside diameter (D)] and a suffix. A pulley having a special holder is marked with the holder number of that holder added to the suffix.


Fig. 4

Example 3

			ı	Boundary	y dimen	sions				Bearing numbers	Sample number	Mass
	_	_			mm		~	·	_			kg
D	В	B_1	Н	d_1 0 -0.3	a	b	S	L	B_2			(approx.)
60	25	_	3.5	_	_	_	_	_	_	JPU60S	1	0.140
	25	_	3.5	_	_	_	_	_	_	JPU70S	1	0.160
	25	_	3.5	_	48	39	10.2	_	_	JPU70S+JF1S	2	0.235
70	30	2	_	21	_	_	_	67 ∼71	$5\sim9$	JPU70-2S	3	0.245
	32	_	_	_	_	_	_	_	_	JPU70-1S	1	0.175
	32	_	_	_	48	46	10.2	_	_	JPU70-1S+JF2S	2	0.250
	25	_	3.5	_	_	_	_	_	_	JPU90S	1	0.215
	25	_	3.5	_	58	39	10.2	_	_	JPU90S+JF3S	2	0.300
90	32	_	_	_	_	_	_	_	_	JPU90-1S	1	0.230
90	32	_	_	_	58	46	10.2	_	_	JPU90-1S+JF4S	2	0.320
	32	3.5	_	21	_	_	_	$70.5\!\sim\!74.5$	$5\sim9$	JPU90-9S	3	0.325
	45	3.5	_	21	_	_	_	83.5~87.5	5∼9	JPU90-10S	3	0.380
100	32	3.5	_	21	_	_	_	70.5~74.5	5∼9	JPU100-14S	3	0.290
100	40	3.5	_	21	_	_	_	$78.5 {\sim} 82.5$	5∼9	JPU100-12S	3	0.390

Contents of Appendix

Approximate conversion values against Rockwell C hardness of steel materials	C-2
°C-°F temperature conversion table	C-3
Approximate conversion values against Vickers hardness of steel materials	C-4
Contrast table of SI and CGS system units, gravitation system units	C-6
Conversion to SI units	C-6
Integer multiplication of SI unit 10	C-7
kgf-N conversion table	C-8
Viscosity conversion table	C-9
Ordinary tolerance for cutting dimensions	C-10
Ordinary tolerances for castings	C-10
Ordinary tolerances for press-formed metal parts	C-10
Ordinary tolerances for sheared metal plates	C-12
Ordinary tolerance for sintered metal parts	C-13
Tolerance for shaft diameter	C-14
Dimensional tolerance for housing bore	C-16
Inch - Millimeter conversion table	C-18

Approximate conversion values against Rockwell C hardness of steel materials¹⁾

			nnel hardne		Roc	kwell hardnes	ss ²⁾		ell special ha			Tensile	
Rockwell C scale hardness	Pickers hardness (DPH)	Standard ball	Hultgren ball	Tungsten carbite ball	A scale Load 60kgf brale identer	B scale Load 100 kgf dia. 1/16in. ball	D-scale Load 100 kgf brale indenter	15-N scale Load 15 kgfkgf	30-N scale Load 30 kgf	45-N scale load 45 kgf	Shore hardness	strength kgf/mm² Approx. value	Rockwell C scale hardness ²⁾
68 67	940 900		_	_	85.6 85.0		76.9 76.1	93.2 92.9	84.4 83.6	75.4 74.2	97 95	_	68 67
66 65	865 832	_ _	_	- 739	84.5 83.9		75.4 74.5	92.5 92.2	82.8 81.9	73.3 72.0	92 91	_	66 65
64	800	_		722	83.4	_	73.8	91.8	81.1	71.0	88	-	64
63 62	772 746	_	_	705 688	82.8 82.3	_	73.0 72.2	91.4 91.1	80.1 79.3	69.9 68.8	87 85	_	63 62
61 60	720 697	_	- 613	670 654	81.8 81.2	_	71.5 70.7	90.7	78.4 77.5	67.7 66.6	83 81	_	61 60
59 58	674 653	_	599 587	634 615	80.7 80.1	_	69.9 69.2	89.8 89.3	76.6 75.7	65.5 64.3	80 78	_	59 58
57 56	633 613	_ _	575 561	595 577	79.6 79.0	_	68.5 67.7	88.9 88.3	74.8 73.9	63.2 62.0	76 75	_ _	57 56
55 54	595 577	_ _	546 534	560 543	78.5 78.0	_	66.9 66.1	87.9 87.4	73.0 72.0	60.9 59.8	74 72	212 205	55 54
53 52	560 544	_ 500	519 508	525 512	77.4 76.8		65.4 64.6	86.9 86.4	71.2 70.2	58.6 57.4	71 69	199 192	53 52
51 50	528 513	487 475	494 481	496 481	76.3 75.9	_	63.8 63.1	85.9 85.5	69.4 68.5	56.1 55.0	68 67	186 179	51 50
49	498	464	469	469	75.2	_	62.1	85.0	67.6	53.8	66	172	49
48 47	484 471	451 442	455 443	455 443	74.7 74.1	_	61.4 60.8	84.5 83.9	66.7 65.8	52.5 51.4	64 63	167 161	48 47
46 45	458 446	432 421	432 421	432 421	73.6 73.1	_	60.0 59.2	83.5 83.0	64.8 64.0	50.3 49.0	62 60	156 151	46 45
44	434 423	409 400	409	409 400	72.5 72.0	_	58.5 57.7	82.5 82.0	63.1 62.2	47.8 46.7	58 57	146	44
42 41	412 402	390 381	390 381	390 381	71.5 70.9	_	56.9 56.2	81.5 80.9	61.3 60.4	45.5 44.3	56 55	136 132	42 41
40 39	392 382	371 362	371 362	371 362	70.4 69.9	_ _	55.4 54.6	80.4 79.9	59.5 58.6	43.1 41.9	54 52	127 124	40 39
38 37	372 363	353 344	353 344	353 344	69.4 68.9	_	53.8 53.1	79.4 78.8	57.7 56.8	40.8 39.6	51 50	120 118	38 37
36 35	354 345	336 327	336 327	336 327	68.4 67.9	(109.0) (108.5)	52.3 51.5	78.3 77.7	55.9 55.0	38.4 37.2	49 48	114 110	36
34	336	319	319	319	67.4	(108.0)	50.8	77.2	54.2	36.1	47	108	35 34
33 32	327 318	311 301	311 301	311 301	66.8 66.3	(107.5) (107.0)	50.0 49.2	76.6 76.1	53.3 52.1	34.9 33.7	46 44	105 102	33 32
31 30	310 302	294 286	294 286	294 286	65.8 65.3	(106.0) (105.5)	48.4 47.7	75.6 75.0	51.3 50.4	32.5 31.3	43 42	100 97	31 30
29	294 286	279 271	279 271	279 271	64.7	(104.5) (104.0)	47.0 46.1	74.5 73.9	49.5 48.6	30.1	41	95 93	29
27 26	279 272	264 258	264 258	264 258	63.8 63.3	(103.0) (102.5)	45.2 44.6	73.3 72.8	47.7 46.8	27.8 26.7	40 38	90 88	27 26
25 24	266 260	253 247	253 247	253 247	62.8 62.4	(101.5) (101.0)	43.8 43.1	72.2 71.6	45.9 45.0	25.5 24.3	38 37	86 84	25 24
23 22	254 248	243 237	243 237	243 237	62.0 61.5	100.0 99.0	42.1 41.6	71.0 70.5	44.0 43.2	23.1 22.0	36 35	82 80	23 22
21 20	243 238	231 226	231 226	231 226	61.0 60.5	98.5 97.8	40.9 40.1	69.9 69.4	42.3 41.5	20.7	35 34	79 77	21 20
(18)	230	219	219	219		96.7		_	-	_	33	75	(18)
(16) (14)	222 213	212 203	212 203	212 203	_	95.5 93.9	_	_	_	_	32 31	72 69	(16) (14)
(12) (10)	204 196	194 187	194 187	194 187	_	92.3 90.7	_	_	_	_	29 28	66 63	(12) (10)
(8)	188 180	179 171	179 171	179 171	_	89.5 87.1	_	_	_	_	27 26	61 59	(8)
(4) (2)	173 166	165 158	165 158	165 158	_	85.5 83.5	_	_	_	_	25 24	56 54	(4) (2)
(0)	160	152	152	152 rom SAE J 4	-	81.7	_	_	_	_	24	53	(0)

Note 1) Approximate values were determined from SAE J 417.

2) Some of the parenthesized values in the above table are not used so frequently.

°C-°F temperature conversion table

°C		F	°C		F	°C		F	°C		F
	-100	-148	-1.6	29	84.2	17.7	64	147.2	37.1	99	210.2
-62	- 80	-112	-1.1	30	86.0	18.2	65	149.0	37.7	100	212
-51	- 60	– 76	-0.6	31	87.8	18.8	66	150.8	40.6	105	221
-40	- 40	- 40	0	32	89.6	19.3	67	152.6	43	110	230
-29	- 20	- 4	0.5	33	91.4	19.9	68	154.4	49	120	248
-23.3	- 10	14	1.1	34	93.2	20.4	69	156.2	54	130	266
-17.7	0	32	1.6	35	95.0	21.0	70	158.0	60	140	284
-17.2	1	33.8	2.2	36	96.8	21.5	71	159.8	65	150	302
-16.6	2	35.6	2.7	37	98.6	22.2	72	161.6	71	160	320
-16.1	3	37.4	3.3	38	100.4	22.7	73	163.4	76	170	338
-15.5	4	39.2	3.8	39	102.2	23.3	74	165.2	83	180	356
-15.0	5	41.0	4.4	40	104.0	23.8	75	167.0	88	190	374
-14.4	6	42.8	4.9	41	105.8	24.4	76	168.8	93	200	392
-13.9	7	44.6	5.4	42	107.6	25.0	77	170.6	121	250	482
-13.3	8	46.4	6.0	43	109.4	25.5	78	172.4	149	300	572
-12.7	9	48.2	6.6	44	111.2	26.2	79	174.2	177	350	662
-12.2	10	50.0	7.1	45	113.0	26.8	80	176.0	204	400	752
-11.6	11	51.8	7.7	46	114.8	27.3	81	177.8	232	450	842
-11.1	12	53.6	8.2	47	116.6	27.7	82	179.6	260	500	932
-10.5	13	55.4	8.8	48	118.4	28.2	83	181.4	288	550	1 022
-10.0	14	57.2	9.3	49	120.2	28.8	84	183.2	315	600	1 112
- 9.4	15	59.0	9.9	50	122.0	29.3	85	185.0	343	650	1 202
- 8.8	16	61.8	10.4	51	123.8	29.9	86	186.8	371	700	1 292
- 8.3	17	63.6	11.1	52	125.6	30.4	87	188.6	399	750	1 382
- 7.7	18	65.4	11.5	53	127.4	31.0	88	190.4	426	800	1 472
- 7.2	19	67.2	12.1	54	129.2	31.5	89	192.2	454	850	1 562
- 6.6	20	68.0	12.6	55	131.0	32.1	90	194.0	482	900	1 652
- 6.1	21	69.8	13.2	56	132.8	32.6	91	195.8	510	950	1 742
- 5.5	22	71.6	13.7	57	134.6	33.3	92	197.6	538	1 000	1 832
- 5.0	23	73.4	14.3	58	136.4	33.8	93	199.4	593	1 100	2 012
- 4.4	24	75.2	14.8	59	138.2	34.4	94	201.2	648	1 200	2 192
- 3.9	25	77.0	15.6	60	140.0	34.9	95	203.0	704	1 300	2 372
- 3.3	26	78.8	16.1	61	141.8	35.5	96	204.8	760	1 400	2 552
- 2.8	27	80.6	16.6	62	143.6	36.1	97	206.6	815	1 500	2 732
- 2.2	28	82.4	17.1	63	145.4	36.6	98	208.4	871	1 600	2 937
(How to read	thic table)									C-	5/9(F-32)

(How to read this table)
For example, for conversion from 38°C to °F read 38 in 4th row box (10th line from the top) and then read the right-side °F box. 38°C is equivalent to 100.4°F upon reading. Furthermore, for conversion from 38°F to °C read the left-side °C box. °F38 is equivalent to 3.3°C upon reading.

C=5/9(F-32)

F=9/5C+32

Approximate conversion values against Vickers hardness of steel materials 1)

77	Br	innel hardne ball, load 3	ess		Rockwell h				ell special ha			Tensile	V. 1
Vickers hardness (DPH)	Standard ball	Hultgren ball	Tungsten carbite ball	A scale Load 60 kgf brale identer	B scale Load 100 kgf dia. 1/16in. ball	C-scale Load 150 kgf brale indenter	D-scale Load 100 kgf brale indenter	15-N scale Load 15 kgf	30-N scale Load 30 kgf	45-N scale load 45 kgf	Shore hardness	strength kgf/mm² Approx. value	Vickers hardness Load 50kgf
940 920 900 880 860	- - - -		- - - 767 757	85.6 85.3 85.0 84.7 84.4		68.0 67.5 67.0 66.4 65.9	76.9 76.5 76.1 75.7 75.3	93.2 93.0 92.9 92.7 92.5	84.4 84.0 83.6 83.1 82.7	75.4 74.8 74.2 73.6 73.1	97 96 95 93 92	- - - -	940 920 900 880 860
840 820 800 780 760	- - - -	- - - -	745 733 722 710 698	84.1 83.8 83.4 83.0 82.6	- - - -	65.3 64.7 64.0 63.3 62.5	74.8 74.3 73.8 73.3 72.6	92.3 92.1 91.8 91.5 91.2	82.2 81.7 81.1 80.4 79.7	72.2 71.8 71.0 70.2 69.4	91 90 88 87 86	- - - -	840 820 800 780 760
740 720 700 690 680	- - - -	- 615 610 603	684 670 656 647 638	82.2 81.8 81.3 81.1 80.8	- - - -	61.8 61.0 60.1 59.7 59.2	72.1 71.5 70.8 70.5 70.1	91.0 90.7 90.3 90.1 89.8	79.1 78.4 77.6 77.2 76.8	68.6 67.7 66.7 66.2 65.7	84 83 81 - 80	- - - -	740 720 700 690 680
670 660 650 640 630	- - - -	597 590 585 578 571	630 620 611 601 591	80.5 80.3 80.0 79.8 79.5	- - - -	58.8 58.3 57.8 57.3 56.8	69.8 69.4 69.0 68.7 68.3	89.7 89.5 89.2 89.0 88.8	76.4 75.9 75.5 75.1 74.6	65.3 64.7 64.1 63.5 63.0	- 79 - 77 -	- - - -	670 660 650 640 630
620 610 600 590 580	- - - -	564 557 550 542 535	582 573 564 554 545	79.2 78.9 78.6 78.4 78.0	- - - -	56.3 55.7 55.2 54.7 54.1	67.9 67.5 67.0 66.7 66.2	88.5 88.2 88.0 87.8 87.5	74.2 73.6 73.2 72.7 72.1	62.4 61.7 61.2 60.5 59.9	75 - 74 - 72	_ _ _ 210 206	620 610 600 590 580
570 560 550 540 530	- 505 496 488	527 519 512 503 495	535 525 517 507 497	77.8 77.4 77.0 76.7 76.4	- - - -	53.6 53.0 52.3 51.7 51.1	65.8 65.4 64.8 64.4 63.9	87.2 86.9 86.6 86.3 86.0	71.7 71.2 70.5 70.0 69.5	59.3 58.6 57.8 57.0 56.2	- 71 - 69 -	202 199 195 190 186	570 560 550 540 530
520 510 500 490 480	480 473 465 456 448	487 479 471 460 452	488 479 471 460 452	76.1 75.7 75.3 74.9 74.5	- - - -	50.5 49.8 49.1 48.4 47.7	63.5 62.9 62.2 61.6 61.3	85.7 85.4 85.0 84.7 84.3	69.0 68.3 67.7 67.1 66.4	55.6 54.7 53.9 53.1 52.2	67 - 66 - 64	183 179 174 169 165	520 510 500 490 480
470 460 450 440 430	441 433 425 415 405	442 433 425 415 405	442 433 425 415 405	74.1 73.6 73.3 72.8 72.3	- - - -	46.9 46.1 45.3 44.5 43.6	60.7 60.1 59.4 58.8 58.2	83.9 83.6 83.2 82.8 82.3	65.7 64.9 64.3 63.5 62.7	51.3 50.4 49.4 48.4 47.4	- 62 - 59 -	160 156 153 149 144	470 460 450 440 430
420 410 400 390 380	397 388 379 369 360	397 388 379 369 360	397 388 379 369 360	71.8 71.4 70.8 70.3 69.8	- - - - (110.0)	42.7 41.8 40.8 39.8 38.8	57.5 56.8 56.0 55.2 54.4	81.8 81.4 81.0 80.3 79.8	61.9 61.1 60.2 59.3 58.4	46.4 45.3 44.1 42.9 41.7	57 - 55 - 52	140 136 131 127 123	420 410 400 390 380

continued

		innel hardne ball, load 3			Rockwell h	ardness ²⁾			ell special ha ial brake ind			Tensile	\/:=\
Vickers hardness (DPH)	Standard ball	Hultgren ball	Tungsten carbite ball	A scale Load 60 kgf brale identer	B scale Load 100 kgf dia. 1/16in. ball	C-scale Load 150 kgf brale indenter	D-scale Load 100 kgf brale indenter	15-N scale Load 15 kgf	30-N scale Load 30 kgf	45-N scale load 45 kgf	Shore hardness	strength kgf/mm² Approx. value	Vickers hardness Load 50kgf
370 360 350 340	350 341 331 322	350 341 331 322	350 341 331 322	69.2 68.7 68.1 67.6	(109.0) - (108.0)	37.7 36.6 35.5 34.4	53.6 52.8 51.9 51.1	79.2 78.6 78.0 77.4	57.4 56.4 55.4 54.4	40.4 39.1 37.8 36.5	50 - 47	120 115 112 109	370 360 350 340
330 320 310 300 295 290	313 303 294 284 280 275	313 303 294 284 280 275	313 303 294 284 280 275	67.0 66.4 65.8 65.2 64.8 64.5	(107.0) - (105.5) - (104.5)	33.3 32.2 31.0 29.8 29.2 28.5	50.2 49.4 48.4 47.5 47.1 46.5	76.8 76.2 75.6 74.9 74.6 74.2	53.6 52.3 51.3 50.2 49.7 49.0	35.2 33.9 32.5 31.1 30.4 29.5	45 - 42 - 41	105 103 100 97 96 94	330 320 310 300 295 290
285 280 275 270 265	270 265 261 256 252	270 265 261 256 252	270 265 261 256 252	64.2 63.8 63.5 63.1 62.7	- (103.5) - (102.0) -	27.8 27.1 26.4 25.6 24.8	46.0 45.3 44.9 44.3 43.7	73.8 73.4 73.0 72.6 72.1	48.4 47.8 47.2 46.4 45.7	28.7 27.9 27.1 26.2 25.2	- 40 - 38 -	92 91 89 87 86	285 280 275 270 265
260 255 250 245 240	247 243 238 233 228	247 243 238 233 228	247 243 238 233 228	62.4 62.0 61.6 61.2 60.7	(101.0) - 99.5 - 98.1	24.0 23.1 22.2 21.3 20.3	43.1 42.2 41.7 41.1 40.3	71.6 71.1 70.6 70.1 69.6	45.0 44.2 43.4 42.5 41.7	24.3 23.2 22.2 21.1 19.9	37 - 36 - 34	84 82 81 79 78	260 255 250 245 240
230 220 210 200 190	219 209 200 190 181	219 209 200 190 181	219 209 200 190 181	- - - -	96.7 95.0 93.4 91.5 89.5	(18.0) (15.7) (13.4) (11.0) (8.5)	- - - -	- - - -	- - - -	- - - -	33 32 30 29 28	75 71 68 65 62	230 220 210 200 190
180 170 160 150 140	171 162 152 143 133	171 162 152 143 133	171 162 152 143 133	- - - -	87.1 85.0 81.7 78.7 75.0	(6.0) (3.0) (0.0) —	- - - -	- - - -	- - - -	- - - -	26 25 24 22 21	59 56 53 50 46	180 170 160 150 140
130 120 110 100 95	124 114 105 95 90	124 114 105 95 90	124 114 105 95 90	- - - -	71.2 66.7 62.3 56.2 52.0	- - - -	- - - -	- - - -	- - - -	- - - -	20 - - - -	44 40 - -	130 120 110 100 95
90 85	86 81	86 81	86 81	_ _	48.0 41.0	- -	_ _	_ _	_ _	_ _	_ _	- -	90 85

Note 1) Approximate values were determined from SAE J 417.
2) Some of the parenthesized values in the above table are not used so frequently.

Contrast table of SI and CGS system units, gravitation system units

Unit system Quantity	Length L	Mass M	Time T	Acceleration	Force	Stress	Pressure	Energy
SI	m	kg	S	m/s²	N	Pa	Pa	J
CGS system	cm	g	S	Gal	dyn	dyn/cm²	dyn/cm²	erg
Gravitation system	m	kgf · s²/m	S	m/s²	kgf	kgf/m²	kgf/m²	kgf · m

Conversion to SI unit

Quantity
Angle Minute Second F(sec) π/10 800 Radian Frad
Neter
Length Meter Micron
Length Micron μ 10 ⁻⁶ 10 ⁻¹⁰ Meter m m
Angstrom
Square meter
Area
Hector
Volume
Liter
Mass kilogram Ton Weight kilogram.square second per meter Kgf ⋅ s²/m Weight kilogram.square second per meter Kgf ⋅ s²/m 9.806 65 Kilogram Kilogram Kilogram kg Wg Minute Minute Minute Mol 3600 Second Seco
Mass Ton Weight kilogram.square second per meter t kgf ⋅ s²/m 10³ yes 65 Kilogram kg Time Second Minute Hour Day s 1 60 yes 60 Second s Speed Knot Knot Knot Knot Knot Knot Cycle Revolutions per minute per second Frequency and vibration Agular speed m/s 1 yes 2/3 600 Meter per second m/s Revolutions (tatkinal speed) Revolutions per minute per second Trad/s 1 yes 665 Hertz Hz Acceleration G Weight kilogram Weight kilogram Weight kilogram weter kgf 9.806 65 Newton meter m/s² Force moment Weight kilogram per square meter kgf ⋅ m ⋅ s² 9.806 65 Newton meter N ⋅ m Inertia moment Weight kilogram per square meter kgf ⋅ m ⋅ s² 9.806 65 Rascal or Newton per square meter Pa or N/m² Stress Weight kilogram per square meter kgf/m² 9.806 65 Pascal or Newton per square meter Pa or N/m²
Weight kilogram.square second per meter kgf · s²/m 9.806 65
Second S Minute
Minute Hour Hour Hour Hour Hour Hour Hour Hour
Hour Day d d 86 400 Speed Meter per second Knot kn 1 852/3 600 Frequency and vibration Cycle s-1 (pps) Angular speed Revolutions per minute per second rad/s Acceleration G Weight kilogram Weight ton Dyne dyn Dyne G Derote Meter per sequare meter Stress Weight kilogram per square meter kgf · m · S² Stress Weight kilogram per square meter kgf/m² Meter per second m/s a 600 86 400 1 Meter per second m/s 1 Hertz Hertz Hz 1/60 Per second Per second s-1 1 Radian per second Per second m/s² 1 Radian per second per second per second m/s² 9.806 65 Newton Newton meter N · m 9.806 65 Newton meter Pa or N/m² 9.806 65 Newton per square meter Pa or N/m²
Day Meter per second Meter per second Knot
Speed Meter per second Knot kn 1 852/3 600 Meter per second m/s 1 852/3 600 Meter per second Meter per second m/s 1 852/3 600 Meter per second Meter per second m/s 1 852/3 600 Met
Revolutions (rotational speed) Revolutions per minute per second Revolutions per second Revolutions per minute per second Revolutions per second Revolutions per second Revolutions per minute per second Revolutions per second Revolutions per minute per second Revolutions per second Rev
Frequency and vibration Cycle s ⁻¹ (pps) 1 Hertz Hz Revolutions (rotational speed) Revolutions per minute per second rpm (r/min) 1/60 Per second s ⁻¹ Angular speed Radian per second rad/s Acceleration G Weight kilogram kgf Weight ton Dyne dyn 10 ⁻⁵ Force moment Weight kilogram meter kgf · m · s ⁻² Stress Weight kilogram per square meter kgf/m ² Nadian per second s ⁻¹ Radian per second rad/s 1 Radian per second per second m/s ² 1 Radian p
Revolutions (rotational speed) Revolutions per minute per second rpm(r/min) 1/60 Per second s ⁻¹
Angular speed Radian per second rad/s 1 Radian per second rad/s Acceleration Meter per second per second ger
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Acceleration G G G G G G G G G G
G G 9.806 65
Force Weight ton Dyne $\frac{1}{2}$ $$
Force momentWeight kilogram meterkgf \cdot m9.806 65Newton meterN \cdot mInertia momentWeight kilogram per square meterkgf \cdot m \cdot s²9.806 65kilogram square meterkg \cdot m²StressWeight kilogram per square meterkgf/m²9.806 65Pascal or Newton per square meterPa or N/m²
Inertia momentWeight kilogram per square meterkgf \cdot m \cdot s²9.806 65kilogram square meterkg \cdot m²StressWeight kilogram per square meterkgf/m²9.806 65Pascal or Newton per square meterPa or N/m²
Stress Weight kilogram per square meter kgf/m² 9.806 65 Pascal or Newton per square meter Pa or N/m²
Weight kilogram per square meter kqf/m² 9.806 65
Water column meter mH₂O 9 806.65
Pressure Mercury column meter mHg 101 325/0.76 Pascal Pa
Torr 101 325/760 Tascal
Atmospheric pressure atm 101 325
Bar bar 10 ⁵
Erg erg 10 ⁻⁷
IT calorie calı 4.186 8
Energy Weight kilogram meter kgf · m 9.806 65 Joule J
Kilowatt per hour kW · h 3.600×10 ⁶
Horse power per hour PS · h 2.647 79×10 ⁶
Watt W 1
Power rate and power Horse power PS 735.5 Watt W
Weight kilogram meter per second kgf · m/s 9.806 65

Unit system Quantity	Power rate	Temperature	Viscosity	Dynamic viscosity	Magnetic flux	Flux density	Magnetic field strength
SI	W	K	Pa · s	m²/s	Wb	Т	A/m
CGS system	erg/s	°C	Р	St	Mx	Gs	Oe
Gravitation system	kgf · m/s	°C	kgf · s/m²	m²/s	_	_	_

Conversion to SI unit

Quantity	Unit designation	Symbol	Conversion rate to SI	SI unit designation	Symbol	
	Poise	Р	10 ⁻¹			
Viscosity	Centi poise	сР	10 ⁻³	Pascal second	Pa · s	
	Weight kilogram second per square meter	kgf · s/m²	9.806 65			
Dynamic viscosity	Stokes	St	10 ⁻⁴	Square meter per second	m²/s	
Dynamic viscosity	Centistokes	cSt	10 ⁻⁶	Square meter per second	m²/s	
Temperature	Degree	°C	+273.15	Kelvin	К	
Radioactive	Curie	Ci	3.7×10 ¹⁰	Becquere	Bq	
Dosage	Roentgen	R	2.58×10 ⁻⁴	Coulomb per kilogram	C/kg	
Absorption dosage	Rad	rad	10 ⁻²	Gray	Gy	
Dosage equivalent	Rem	rem	10 ⁻²	Sivert	Sv	
Magnetic flux	Maxwell	Mx	10 ⁻⁸	Weber	Wb	
Flux density	Gamma	Υ	10 ⁻⁹	Tesler	т	
riux derisity	Gauss	Gs	10 ⁻⁴	i esiei	'	
Magnetic field strength	Oersted	Oe	$10^3/4 \pi$	Ampere per meter	A/m	
Quantity of electricity	Coulomb	С	1	Coulomb	С	
Potential difference	Volt	V	1	Volt	V	
Electric resistance	Ohm	Ω	1	Ohm	Ω	
Current	Ampere	Α	1	Ampere	Α	

Integer multiplication of SI unit 10

Unit×multiple	Initial	letter
	Name	Symbol
1018	Exa	E
10 ¹⁵	Peta	Р
10 ¹²	Tera	Т
10°	Guiga	G
10 ⁶	Mega	М
10 ³	Kilo	k
10 ²	Hect	h
10	Daca	da
10 ⁻¹	Deci	d
10 ⁻²	Centi	С
10 ⁻³	Mili	m
10^{-6}	Micro	μ
10 ⁻⁹	Nano	n
10 ⁻¹²	Pico	р
10 ⁻¹⁵	Femt	f
10 ⁻¹⁸	Atto	а

kgf-N conversion table

Kgi iv conversion to								
kgf		N	kgf		N	kgf		N
0.1020	1	9.8066	3.4670	34	333.43	6.8321	67	657.04
0.2039	2	19.613	3.5690	35	343.23	6.9341	68	666.85
0.3059	3	29.420	3.6710	36	353.04	7.0361	69	676.66
0.4079	4	39.227	3.7730	37	362.85	7.1380	70	686.46
0.5099	5	49.033	3.8749	38	372.65	7.2400	71	696.27
0.6118	6	58.840	3.9769	39	382.46	7.3420	72	706.08
0.7138	7	68.646	4.0789	40	392.27	7.4440	73	715.88
0.8158	8	78.453	4.1808	41	402.07	7.5459	74	725.69
0.9177	9	88.260	4.2828	42	411.88	7.6479	75	735.50
1.0197	10	98.066	4.3848	43	421.68	7.7499	76	745.30
1.1217	11	107.87	4.4868	44	431.49	7.8518	77	755.11
1.2237	12	117.68	4.5887	45	441.30	7.9538	78	764.92
1.3256	13	127.49	4.6907	46	451.10	8.0558	79	774.72
1.4276	14	137.29	4.7927	47	460.91	8.1578	80	784.53
1.5296	15	147.10	4.8946	48	470.72	8.2597	81	794.34
1.6316	16	156.91	4.9966	49	480.52	8.3617	82	804.14
1.7335	17	166.71	5.0986	50	490.33	8.4637	83	813.95
1.8355	18	176.52	5.2006	51	500.14	8.5656	84	823.76
1.9375	19	186.33	5.3025	52	509.94	8.6676	85	833.56
2.0394	20	196.13	5.4045	53	519.75	8.7696	86	843.37
2.1414	21	205.94	5.5065	54	529.56	8.8716	87	853.18
2.2434	22	215.75	5.6085	55	539.36	8.9735	88	862.98
2.3454	23	225.55	5.7104	56	549.17	9.0755	89	872.79
2.4473	24	235.36	5.8124	57	558.98	9.1775	90	882.60
2.5493	25	245.17	5.9144	58	568.78	9.2794	91	892.40
2.6513	26	254.97	6.0163	59	578.59	9.3814	92	902.21
2.7532	27	264.78	6.1183	60	588.40	9.4834	93	912.02
2.8552	28	274.59	6.2203	61	598.20	9.5854	94	921.82
2.9572	29	284.39	6.3223	62	608.01	9.6873	95	931.63
3.0592	30	294.20	6.4242	63	617.82	9.7893	96	941.44
3.1611	31	304.01	6.5262	64	627.62	9.8913	97	951.24
3.2631	32	313.81	6.6282	65	637.43	9.9932	98	961.05
3.3651	33	323.62	6.7302	66	647.24	10.0952	99	970.86
	_							

[How to read the table]
For example, for conversion from 10kgf to N read 10 on center stage of 1st row box and then read the right-side N.
10kgf is equivalent to 98.066 upon reading. Furthermore, for conversion from 10N to kfg read the right side kgf box.
10N is equivalent to 1.0197kg upon reading.

1kgf=9.80665N 1N=0.101972kgf

Viscosity conversion table

Dynamic viscosity	Saybolt	Redwood	Engler
mm²/s	SUS (sec)	R" (sec)	E (deg.)
mm-/S	303 (360)	11 (360)	
2.7	35	32.2	1.18
4.3	40	36.2	1.32
5.9	45	40.6	1.46
7.4	50	44.9	1.60
8.9	55	49.1	1.75
10.4	60	53.5	1.88
11.8	65	57.9	2.02
13.1	70	62.3	2.15
14.5	75	67.6	2.31
15.8	80	71.0	2.42
17.0	85	75.1	2.55
18.2	90	79.6	2.68
19.4	95	84.2	2.81
20.6	100	88.4	2.95
23.0	110	97.1	3.21
25.0	120	105.9	3.49
27.5	130	114.8	3.77
29.8	140	123.6	4.04
32.1	150	132.4	4.32
34.3	160	141.1	4.59
36.5	170	150.0	4.88
38.8	180	158.8	5.15
41.0	190	167.5	5.44
43.2	200	176.4	5.72
47.5	220	194.0	6.28
51.9	240	212	6.85
56.5	260	229	7.38
60.5	280	247	7.95
64.9	300	265	8.51
70.3	325	287	9.24
75.8	350	309	9.95
81.2	375	331	10.7
86.8	400	353	11.4
92.0	425	375	12.1
97.4	450	397	12.8

Dynamic viscosity	Saybolt	Redwood	Engler
mm²/s	SUS (sec)	R" (sec)	E (deg.)
		, ,	
103	475	419	13.5
108	500	441	14.2
119	550	485	15.6
130	600	529	17.0
141	650	573	18.5
152	700	617	19.9
163	750	661	21.3
173	800	705	22.7
184	850	749	24.2
195	900	793	25.6
206	950	837	27.0
217	1 000	882	28.4
260	1 200	1 058	34.1
302	1 400	1 234	39.8
347	1 600	1 411	45.5
390	1 800	1 587	51
433	2 000	1 763	57
542	2 500	2 204	71
650	3 000	2 646	85
758	3 500	3 087	99
867	4 000	3 526	114
974	4 500	3 967	128
1 082	5 000	4 408	142
1 150	5 500	4 849	156
1 300	6 000	5 290	170
1 400	6 500	5 730	185
1 510	7 000	6 171	199
1 630	7 500	6 612	213
1 740	8 000	7 053	227
1 850	8 500	7 494	242
1 960	9 000	7 934	256
2 070	9 500	8 375	270
2 200	10 000	8 816	284

Appendix NTN

Ordinary tolerance for cutting dimensions

JIS B 0405

Ordinary tolerance is applied to cutting dimensions for which special accuracy is not required functionally and, therefore, applicable tolerances are indicated in batch, without individual indication of them, in relevant specification, drawings, etc.

Ordinary tolerances shall be indicated by either one of the following methods (1) and (2).

- (1) Numerical value table for each dimensional division
- (2) Applicable Standard No. and tolerance class
 - Ex. Ordinary tolerance shall conform to the "Medium Class" specified in JIS B 0405.

Unit	:	mm
01111	•	

Class Dimensional division	Fine class	Medium class	Coarse class
0.5 and over 3 incl.	±0.05	±0.1	_
Over 3 6 incl.			±0.2
Over 6 30 incl.	±0.1	±0.2	±0.5
Over 30 120 incl.	±0.15	±0.3	±0.8
Over 120 315 incl.	±0.2	±0.5	±1.2
Over 315 1000 incl.	±0.3	±0.8	±2
Over 1000 2000 incl.	±0.5	±1.2	±3

Reference: The numerical values given above every each of "Fine Class", "Medium class" and "Coarse Class" match "Fine series, Medium series", and Coarse series" specified in ISO 2768 (Permissible Machining Variations in Dimensions without Tolerance Indication).

Ordinary tolerances for castings

JIS B 0403

This Standard specifies the ordinary tolerances for the as-casted length and wall thickness dimensions (hereinafter referred to as" ordinary tolerance") of gray castings and spherical graphite

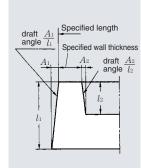
castings molded using sand molds (excluding precision mold and other equivalent).

The ordinary tolerance shall be indicated by either one of the following methods (1) and (2).

- (1) Numerical value table for each dimensional division
- (2) Applicable Standard No. and tolerance class Ex. JIS B 0403, Coarse class

Ordinary tolerance for length

Ordinary tolerance for length		Unit : mm		
Material	aray o	astings	Spherical gra	phite castings
Dimensional division Class	Fine class	Coarse class	Fine class	Coarse class
120 incl.	±1	± 1.5	±1.5	± 2
Over 120 250 incl.	±1.5	± 2	±2	± 2.5
Over 250 400 incl.	±2	± 3	±2.5	± 3.5
Over 400 800 incl.	±3	± 4	±4	± 5
Over 800 1600 incl.	±4	± 6	±5	± 7
Over 1600 3150 incl.	_	±10	_	±10


Ordinary tolerance for wall thickness

ш	ln	iŧ	٠	m	

Material	Gray castings		Spherical graphite castings	
Dimensional division Class	Fine class	Coarse class	Fine class	Coarse class
10 incl.	±1	±1.5	±1.2	±2
Over 10 18 incl.	±1.5	±2	±1.5	±2.5
Over 18 30 incl.	±2	±3	±2	±3
Over 30 50 incl.	±2	±3.5	±2.5	±4

Dimension-A for draft angle

	Unit : mm
Dimensional division l	Dimension A (max)
18 incl.	1
Over 18 30 incl.	1.5
Over 30 50 incl.	2
Over 50 120 incl.	2.5
Over 120 315 incl.	3.5
Over 315 630 incl.	6
Over 630 1000 incl.	9

Remarks : l means l_1 and l_2 in the above sketch. A means A_1 , A_2 in the above sketch.

Ordinary tolerances for press-formed metal parts

JIS B 0408

This Standard specifies the ordinary tolerances for the punching, bending and drawing dimensions, bending angle of press-formed metal parts (hereinafter referred to as "ordinary tolerance").

Ordinary tolerance is applied to the dimensions for which special accuracy is not required functionally and, therefore, applicable tolerances are indicated in batch, without individual indication of them, in relevant specification, drawings, etc.

Ordinary tolerance shall be indicated by either one of the following methods (1) and (2).

- (1) Numerical value table for each dimensional division
- (2) Applicable Standard No. and tolerance class Ex. JIS B0408, Class-A

Ordinary tolerance for punching

Unit : mm

Dimensional division	Class									
Difficitsional division	Class-A	Class-B	Class-C							
6 incl.	±0.05	±0.1	±0.3							
Over 6 30 incl.	±0.1	±0.2	±0.5							
Over 30 120 incl.	±0.15	±0.3	±0.8							
Over 120 400 incl.	±0.2	±0.5	±1.2							
Over 400 1000 incl.	±0.3	±0.8	±2							
Over 1000 2000 incl.	±0.5	±1.2	±3							

Ordinary tolerance for bending angle

Unit : mm

Dimensional division	Class									
Differisional division	Class-A	Class-B	Class-C							
6 incl.	±0.1	±0.3	±0.5							
Over 6 30 incl.	±0.2	±0.5	±1							
Over 30 120 incl.	±0.3	±0.8	±1.5							
Over 120 400 incl.	±0.5	±1.2	±2.5							
Over 400 1000 incl.	±0.8	±2	±4							
Over 1000 2000 incl.	±1.2	±3	±6							

Ordinary tolerances for sheared metal plates

JIS B 0410

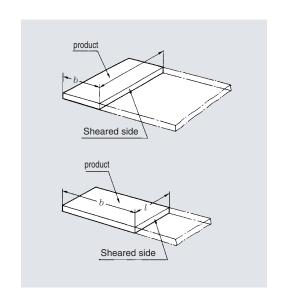
This Standard specifies the ordinary tolerances for the shearing width and ordinary tolerances for the straightness and perpendicularity (hereinafter generically referred to as "ordinary tolerance") of metal plates of 12mm and less in thickness which were sheared by direct shearing machines such as gear pusher, square shear, etc.

The ordinary tolerance shall be indicated by either one of the following methods (1) and (2).

- (1) Numerical value table for each dimensional division
- (2) Applicable standard No. and tolerance class

Ex. 1. JIS B 0410, Class-B

2. Cutting width, straightness: JIS B 0410, Class-B Perpendicularity: JIS B 0410, Class-A


Definition of the terms: The terms used in this Standard are as defined in JIS B 0111 (Terminology relating to press machines) and, in addition, defined as follows.

- (1) Cutting width: Distance from one side sheared by shear cutter to opposite side, as illustrated in Fig. b
- (2) Cutting length: length of one side sheared by shear cutter, as illustrated in Fig. *l*.

Ordinary tolerance for shearing width

1	l :	 	

	Classification by plate thickness (t)												
Cutting width division	t≦	1.6	1.6<	< <i>t</i> ≦3	3<	t ≦ 6	6< <i>t</i> ≦12						
b	Class												
	Class-A	Class-B	Class-A	Class-B	Class-A	Class-B	Class-A	Class-B					
30 and less	±0.1	±0.3		_			_	1					
Over 30 120 incl.	±0.2	±0.5	±0.3	±0.5	±0.8	±1.2	_	±1.5					
Over 120 400 incl.	±0.3	±0.8	±0.4	±0.8	±1	±1.5	_	±2					
Over 400 1000 incl.	±0.5	±1	±0.5	±1.2	±1.5	±2	_	±2.5					
Over 1000 2000 incl.	±0.8	±1.5	±0.8	±2	±2	±3	_	±3					
Over 2000 4000 incl.	±1.2	±2	±1.2	±2.5	±3	±4	_	±4					

Unit: mm

		Classi	ficatio	n by p	olate t	hickne	ess (t)		
Cutting length	t≦	1.6	1.6<	t ≦ 3	3<	<i>t</i> ≦6	6< <i>t</i> ≦12		
division				Cla	ISS				
	Class-A	Class-B	Class-A	Class-B	Class-A	Class-B	Class-A	Class-B	
30 and less	0.1	0.2	_	_	_	_	_	_	
Over 30 120 incl.	0.2	0.3	0.2	0.3	0.5	0.8	_	1.5	
Over 120 400 incl.	0.3	0.5	0.3	0.5	8.0	1.5	_	2	
Over 400 1000 incl.	0.5	0.8	0.5	1	1.5	2	_	3	
Over 1000 2000 incl.	0.8	1.2	0.8	1.5	2	3	_	4	
Over 2000 4000 incl.	1.2	2	1.2	2.5	3	5	_	6	

Ordinary tolerance for squareness

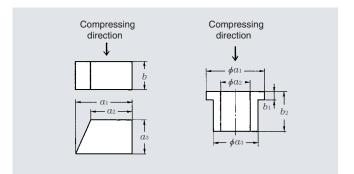
- 1	Jnit	mr
·	אווונ	1111

	'				•	,	
	CI	assifica	tion by ր	olate thi	ckness	(t)	
Narrow side	t≦	≦3	3<	<i>t</i> ≦6	6< <i>t</i> ≦12		
length division			Cla	iss			
	Class-A	Class-B	Class-A	Class-B	Class-A	Class-B	
30 and less	_		_	_	_	_	
Over 30 120 incl.	0.3	0.5	0.5	0.8	_	1.5	
Over 120 400 incl.	0.8	1.2	1	1.5	_	2	
Over 400 1000 incl.	1.5	3	2	3	_	3	
Over 1000 2000 incl.	3	6	4	6	_	6	
Over 2000 4000 incl.	6	10	6	10	_	10	

Ordinary tolerance for sintered metal parts

JIS B 0411

This Standard specifies the ordinary tolerance which is applied to the machining dimensions of sintered mechanical parts and sintered oil-contained bearing, of sintered metal parts, but excluding machining methods other (e.g. cutting, etc.) than the machining method specific for sintered metal parts.


Ordinary tolerance is applied to the dimensions for which special accuracy is not required functionally and, therefore, applicable tolerances are indicated in batch, without individual indication of them, in relevant specification, drawings, etc.

Ordinary tolerance shall be indicated by either one of the following methods (1) and (2).

- (1) Numerical value table for each dimensional division
- (2) Applicable Standard No. and tolerance class Ex. JIS B0411, Fine Class

Definition of terms: The terms used in this Standard are as defined below.

- (1) Width: Perpendicular dimension against compressing direction in compressive molding of powders, as illustrated in Fig. *a*.
- (2) Height: Dimension parallel to compressing direction in molding of powders, as illustrated in Fig. *b*.

Class: The ordinary tolerance class shall be three classes of "Fine Class", "Medium Class" and "Coarse class".

Reference: The numerical values every each class of "Fine Class",
"Medium Class" and "Coarse class" match "Fine Series,
Medium Series and Coarse Series specified in ISO 2768
(Permissible machining variations in dimensions without
tolerance indication)

Ordinary tolerance for width

Unit: mm

class Dimensional division	Fine class	Medium class	Coarse class
6 and less	±0.05	±0.1	±0.2
Over 6 - 30 incl.	±0.1	±0.2	±0.5
Over 30 - 120 incl.	±0.15	±0.3	±0.8
Over 120 - 315 incl.	±0.2	±0.5	±1.2

Ordinary tolerance for height

Unit: mm

			• • • • • • • • • • • • • • • • • • • •
class Dimensional division	Fine class	Medium class	Coarse class
6 and less	±0.1	±0.2	±0.6
Over 6 - 30 incl.	±0.2	±0.5	±1
Over 30 - 120 incl.	±0.3	±0.8	±1.8

Dimensional tolerance for shaft (JIS B 0401-2)

Diamete		a13		С	12	d	6	е	6	e ⁻	13	f5	f	6	g	5	ć	g6
Over	incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High Low	High	Low	High	Low	High	Low
3	6	- 270	- 450	- 70	- 190	- 30	- 38	- 20	- 28	- 20	- 200	-10 -15	- 10	- 18	- 4	- 9	- 4	- 12
6	10	- 280	- 500	- 80	- 230	- 40	- 49	- 25	- 34	- 25	- 245	-13 -19	- 13	- 22	- 5	-11	- 5	- 14
10	18	- 290	- 560	- 95	- 275	- 50	- 61	- 32	- 43	- 32	- 302	−16 −24	- 16	- 27	- 6	-14	- 6	- 17
18	30	- 300	- 630	-110	- 320	- 65	- 78	- 40	- 53	- 40	- 370	-20 -29	- 20	- 33	- 7	-16	- 7	- 20
30	40	- 310	- 700	-120	- 370	00	00		- 66	F0	- 440	-25 -36	٥٦	- 41		00		05
40	50	- 320	- 710	-130	- 380	- 80	- 96	- 50	- 66	- 50	- 440	-25 -36	- 25	- 41	- 9	-20	- 9	- 25
50	65	- 340	- 800	-140	- 440	_100	-119	_ 60	- 79	- 60	- 520	-30 -43	_ 20	- 49	_10	-23	_10	- 29
65	80	- 360	- 820	-150	- 450	-100	-119	- 60	- 79	- 60	- 520	-30 -43	- 30	- 49	-10	-23	-10	_ 29
80	100	- 380	- 920	-170	- 520	-120	-142	_ 72	- 94	- 72	- 612	-36 -51	_ 26	- 58	-12	_ 27	_10	- 34
100	120	- 410	- 950	-180	- 530	120	142	12	34	- 12	- 612	-30 -51	- 30	_ 56	- 12	-21	-12	- 34
120	140	- 460	-1 090	-200	- 600													
140	160	- 520	-1 150	-210	- 610	-145	-170	- 85	-110	- 85	- 715	-43 -61	- 43	- 68	-14	-32	-14	- 39
160	180	- 580	-1 210	-230	- 630													
180	200	- 660	-1 380	-240	- 700													
200	225	- 740	-1 460	-260	- 720	-170	-199	-100	-129	-100	- 820	-50 -70	- 50	- 79	-15	-35	-15	- 44
225	250	- 820	-1 540	-280	- 740													
250	280	- 920	-1 730	-300	- 820	-190	-222	-110	-142	-110	- 920	-56 -79	- 56	- 88	-17	-40	-17	- 49
280	315	-1 050	-1 860	-330	- 850	130		110	172	110	320	30 73			- ''		- 17	
315	355	-1 200	-2 090	-360	- 930	-210	-246	-125	-161	-125	-1 015	-62 -87	- 62	- 98	-18	-43	-18	- 54
355	400	-1 350	-2 240	-400	- 970			120		120	1 010	02 01	02		10		10	J-1
400	450	-1 500	-2 470	-440	-1 070	-230	-270	-135	-175	-135	-1 105	-68 -95	- 68	-108	-20	-47	-20	- 60
450	500	-1 650	-2 620	-480	-1 110					100	1 100	00 00		100		- ''		
500	560	_	_	_	_	-260	-304	-145	-189	_	_		- 76	-120	_	_	-22	- 66
560	630																	
630	710	_	_	_	_	-290	-340	-160	-210	_	_		- 80	-130	_	_	-24	- 74
710	800																	
800	900	-	-	_	-	-320	-376	-170	-226	_	_		- 86	-142	_	_	-26	- 82
900	1 000																	
1 000	1 120	-	-	-	-	-350	-416	-195	-261	-	-		- 98	-164	_	_	-28	- 94
1 120 1 250	1 250 1 400																	
1 400	1 600	_	_	_	_	-390	-468	-220	-298	_	_		-110	-188	_	_	-30	-108
1 400	1 600																	

Diameter		j	5	js	5	j6		js	6	j	j7	k²	ļ	k	:5	k6	6	m	5
Over	incl.	High	Low	High	Low	High I	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
3	6	+3	- 2	+ 2.5	- 2.5		- 2	+ 4	- 4	+ 8	- 4	+ 5	+1	+ 6	+1	+ 9	+1	+ 9	+ 4
6	10	+4	- 2	+ 3	- 3		- 2	+ 4.5	- 4.5	+10	- 5	+ 5	+1	+ 7	+1	+10	+1	+12	+ 6
10	18	+5	- 3	+ 4	- 4		- 3	+ 5.5	- 5.5	+12	- 6	+ 6	+1	+ 9	+1	+12	+1	+15	+ 7
18	30	+5	- 4	+ 4.5	- 4.5	+ 9	- 4	+ 6.5	- 6.5	+13	<u> </u>	+ 8	+2	+11	+2	+15	+2	+17	+ 8
30 40	40 50	+6	- 5	+ 5.5	- 5.5	+11	- 5	+ 8	- 8	+15	-10	+ 9	+2	+13	+2	+18	+2	+20	+ 9
50 65	65 80	+6	- 7	+ 6.5	- 6.5	+12	- 7	+ 9.5	- 9.5	+18	-12	+10	+2	+15	+2	+21	+2	+24	+11
80 100	100 120	+6	- 9	+ 7.5	- 7.5	+13	- 9	+11	-11	+20	-15	+13	+3	+18	+3	+25	+3	+28	+13
120 140 160	140 160 180	+7	-11	+ 9	- 9	+14	-11	+12.5	-12.5	+22	-18	+15	+3	+21	+3	+28	+3	+33	+15
180 200 225	200 225 250	+7	-13	+10	-10	+16	-13	+14.5	-14.5	+25	-21	+18	+4	+24	+4	+33	+4	+37	+17
250 280	280 315	+7	-16	+11.5	-11.5	+16	-16	+16	-16	+26	-26	+20	+4	+27	+4	+36	+4	+43	+20
315 355	355 400	+7	-18	+12.5	-12.5	+18	-18	+18	-18	+29	-28	+22	+4	+29	+4	+40	+4	+46	+21
400 450	450 500	+7	-20	+13.5	-13.5	+20	-20	+20	-20	+31	-32	+25	+5	+32	+5	+45	+5	+50	+23
500 560	560 630	-	-	-	-	_	-	+22	-22	-	-	-	-	-	-	+44	0	_	-
630 710	710 800	-	-	-	-	_	_	+25	-25	-	-	_	-	_	-	+50	0	_	-
800 900	900	-	_	-	-	_	_	+28	-28	-	_	_	_	_	_	+56	0	-	-
1 000 1 120	1 120 1 250	-	-	-	-	_	_	+33	-33	-	-	-	-	_	-	+66	0	_	-
1 250 1 400	1 400 1 600	-	_	-	-	-	_	+39	-39	-	_	_	_	_	_	+78	0	-	-

Unit : μ m

	ŀ	n4		h5	r	n6		h7		h8	,	า9	h	10	r	n]]	h	13	ic	:4	Diameter	division
	. '	-	·	110	'	10		117		110	· '	10	'	110			'	10	Je	, —	mı	n
Hi	gh	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Over	incl.
(0	- 4	0	- 5	0	- 8	0	- 12	0	- 18	0	- 30	0	- 48	0	- 75	0	-180	+ 2	- 2	3	6
(0	- 4	0	- 6	0	- 9	0	- 15	0	- 22	0	- 36	0	- 58	0	- 90	0	-220	+ 2	- 2	6	10
(0	- 5	0	- 8	0	-11	0	- 18	0	- 27	0	- 43	0	- 70	0	-110	0	-270	+ 2.5	- 2.5	10	18
(0	- 6	0	- 9	0	-13	0	- 21	0	- 33	0	- 52	0	- 84	0	-130	0	-330	+ 3	– 3	18	30
(0	- 7	0	- 11	0	-16	0	- 25	0	- 39	0	- 62	0	-100	0	-160	0	-390	+ 3.5	- 3.5	30 40	40 50
(0	- 8	0	-13	0	-19	0	- 30	0	- 46	0	- 74	0	-120	0	-190	0	-460	+ 4	- 4	50 65	65 80
(0	-10	0	-15	0	-22	0	- 35	0	- 54	0	- 87	0	-140	0	-220	0	-540	+ 5	- 5	80 100	100 120
(0	-12	0	-18	0	-25	0	- 40	0	- 63	0	-100	0	-160	0	-250	0	-630	+ 6	- 6	120 140 160	140 160 180
(0	-14	0	-20	0	-29	0	- 46	0	- 72	0	-115	0	-185	0	-290	0	-720	+ 7	- 7	180 200 225	200 225 250
(0	-16	0	-23	0	-32	0	- 52	0	- 81	0	-130	0	-210	0	-320	0	-810	+ 8	- 8	250 280	280 315
(0	-18	0	-25	0	-36	0	- 57	0	- 89	0	-140	0	-230	0	-360	0	-890	+ 9	- 9	315 355	355 400
(0	-20	0	-27	0	-40	0	- 63	0	- 97	0	-155	0	-250	0	-400	0	-970	+10	-10	400 450	450 500
-	_	-	-	_	0	-44	0	- 70	0	-110	0	-175	0	-280	0	-440	0	_	-	-	500 560	560 630
-	_	_	_	-	0	-50	0	- 80	0	-125	0	-200	0	-320	0	-500	0	_	-	-	630 710	710 800
-	-	_	_	_	0	-56	0	- 90	0	-140	0	-230	0	-360	0	-560	0	_	-	_	800 900	900 1 000
-	-	_	-	-	0	-66	0	-105	0	-165	0	-260	0	-420	0	-660	0	_	_	_	1 000 1 120	1 120 1 250
-	-	-	-	_	0	-78	0	-125	0	-195	0	-310	0	-500	0	-780	0	-	-	-	1 250 1 400	1 400 1 600

Unit : μ m

m6	n5	n6	p5	p6	r6	r7	Bas	sic toleranc	e	Diameter m	
High Low	High Low	High Low	High Low	High Low	High Low	High Low	IT2 I	T3 IT5	IT7	Over	incl.
+ 12 + 4 + 15 + 6 + 18 + 7 + 21 + 8	+13 + 8 +16 +10 +20 +12 +24 +15	+ 16 + 8 + 19 + 10 + 23 + 12 + 28 + 15	+17 +12 +21 +15 +26 +18 +31 +22	+ 20 + 12 + 24 + 15 + 29 + 18 + 35 + 22	+ 23 + 15 + 28 + 19 + 34 + 23 + 41 + 28	+ 27 + 15 + 34 + 19 + 41 + 23 + 49 + 28	1.5 2	2.5 5 2.5 6 3 8 4 9	12 15 18 21	3 6 10 18	6 10 18 30
+ 25 + 9	+28 +17	+ 33 +17	+37 +26	+ 42 + 26	+ 50 + 34	+ 59 + 34	2.5	4 11	25	30 40	40 50
+ 30 +11	+33 +20	+ 39 +20	+45 +32	+ 51 + 32	+ 60 + 41 + 62 + 43	+ 71 + 41 + 73 + 43	3	5 13	30	50 65	65 80
+ 35 +13	+38 +23	+ 45 +23	+52 +37	+ 59 + 37	+ 73 + 51 + 76 + 54	+ 86 + 51 + 89 + 54	4	6 15	35	80 100	100 120
+ 40 +15	+45 +27	+ 52 +27	+61 +43	+ 68 + 43	+ 88 + 63 + 90 + 65 + 93 + 68	+103 + 63 +105 + 65 +108 + 68	5	8 18	40	120 140 160	140 160 180
+ 46 +17	+51 +31	+ 60 +31	+70 +50	+ 79 + 50	+106 + 77 +109 + 80 +113 + 84	+123 + 77 +126 + 80 +130 + 84	7 1	0 20	46	180 200 225	200 225 250
+ 52 +20	+57 +34	+ 66 +34	+79 +56	+ 88 + 56	+126 + 94 +130 + 98	+146 + 94 +150 + 98	8 1:	2 23	52	250 280	280 315
+ 57 +21	+62 +37	+ 73 +37	+87 +62	+ 98 + 62	+144 +108 +150 +114	+165 +108 +171 +114	9 1	3 25	57	315 355	355 400
+ 63 +23	+67 +40	+ 80 +40	+95 +68	+108 + 68	+166 +126 +172 +132	+189 +126 +195 +132	10 1	5 27	63	400 450	450 500
+ 70 +26		+ 88 +44		+122 + 78	+194 +150 +199 +155	+220 +150 +225 +155	-		70	500 560	560 630
+ 80 +30		+100 +50		+138 + 88	+225 +175 +235 +185	+255 +175 +265 +185	-		80	630 710	710 800
+ 90 +34		+112 +56		+156 +100	+266 +210 +276 +220	+300 +210 +310 +220	_		90	800 900	900 1 000
+106 +40		+132 +66		+186 +120	+316 +250 +326 +260	+355 +250 +365 +260	_		105	1 000 1 120	1 120 1 250
+126 +48		+156 +78		+218 +140	+378 +300 +408 +330	+425 +300 +455 +330	-		125	1 250 1 400	1 400 1 600

Dimensional tolerance for housing bore (JIS B 0401-2)

Diameter o		Е	7	E	10	E	11	Е	12	F	6	F	7	F	В	G6		G	7	H6
	incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High Low
3 6 10 18	6 10 18 30	+ 32 + 40 + 50 + 61	+ 20 + 25 + 32 + 40	+ 68 + 83 +102 +124	+ 20 + 25 + 32 + 40	+ 95 +115 +142 +170	+ 25 + 32	+140 +175 +212 +250	+ 20 + 25 + 32 + 40	+ 18 + 22 + 27 + 33	+ 10 + 13 + 16 + 20	+ 22 + 28 + 34 + 41	+ 10 + 13 + 16 + 20	+ 28 + 35 + 43 + 53	+ 10 + 13 + 16 + 20	+ 12 + 14 + 17 + 20	+ 5	+ 16 + 20 + 24 + 28	+ 4 + 5 + 6 + 7	+ 8 0 + 9 0 +11 0 +13 0
30 40	40 50	+ 75	+ 50	+150	+ 50	+210	+ 50	+300	+ 50	+ 41	+ 25	+ 50	+ 25	+ 64	+ 25	+ 25	+ 9	+ 34	+ 9	+16 0
50 65	65 80	+ 90	+ 60	+180	+ 60	+250	+ 60	+360	+ 60	+ 49	+ 30	+ 60	+ 30	+ 76	+ 30	+ 29	+10	+ 40	+10	+19 0
80 100	100 120	+107	+ 72	+212	+ 72	+292	+ 72	+422	+ 72	+ 58	+ 36	+ 71	+ 36	+ 90	+ 36	+ 34	+12	+ 47	+12	+22 0
120 140 160	140 160 180	+125	+ 85	+245	+ 85	+335	+ 85	+485	+ 85	+ 68	+ 43	+ 83	+ 43	+106	+ 43	+ 39	+14	+ 54	+14	+25 0
180 200 225	200 225 250	+146	+100	+285	+100	+390	+100	+560	+100	+ 79	+ 50	+ 96	+ 50	+122	+ 50	+ 44	+15	+ 61	+15	+29 0
250 280	280 315	+162	+110	+320	+110	+430	+110	+630	+110	+ 88	+ 56	+108	+ 56	+137	+ 56	+ 49	+17	+ 69	+17	+32 0
315 355	355 400	+182	+125	+355	+125	+485	+125	+695	+125	+ 98	+ 62	+119	+ 62	+151	+ 62	+ 54	+18	+ 75	+18	+36 0
400 450	450 500	+198	+135	+385	+135	+535	+135	+765	+135	+108	+ 68	+131	+ 68	+165	+ 68	+ 60	+20	+ 83	+20	+40 0
500 560	560 630	+215	+145	_	-	-	-	-	-	+120	+ 76	+146	+ 76	+186	+ 76	+ 66	+22	+ 92	+22	+44 0
630 710	710 800	+240	+160	-	_	_	_	_	_	+130	+ 80	+160	+ 80	+205	+ 80	+ 74	+24	+104	+24	+50 0
800 900	900 1 000	+260	+170	_	_	_	-	_	_	+142	+ 86	+176	+ 86	+226	+ 86	+ 82	+26	+116	+26	+56 0
	1 120 1 250	+300	+195	-	-	-	-	-	-	+164	+ 98	+203	+ 98	+263	+ 98	+ 94	+28	+133	+28	+66 0
1 250 1 1 400 1	1 400 1 600	+345	+220	_	-	_	-	_	-	+188	+110	+235	+110	+305	+110	+108	+30	+155	+30	+78 0
1 600 1 1 800 2		+390	+240	_	-	-	-	_	-	+212	+120	+270	+120	+350	+120	+124	+32	+182	+32	+92 0

Unit : μ m

Diamete	r division	l l	(6		< 7	N	16	М	7		16		J7		26	Г	P7		36		<u>π. μπ.</u> 37
m	ım		(0	· ·	\ /	IV	10	IVI	/	l N	10	ľ	N /		0	,	- /	,	าบ		17
Over	incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
3	6	+2	- 6	+ 3	- 9	- 1	- 9	0	- 12	- 5	- 13	- 4	- 16	- 9	- 17	- 8	- 20	- 12	- 20	- 11	- 23
6	10	+2	- 7	+ 5	- 10	- 3	- 12	0	- 15	- 7	- 16	- 4	- 19	- 12	- 21	- 9	- 24	- 16	- 25	_	
10	18	+2	- 9	+ 6	- 12	- 4	- 15	0	- 18	- 9	- 20	- 5	- 23	- 15	- 26		- 29		- 31	_	- 34
18	30	+2	-11	+ 6	<u> </u>	- 4	<u> </u>	0	- 21	-11	- 24	- 7	- 28	- 18	- 31	- 14	- 35	- 24	- 37	- 20	- 41
30 40	40 50	+3	-13	+ 7	- 18	- 4	- 20	0	- 25	-12	- 28	- 8	- 33	- 21	- 37	- 17	- 42	- 29	- 42	- 25	- 50
50	65	+4	—15	+ 9	- 21	- 5	- 24	0	- 30	-14	- 33	_ g	- 39	- 26	- 45	- 21	- 51	- 35	- 54		- 60
65	80									- ''									- 56	- 32	- 62
80 100	100 120	+4	—18	+10	- 25	- 6	- 28	0	- 35	-16	- 38	-10	- 45	- 30	- 52	- 24	- 59		- 66 - 69		- 73 - 76
120	140																	- 56	- 81	- 48	- 88
140	160	+4	-21	+12	- 28	- 8	- 33	0	- 40	-20	- 45	- 12	- 52	- 36	- 61	- 28	- 68	- 58	- 83	- 50	- 90
160	180																	- 61	- 86	- 53	- 93
180	200																	- 68	- 97		-106
200	225	+5	-24	+13	- 33	- 8	- 37	0	- 46	-22	- 51	-14	- 60	- 41	- 70	- 33	- 79		-100		-109
225	250																		-104	- 67	-113
250	280	+5	-27	+16	- 36	- 9	- 41	0	- 52	-25	- 57	-14	- 66	- 47	- 79	- 36	- 88		-117		-126
280	315																		-121		-130
315	355	+7	-29	+17	- 40	-10	- 46	0	- 57	-26	- 62	-16	- 73	- 51	- 87	- 41	- 98		-133		-144
355	400																		-139		-150
400	450	+8	-32	+18	- 45	-10	- 50	0	- 63	-27	- 67	-17	- 80	- 55	- 95	- 45	-108		-153		-166
450	500																		-159		-172
500 560	560 630	0	-44	0	- 70	-26	- 70	-26	- 96	-44	- 88	-44	-114	- 78	-122	- 78	-148		-194		-220
																		-155	-199		-225
630 710	710 800	0	-50	0	- 80	-30	- 80	-30	-100	-50	-100	-50	-130	- 88	-138	- 88	-168	-175	-225		-225
												-						-185	-235	-185	<u>-265</u>
800	900	0	-56	0	- 90	-34	- 90	-34	- 124	-56	-112	-56	-146	-100	-156	-100	-190	-210	-266	-210	-300
900	1 000			_														-220	-276	-220	-310
1 000	1 120	0	-66	0	-105	-40	-106	-40	-145	-66	-132	-66	-171	-120	-186	-120	-225	-250	-316	-250	-355
1 120	1 250			_								- 55		0		0		-260	-326	-260	-365
1 250	1 400	0	-78	0	-125	-48	-126	-48	-173	_ ₇₈	-156	-78	-203	-140	-218	-140	-265	-300	-378	-300	-425
1 400	1 600				3		0				100	, 5	200			0		-330	-408	-330	-455
1 600	1 800	0	-92	0	-150	-58	-150	-58	-208	-92	-184	-92	-242	-170	-262	-170	-320	-370	-462	-370	-520
1 800	2 000		32	"	.00	50	.00	30	200	52	104	32	242	170	202	170	320	-400	-492	-400	-550

Unit : μ m

H7	H8	Н9	H10	H11	H13	J6	Js6	J7	Js7	K5	Diameter division mm
High Low	High Lov	High Low	High Low	High Low	Over incl.						
+ 12 0 + 15 0 + 18 0 + 21 0	+ 18 0 + 22 0 + 27 0 + 33 0	+ 30 0 + 36 0 + 43 0 + 52 0	+ 48 0 + 58 0 + 70 0 + 84 0	+ 75 0 + 90 0 +110 0 +130 0	+180 0 +220 0 +270 0 +330 0	+ 5 -3 + 5 -4 + 6 -5 + 8 -5	+ 4 - 4 + 4.5 - 4 + 5.5 - 5 + 6.5 - 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 6 - 6 + 7.5 - 7.5 + 9 - 9 +10.5 -10.5	0 - 5 +1 - 5 +2 - 6 +1 - 8	3 6 6 10 10 18 18 30
+ 25 0	+ 39 0	+ 62 0	+100 0	+160 0	+390 0	+10 -6	+ 8 - 8	+14 -11	+12.5 -12.5	+2 - 9	30 40 40 50
+ 30 0	+ 46 0	+ 74 0	+120 0	+190 0	+460 0	+13 -6	+ 9.5 - 9	.5 +18 -12	+15 -15	+3 -10	50 65 65 80
+ 35 0	+ 54 0	+ 87 0	+140 0	+220 0	+540 0	+16 -6	+11 -11	+22 -13	+17.5 -17.5	+2 -13	80 100 100 120
+ 40 0	+ 63 0	+100 0	+160 0	+250 0	+630 0	+18 -7	+12.5 -12	.5 +26 -14	+20 -20	+3 -15	120 140 140 160 160 180
+ 46 0	+ 72 0	+115 0	+185 0	+290 0	+720 0	+22 -7	+14.5 -14	.5 +30 -16	+23 -23	+2 -18	180 200 200 225 225 250
+ 52 0	+ 81 0	+130 0	+210 0	+320 0	+810 0	+25 -7	+16 -16	+36 -16	+26 -26	+3 -20	250 280 280 315
+ 57 0	+ 89 0	+140 0	+230 0	+360 0	+890 0	+29 -7	+18 -18	+39 -18	+28.5 -28.5	+3 -22	315 355 355 400
+ 63 0	+ 97 0	+155 0	+250 0	+400 0	+970 0	+33 -7	+20 -20	+43 -20	+31.5 -31.5	+2 -25	400 450 450 500
+ 70 0	+110 0	+175 0	+280 0	+440 0	- 0		+22 -22		+35 -35		500 560 560 630
+ 80 0	+125 0	+200 0	+320 0	+500 0	- 0		+25 -25		+40 -40		630 710 710 800
+ 90 0	+140 0	+230 0	+360 0	+560 0	- 0		+28 -28		+45 -45		800 900 900 1 000
+105 0	+165 0	+260 0	+420 0	+660 0	- 0		+33 -33		+52.5 -52.5		1 000 1 120 1 120 1 250
+125 0	+195 0	+310 0	+500 0	+780 0	- 0		+39 -39		+62.5 -62.5		1 250 1 400 1 400 1 600
+150 0	+230 0	+370 0	+600 0	+920 0	- 0		+46 -46		+75 -75		1 600 1 800 1 800 2 000

Inch - Millimeter conversion table

1in.=25.4mm

Inch - Mill	limeter conve	ersion table									1in.=25.4mm
li li	nch	0"	1"	2"	3"	4"	5"	6"	7"	8"	9"
Fraction	Decimals		'		3	4	5	0	_ ′	0	9
1/64 1/32 3/64 1/16 5/64 3/32 7/64	0.015625 0.031250 0.046875 0.062500 0.078125 0.093750 0.109375	0.397 0.794 1.191 1.588 1.984 2.381 2.778	25.400 25.797 26.194 26.591 26.988 27.384 27.781 28.178	50.800 51.197 51.594 51.991 52.388 52.784 53.181 53.578	76.200 76.597 76.994 77.391 77.788 78.184 48.581 78.978	101.600 101.997 102.394 102.791 103.188 103.584 103.981 104.378	127.000 127.397 127.794 128.191 128.588 128.984 129.381 129.778	152.400 152.797 153.194 153.591 153.988 154.384 154.781 155.178	177.800 178.197 178.594 178.991 179.388 179.784 180.181 180.578	203.200 203.597 203.994 204.391 204.788 205.184 205.581 205.978	228.600 228.997 229.394 229.791 230.188 230.584 230.981 231.378
1/ 8 9/64 5/32 11/64 3/16	0.125000 0.140625 0.156250 0.171875	3.175 3.572 3.969 4.366	28.575 28.972 29.369 29.766	53.975 54.372 54.769 55.166	79.375 79.772 80.169 80.566	104.775 105.172 105.569 105.966	130.175 130.572 130.969 131.366	155.575 155.972 156.369 156.766	180.975 181.372 181.769 182.166	206.375 206.772 207.169 207.566	231.775 232.172 232.569 232.966
13/64 7/32 15/64 1/ 4 17/64	0.187500 0.203125 0.218750 0.234375 0.250000 0.265625	4.762 5.159 5.556 5.953 6.350 6.747	30.162 30.559 30.956 31.353 31.750 32.147	55.562 55.959 56.356 56.753 57.150 57.547	80.962 81.359 81.756 82.153 82.550 82.947	106.362 106.759 107.156 107.553 107.950 108.347	131.762 132.159 132.556 132.953 133.350 133.747	157.162 157.559 157.956 158.353 158.750 159.147	182.562 182.959 183.356 183.753 184.150 184.547	207.962 208.359 208.756 209.153 209.550 209.947	233.362 233.759 234.156 234.553 234.950 235.347
9/32	0.281250	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344	235.744
19/64	0.296875	7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741	236.141
5/16	0.312500	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.738	211.138	236.538
21/64	0.328125	8.334	33.734	59.134	84.534	109.934	135.334	160.734	186.134	211.534	236.934
11/32	0.343750	8.731	34.131	59.531	84.931	110.331	135.731	161.131	186.531	211.931	237.331
23/64	0.359375	9.128	34.528	59.928	85.328	110.728	136.128	161.528	186.928	212.328	237.728
3/ 8	0.375000	9.525	34.925	60.325	85.725	111.125	136.525	161.925	187.325	212.725	238.125
25/64	0.390625	9.922	35.322	60.722	86.122	111.522	136.922	162.322	187.722	213.122	238.522
13/32	0.406250	10.319	35.719	61.119	86.519	111.919	137.319	162.719	188.119	213.519	238.919
27/64	0.421875	10.716	36.116	61.516	86.916	112.316	137.716	163.116	188.516	213.916	239.316
7/16	0.437500	11.112	36.512	61.912	87.312	112.721	138.112	163.512	188.912	214.312	239.712
29/64	0.453125	11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709	240.109
15/32	0.468750	11.906	37.306	62.706	88.106	113.506	138.906	164.306	189.706	215.106	240.506
31/64	0.484375	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.503	240.903
1/ 2	0.500000	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.500	215.900	241.300
33/64	0.515625	13.097	38.497	63.897	89.297	114.697	140.097	165.497	190.897	216.297	241.697
17/32	0.531250	13.494	38.894	64.294	89.694	115.094	140.494	165.894	191.294	216.694	242.094
35/64 9/16 37/64 19/32	0.546875 0.562500 0.578125 0.593750	13.891 14.288 14.684 15.081	39.291 39.688 40.084 40.481	64.691 65.088 65.484 65.881	90.091 90.488 90.884 91.281	115.491 115.888 116.284 116.681	140.494 140.891 141.283 141.684 142.081	166.291 166.688 167.084 167.481	191.294 191.691 192.088 192.484 192.881	217.094 217.091 217.488 217.884 218.281	242.094 242.491 242.888 243.284 243.681
39/64 5/ 8 41/64 21/32	0.609375 0.625000 0.640625 0.656250	15.478 15.875 16.272 16.669	40.878 41.275 41.672 42.069	66.278 66.675 67.072 67.469	91.678 92.075 92.472 92.869	117.078 117.475 117.872 118.269	142.478 142.875 143.272 143.669	167.878 168.275 168.672	193.278 193.675 194.072	218.678 219.075 219.472	244.078 244.475 244.872
43/64 11/16 45/64	0.671875 0.687500 0.703125	17.066 17.462 17.859	42.466 42.862 43.259	67.866 68.262 68.659	93.266 93.662 94.059	118.666 119.062 119.459	144.066 144.462 144.859	169.069 169.466 169.862 170.259	194.469 194.866 195.262 195.659	219.869 220.266 220.662 221.056	245.269 245.666 246.062 246.459
23/32	0.718750	18.256	43.656	69.056	94.456	119.856	145.256	170.656	196.056	221.456	246.856
47/64	0.734375	18.653	44.053	69.453	94.853	120.253	145.653	171.053	196.453	221.853	247.253
3/ 4	0.750000	19.050	44.450	69.850	95.250	120.650	146.050	171.450	196.850	222.250	247.650
49/64	0.765625	19.447	44.847	70.247	95.647	121.047	146.447	171.847	197.247	222.647	248.047
25/32	0.781250	19.844	45.244	70.644	96.044	121.444	146.844	172.244	197.644	223.044	248.444
51/64	0.796875	20.241	45.641	71.041	96.441	121.841	147.241	172.641	198.041	223.441	248.841
13/16	0.812500	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838	249.238
53/64	0.828125	21.034	46.434	71.834	97.234	122.634	148.034	173.434	198.834	224.234	249.634
27/32	0.843750	21.431	46.831	72.231	97.631	123.031	148.431	173.831	199.231	224.631	250.031
55/64	0.859375	21.828	47.228	72.628	98.028	123.428	148.828	174.228	199.628	225.028	250.428
7/ 8	0.875000	22.225	47.625	73.025	98.425	123.825	149.225	174.625	200.025	225.425	250.825
57/64	0.890625	22.622	48.022	73.422	98.822	124.222	149.622	175.022	200.422	225.822	251.222
39/32	0.906250	23.019	48.419	73.819	99.219	124.619	150.019	175.419	200.819	226.219	251.619
59/64	0.921875	23.416	48.816	74.216	99.616	125.016	150.416	175.816	201.216	226.616	252.016
15/16	0.937500	23.812	49.212	74.612	100.012	125.412	150.812	176.212	201.612	227.012	252.412
61/64	0.953125	24.209	49.609	75.009	100.409	125.809	151.209	176.609	202.009	227.409	252.809
31/32	0.968750	24.606	50.006	75406	100.806	126.206	151.606	177.006	202.406	227.806	253.206
63/64	0.984375	25.003	50.403	75.803	101.203	126.603	152.003	177.403	202.803	228.203	253.603